User's
Manual

WT5000
 Precision Power Analyzer Getting Started Guide

Product Registration

Thank you for purchasing YOKOGAWA products.

YOKOGAWA provides registered users with a variety of information and services. Please allow us to serve you best by completing the product registration form accessible from our website.
https://tmi.yokogawa.com/

Thank you for purchasing the WT5000 Precision Power Analyzer. This instrument is capable of measuring parameters such as voltage, current, and power with high precision.
This getting started guide primarily explains the handling precautions and basic operations of this instrument. To ensure correct use, please read this manual thoroughly before operation. Keep this manual in a safe place for quick reference in the event that a question arises.
The following manuals, including this one, are provided as manuals for this instrument. Please read all manuals.

List of Manuals

Manual Title	Manual No.	Description
WT5000	IM WT5000-01EN	The supplied CD contains the PDF file of this manual. This manual explains all the instrument's Precision Power Analyzer Features Guide
features other than the communication interface		
features.		

The "EN" and "Z1" in the manual numbers are the language codes.
Contact information of Yokogawa offices worldwide is provided on the following sheet.

Document No.	Description
PIM 113-01Z2	List of worldwide contacts

Notes

- The contents of this manual are subject to change without prior notice as a result of continuing improvements to the instrument's performance and functions. The figures given in this manual may differ from those that actually appear on your screen.
- Every effort has been made in the preparation of this manual to ensure the accuracy of its contents. However, should you have any questions or find any errors, please contact your nearest YOKOGAWA dealer.
- Copying or reproducing all or any part of the contents of this manual without the permission of YOKOGAWA is strictly prohibited.
- The TCP/IP software of this product and the documents concerning it have been developed/created by YOKOGAWA based on the BSD Networking Software, Release 1 that has been licensed from the Regents of the University of California.

Trademarks

- Microsoft, Internet Explorer, MS-DOS, Windows, Windows 7, Windows 8.1, and Windows 10 are registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.
- Adobe and Acrobat are either registered trademarks or trademarks of Adobe Systems Incorporated.
- In this manual, the ® and TM symbols do not accompany their respective registered trademark or trademark names.
- Other company and product names are trademarks or registered trademarks of their respective holders.

Revisions

- 1st Edition: September 2018
- 2nd Edition: March 2020
- 3rd Edition: April 2021
- 4th Edition: September 2021

Checking the Contents of the Package

Unpack the box, and check the following before operating the instrument. If the wrong items have been delivered, if items are missing, or if there is a problem with the appearance of the items, contact your nearest YOKOGAWA dealer.

WT5000

Check that the product that you received is what you ordered by referring to the model name and suffix code given on the name plate on the left side panel.

MODEL	Suffix		Specifications
WT5000			Precision Power Analyzer
Language	-HE		English menu
	-HJ		Japanese/English menu
	-HC		Chinese menu
	-HG		German menu
Power cord ${ }^{1}$	-D		UL/CSA standard and PSE compliant, maximum rated voltage: 125 V
	-F		VDE standard, Korean standard, maximum rated voltage: 250 V
	-H		Chinese standard, maximum rated voltage: 250 V
	-N		Brazilian standard, maximum rated voltage: 250 V
	-Q		British standard, maximum rated voltage: 250 V
	-R		Australian standard, maximum rated voltage: 250 V
	-T		Taiwanese standard, maximum rated voltage: 125 V
	-B		Indian standard, maximum rated voltage: 250 V
	-U		IEC Plug Type B, maximum rated voltage: 250 V
	-Y		No power cord included ${ }^{2}$
Options (option)		/M1	32 GB internal memory
		/MTR1	Motor evaluation function ${ }^{1}$
		/DA20	20-channel D/A output ${ }^{3}$
		/MTR2	Motor evaluation function $2^{3,4}$
		/DS	Date streaming
		/G7	IEC Harmoinc/Flicker measurement

1 Make sure that the attached power cord meets the designated standards of the country and area that you are using it in.
2 Prepare a power cord that complies with the standard specified by the country or region that the instrument will be used in.
3 The /DA20 and /MTR2 options cannot be installed on the same instrument.
4 To add the /MTR2 option, you need to add the /MTR1 option.

For products whose suffix contains " Z," an exclusive manual may be included. Please read it along with the standard manual.

No. (Instrument number)

When contacting the dealer from which you purchased the instrument, please give them the instrument number.

WT5000 Standard Accessories

The following accessories are included. Check that all contents are present and undamaged.

Standard accessories are not covered by warranty.
1 Make sure that the attached power cord meets the designated standards of the country and area that you are using it in. If the suffix code is -Y, a power cord is not included.
2 Included with models that have 20-channel D/A output (/DA20)
3 Manuals

Item	Model or Part No.	Quantity	Notes
Printed manuals	IM WT5000-03EN	1	Getting Started Guide (this guide)
	IM WT5000-92Z1	1	Document for China
	PIM 113-01Z2	1	List of worldwide contacts
Manual CD	B8215ZZ	1	For details, see the following table.

Manual CD

The English folder in the manual CD contains the PDF files shown below. The CD also contains Japanese manuals.

File Name	Manual Title	Manual No.
Features Guide \& Users Manual.pdf	WT5000 Precision Power Analyzer	IM WT5000-01EN
	Features Guide	
	WT5000 Precision Power Analyzer	IM WT5000-02EN
	User's Manual	IM WT5000-17EN
Communication Interface.pdf	Communication Interface User's Manual	

To view the PDF files above, you need Adobe Reader.

Input Elements (sold separately)

Check that the product that you received is what you ordered by referring to the model name on the input element.

MODEL	Name
760901	30A High Accuracy Element
760902	5A High Accuracy Element
760903	Current Sensor Element

Example: 760901

Input Element's Standard Accessories.

The following accessories are included. Check that all contents are present and undamaged.

Standard accessories are not covered by the input element warranty.
1 For the assembly procedure, see section 2.7.
2 An adapter set is included for every 760901, 760902, and 760903 input element.
3 An adapter set is included for every 760901 input element.
4 An adapter set is included for every 760902 input element.
5 An adapter set is included for every 760901 and 760902 input element.
6 An adapter set is included for every 760903 input element.

Optional Accessories (Sold separately)

The optional accessories below are available for purchase separately. For information about ordering accessories, contact your nearest YOKOGAWA dealer.

- Use the following accessories within the ranges indicated in the specifications of each accessory. When using several accessories together, use them within the specification range of the accessory with the lowest rating.
- If you use accessories other than those below, YOKOGAWA assumes no responsibility or liability for the specifications of this instrument or any damage caused by the use of this instrument.
- Accessories (sold separately) are not covered by warranty.
- The minimum purchase quantity is 1 piece.
- The maximum rated voltage to ground is an rms value.

Group 1

Compliance with EN standards is achieved by using the following in combination with the instrument.

Item	Model/ Part No.	Maximum Rated Voltage to Ground	Notes	Manual No.
Measurement lead	758917	1000 V CAT II	Two pieces in one set Used with the 758922 or 758929 adapter (sold separately). Cable length: Approx. 0.75 m	-
Safety terminal adapter set	758923	600 V CAT II	Two pieces in one set	-
	758931	1000 V CAT II	Two pieces in one set With hexagonal wrench (B9317WD)	IM 758931-01
Current safety terminal adapter set	761953	1000 V CAT II	Two pieces in one set	IM 761953-01
High current safety terminal adapter set	761951	1000 V CAT II	Two pieces in one set	IM 761951-01
Safety terminal adapter set	761952	1000 V CAT II	Two pieces in one set	IM 761952-01
Alligator clip adapter set	758922	300 V CAT II	Two pieces in one set For the 758917 measurement lead	-
	758929	1000 V CAT II	Two pieces in one set For the 758917 measurement lead	-
BNC cable	366924	-	42 V or less. Total length: Approx. 1 m.	-
	366925	-	42 V or less. Total length: Approx. 2 m.	-
Safety BNC cable	701902	1000 V CAT II	Cable length: Approx. 1 m	-
	701903	1000 V CAT II	Cable length: Approx. 2 m	-
External sensor cable	B9284LK	-	For connecting to the external current sensor input terminal of this instrument. Cable length: Approx. 0.5 m .	-
Conversion adapter	758924	1000 V CAT II	BNC-4 mm socket adapter	-
Cable for current sensor element (3 m)	761954	-	Total length: Approx. 3 m .	-
Cable for current sensor element (5 m)	761955	-	Total length: Approx. 5 m .	-
Cable for current sensor element (10 m)	761956	-	Total length: Approx. 10 m .	-
1.5 mm hexagonal wrench	B9317WD	-	-	-
Rack mounting kit	751542-E4	-	EIA standard	IM 751542-E4-01EN
	751542-J4	-	JIS standard	IM 751542-J4-01EN

Group 2

The following accessories by themselves comply with EN standards.

Item	Model/ Part No.	Maximum Rated Voltage to Ground	Notes	Manual No.
AC/DC Current Sensor	CT2000A	1000 Vrms CAT III	DC: 0 to 2000 A AC: 3000 Apeak	IM CT2000A-01
AC/DC Current Sensor	CT1000A	1000 V CAT III	DC: 0 to 1000 A AC: 1000 Arms, 1500 Apeak	IM CT1000A-01
AC/DC Current Sensor	CT1000	1000 Vrms CAT III	DC: 0 to 1000 A AC: 1000 Apeak	IM CT1000-01
AC/DC Current Sensor	CT200	1000 Vrms CAT III	DC: 0 to 200 A AC: 200 Apeak	IM CT1000-01
AC/DC Current Sensor	CT60	1000 Vrms CAT III	DC: 0 to 60 A AC: 60 Apeak	IM CT1000-01
Clamp-on Probe	720930	300 Vrms CAT III	AC: 0 to 50 Arms	IM 720930-01EN
Clamp-on Probe	720931	600 Vrms CAT III	AC: 0 to 200 Arms (300 Apeak)	IM 720930-01EN
Clamp-on Probe	751552	600 Vrms CAT III	AC: 0.001 to 1200 Arms	IM 751552-01E

Conventions Used in This Manual

Notes

The notes and cautions in this manual are categorized using the following symbols.

Improper handling or use can lead to injury to the user or damage to the instrument. This symbol appears on the instrument to indicate that the user must refer to the user's manual for special instructions. The same symbol appears in the corresponding place in the user's manual to identify those instructions. In the manual, the symbol is used in conjunction with the word "WARNING" or "CAUTION."

WARNING Calls attention to actions or conditions that could cause serious or fatal injury to the user, and precautions that can be taken to prevent such occurrences.

CAUTION Calls attention to actions or conditions that could cause light injury to the user or damage to the instrument or user's data, and precautions that can be taken to prevent such occurrences.

French

AVERTISSEMENT
Attire l'attention sur des gestes ou des conditions susceptibles de provoquer des blessures graves (voire mortelles), et sur les précautions de sécurité pouvant prévenir de tels accidents.

ATTENTION

Attire l'attention sur des gestes ou des conditions susceptibles de provoquer des blessures légères ou d'endommager l'instrument ou les données de l'utilisateur, et sur les précautions de sécurité susceptibles de prévenir de tels accidents.

Note Calls attention to information that is important for the proper operation of the

 instrument.
Prefixes k and K

Prefixes k and K used before units are distinguished as follows:
k: Denotes 1000 . Example: 100 kHz
K: Denotes 1024. Example: 720 KB (file size)

Character Notations

Menu Names and Panel Keys in Bold Characters
Indicate controls such as menu commands, tabs, and buttons that appear on the screen and front panel keys

Safety Precautions

This product is designed to be used by a person with specialized knowledge.
This instrument is an IEC safety class I instrument (provided with a terminal for protective earth grounding).
The general safety precautions described herein must be observed during all phases of operation. If the instrument is used in a manner not specified in this manual, the protection provided by the instrument may be impaired. YOKOGAWA assumes no liability for the customer's failure to comply with these requirements.
This manual is part of the product and contains important information. Store this manual in a safe place close to the instrument so that you can refer to it immediately. Keep this manual until you dispose of the instrument.

The following symbols are used on this instrument.

Handle with care. Refer to the user's manual or service manual. This symbol appears on dangerous locations on the instrument which require special instructions for proper handling or use. The same symbol appears in the corresponding place in the manual to identify those instructions.

Electric shock, danger

Protective earth ground or protective earth ground terminal
$\underset{=}{\perp}$
Ground or the functional ground terminal (do not use as the protective earth ground terminal)

Alternating current

=- Direct current
\sim Both direct and alternating current

ON (power)

OFF (power)

Power-on statePower-off state

French

À manipular délicatement. Toujours se reporter aux manuel d'utilisation et d'entretien. Ce symbole a été apposé aux endroits dangereux de l'instrument pour lesquels dis consignes spéciales d'utilisation on de manipulation ont été émises. Le même symbole apparaît à l'endroit correspondant du manuel pour identifier les consignes qui sty rapportent.

Choc électrique, danger
$\stackrel{(1)}{\leftrightarrows}$ Protection à la terre ou borne de protection à la terre
$\stackrel{\perp}{\perp} \quad$ Borne de terre ou borne de terre fonctionnelle (ne pas utiliser cette borne comme prise de terre)

Courant alternatif
=-- Courant direct
\sim Courant direct et alternatif
| Marche (alimentation)
Arrêt (alimentation)Marche
\square
Arrêt

Failure to comply with the precautions below could lead to injury or death or damage to the instrument.

WARNING

Use the Instrument Only for Its Intended Purpose

This instrument is a power measurement instrument that can measure parameters such as voltage, current, and power. Do not use this instrument for anything other than as a power measurement instrument.

Check the Physical Appearance

Do not use the instrument if there is a problem with its physical appearance.

Use the Correct Power supply

Make sure that the power supply voltage matches the instrument's rated supply voltage and that it does not exceed the maximum voltage range of the power cord to use.

Use the Correct Power Cord and Plug

To prevent electric shock or fire, use the power cord for the instrument. The main power plug must be plugged into an outlet with a protective earth terminal. Do not invalidate this protection by using an extension cord without protective earth grounding. Further, do not use this power cord with other instruments.

Connect the Protective Ground Terminal

Make sure to connect the protective earth to prevent electric shock before turning on the power. The power cord to use is a three-prong type power cord.Connect the power cord to a properly grounded three-prong outlet.

Do Not Impair the Protective Grounding
Never cut off the internal or external protective earth wire or disconnect the wiring of the protective earth terminal. Doing so may result in electric shock or damage to the instrument.

Do Not Use When the Protection Functions Are Defective

Before using this instrument, check that the protection functions, such as the protective grounding and fuse, are working properly. If you suspect a defect, do not use the instrument

Do Not Operate in an Explosive Atmosphere

Do not operate the instrument in the presence of flammable gases or vapors. Doing so is extremely dangerous.

Do Not Remove the Covers or Disassemble or Alter the Instrument

Only qualified YOKOGAWA personnel may remove the covers and disassemble or alter the instrument.
The inside of the instrument is dangerous because parts of it have high voltages.

Ground the Instrument before Making External Connections

Securely connect the protective grounding before connecting to the item under measurement or to an external control unit. Before touching a circuit, turn off its power and check that it has no voltage.

Measurement Category

This instrument is a measurement category II product. Do not use it for measurement category III or IV measurements.

Install or Use the Instrument in Appropriate Locations

- Do not install or use the instrument outdoors or in locations subject to rain or water.
- Install the instrument so that you can immediately remove the power cord if an abnormal or dangerous condition occurs.

Connect Cables Correctly

This instrument can measure large voltages and currents directly. If you use a voltage transformer or a current transformer together with this power meter, you can measure even larger voltages or currents. When you are measuring a large voltage or current, the power capacity of the item under measurement becomes large. If you do not connect the cables correctly, an overvoltage or overcurrent may be generated in the circuit under measurement. This may lead to not only damage to the instrument and the item under measurement, but electric shock and fire as well. Be careful when you connect the cables, and be sure to check the following points.

Before you begin measuring (before you turn the item under measurement on), check that:

- Cables have been connected to the terminals of this instrument correctly.

Check that there are no voltage measurement cables that have been connected to the current input terminals.
Check that there are no current measurement cables that have been connected to the voltage input terminals.
If you are measuring multiphase power, check that there are no mistakes in the phase wiring.

- Cables have been connected to the power supply and the item under measurement correctly.
Check that there are no short circuits between terminals or between connected cables.

During measurement (never touch the terminals and the connected cables when the item under measurement is on), check that:

- The input terminals are not abnormally hot.

After measuring (immediately after you turn the item under measurement off):
After you measure a large voltage or current, power may remain for some time in the item under measurement even after you turn it off. This remaining power may lead to electric shock, so do not touch the input terminals immediately after you turn the item under measurement off. The amount of time that power remains in the item under measurement varies depending on the item.

Manual CD

Never play this manual CD, which contains the user's manuals, in an audio CD player. Doing so may cause loss of hearing or speaker damage due to the large sounds that may be produced.

Accessories

Use the accessories specified in this manual. Moreover, use the accessories of this product only with Yokogawa products that specify them as accessories.
Do not use faulty accessories.

CAUTION

Operating Environment Limitations

This product is classified as Class A (for use in industrial environments). Operation of this product in a residential area may cause radio interference, in which case the user will be required to correct the interference.

AVERTISSEMENT

Utiliser l'instrument aux seules fins pour lesquelles il est prévu

Cet instrument est un instrument de mesure de puissance pouvant mesurer des paramètres tels que la tension, le courant et la puissance. Ne pas utiliser cet instrument à des fins autres que la mesure de puissance.

Inspecter l'apparence physique
Ne pas utiliser l'instrument si son intégrité physique semble être compromise.

Vérifier l'alimentation

Assurez-vous que la tension d'alimentation correspond à la tension d'alimentation nominale de l'appareil et qu'elle ne dépasse pas la plage de tension maximale du cordon d'alimentation à utiliser.

Utiliser le cordon d'alimentation et la fiche adaptés

Pour éviter tout risque de choc électrique, utiliser exclusivement le cordon d'alimentation prévu pour cet instrument. La fiche doit être branchée sur une prise secteur raccordée à la terre. En cas d'utilisation d'une rallonge, celleci doit être impérativement reliée à la terre. Par ailleurs, ne pas utiliser ce cordon d'alimentation avec d'autres instruments.

Brancher la prise de terre

Avant de mettre l'instrument sous tension, penser à brancher la prise de terre pour éviter tout choc électrique. Le cordon d'alimentation à utiliser est un cordon d'alimentation à trois broches. Brancher le cordon d'alimentation sur une prise de courant à trois plots et mise à la terre.

Ne pas entraver la mise à la terre de protection
Ne jamais neutraliser le fil de terre interne ou externe, ni débrancher la borne de mise à la terre. Cela pourrait entraîner un choc électrique ou endommager l'instrument.

Ne pas utiliser lorsque les fonctions de protection sont défectueuses
Avant d'utiliser l'instrument, vérifier que les fonctions de protection, telles que le raccordement à la terre et le fusible, fonctionnent correctement. En cas de dysfonctionnement possible, ne pas utiliser l'instrument.

Ne pas utiliser dans un environnement explosif
Ne pas utiliser l'instrument en présence de gaz ou de vapeurs inflammables. Cela pourrait être extrêmement dangereux.

Ne pas retirer le capot, ni démonter ou modifier l'instrument
Seul le personnel YOKOGAWA qualifié est habilité à retirer le capot et à démonter ou modifier l'instrument. Certains composants à l'intérieur de l'instrument sont à haute tension et par conséquent, représentent un danger.

Relier l'instrument à la terre avant de le brancher sur des connexions externes
Toujours relier l'instrument à la terre avant de le brancher aux appareils à mesurer ou à une commande externe. Avant de toucher un circuit, mettre l'instrument hors tension et vérifier l'absence de tension.

Catégorie de mesure

Cet instrument appartient à la catégorie de mesure II. Ne pas l'utiliser pour réaliser des mesures de catégorie III ou IV.

Installer et utiliser l'instrument aux emplacements appropriés

- Ne pas installer, ni utiliser l'instrument à l'extérieur ou dans des lieux exposés à la pluie ou à l'eau.
- Installer l'instrument de manière à pourvoir immédiatement le débrancher du secteur en cas de fonctionnement anormal ou dangereux.

Brancher les câbles correctement

L'instrument est capable de mesurer directement les tensions et les courants élevés. L'utilisation d'un transformateur de tension ou d'un transformateur de courant avec cet instrument permet de mesurer des tensions et des courants encore plus élevés. Lors de la mesure d'une tension ou d'un courant élevé, la capacité de l'appareil mesuré devient élevée. Si les câbles sont incorrectement branchés, une surtension ou une surintensité risque de se produire dans le circuit soumis à la mesure. Cela pourrait non seulement endommager l'instrument et l'appareil mesuré, mais aussi entraîner un choc électrique et un incendie. Toujours brancher les câbles correctement et vérifier les points suivants.

Avant de procéder à une mesure (avant de mettre l'appareil mesuré sous tension), vérifier que :

- Les câbles ont été correctement branchés sur les bornes de l'instrument.

Les câbles de mesure de la tension n'ont pas été malencontreusement branchés sur les bornes d'entrée de courant.
Les câbles de mesure du courant n'ont pas été malencontreusement branchés sur les bornes d'entrée de tension.
Pour la mesure d'alimentation multiphase, vérifier que le câblage est correct.

- Les câbles ont été correctement branchés sur le secteur et sur l'appareil à mesurer. Vérifier qu'il n'y a pas de court-circuit entre les bornes ou les câbles.

Pendant la mesure (ne jamais toucher les bornes et les câbles branchés lorsque l'appareil à mesurer est sous tension), vérifier que :

- Les bornes d'entrée ne chauffent pas anormalement.

Après la mesure (tout de suite après avoir mis l'appareil mesuré hors tension) : Si vous avez mesuré une tension ou un courant élevé, une puissance résiduelle peut rester un certain temps dans l'appareil mesuré, même après sa mise hors tension. La puissance résiduelle peut entraîner un choc électrique, par conséquent, après avoir mis l'appareil hors tension, il convient d'attendre avant de toucher les bornes d'entrée. La durée pendant laquelle la puissance résiduelle reste dans l'appareil mesuré varie selon les appareils.

Manuel CD

Ce CD contient les manuels d'utilisation. Ne jamais insérer ce CD dans un lecteur de CD audio. Cela pourrait entraîner une perte d'audition ou l'endommagement des enceintes en raison du volume potentiellement élevé des sons produits.

Accessoires

Utiliser les accessoires spécifiés dans ce manuel. En outre, utiliser les accessoires de ce produit uniquement avec des produits Yokogawa pour lesquels ils sont spécifiés comme accessoires.
Ne pas utiliser d'accessoires défectueux.

ATTENTION

Limitations relatives à l'environnement opérationnel

Ce produit est classé dans classe A (pour utilisation dans des environnements industriels). L'utilisation de ce produit dans un zone résidentielle peut entraîner une interférence radio que l'utilisateur sera tenu de rectifier

Regulations and Sales in Each Country or Region

Waste Electrical and Electronic Equipment

（This directive is valid only in the EU．）
This product complies with the WEEE directive marking requirement．This marking indicates that you must not discard this electrical／electronic product in domestic household waste．

Product Category
With reference to the equipment types in the WEEE directive，this product is classified as a ＂Monitoring and control instruments＂product．

When disposing products in the EU，contact your local Yokogawa office in Europe．Do not dispose in domestic household waste．

EU Battery Directive

 EU Battery Directive原
（This directive is valid only in the EU．）
Batteries are included in this product．This marking indicates they shall be sorted out and collected as ordained in the EU battery directive．

Battery type：Lithium battery

You cannot replace batteries by yourself．When you need to replace batteries，contact your local Yokogawa office in Europe．

Authorized Representative in the EEA

Yokogawa Europe B．V．is the authorized representative of Yokogawa Test \＆Measurement Corporation for this product in the EEA．To contact Yokogawa Europe B．V．，see the separate list of worldwide contacts，PIM 113－01Z2．

關於在台灣銷售

This section is valid only in Taiwan．
關於在台灣所販賣的符合其相關規定的電源線 A1100WD 的限用物質含量信息，請至下麵的網址進行查詢
http：／／tmi．yokogawa．com／gs／service－support／product－compliance／

Disposal

When disposing of this instrument，follow the laws and ordinances of the country or region where the product will be disposed of．

Contents

List of Manuals i
Checking the Contents of the Package iii
Conventions Used in This Manual viii
Safety Precautions ix
Regulations and Sales in Each Country or Region xvii
Chapter 1 Component Names and Functions
1.1 Front Panel, Rear Panel, and Top Panel 1-1
1.2 Panel Keys 1-5
1.3 Screens 1-10
1.4 System Configuration 1-13
Chapter 2 Measurement Preparation
2.1 Handling Precautions 2-1
2.2 Installing the Instrument 2-3
© 2.3 Installing Input Elements 2-7
© 2.4 Connecting the Power Supply 2-12
2.5 Turning the Power Switch On and Off 2-14
© 2.6 Precautions When Wiring the Circuit under Measurement 2-16
2.7 Assembling the Adapters for the Voltage Input Terminals 2-22
2.8 Wiring for Accurately Measuring a Single-phase Device 2-29
2.9 Guide for Selecting the Method Used to Measure the Power 2-30
© 2.10 Wiring the Circuit under Measurement for Direct Input (760901, 760902) 2-31
© 2.11 Wiring the Circuit under Measurement When Using Current Sensors $(760901,760902)$ 2-37
© 2.12 Wiring the Circuit under Measurement When Using Voltage and Current Transformers (760901, 760902) 2-43
© 2.13 Wiring the Circuit under Measurement When Using Current Probes (760903) 2-48
© 2.14 Wiring the Circuit under Measurement When Using a Voltage Transformer or Current Sensor (CT Series) (760903) 2-53
2.15 Connecting to a Current Sensor (CT Series) and Using the Phase Correction Function (760903) 2-70
Chapter 3 Common Operations
3.1 Touch Panel Operations 3-1
3.2 Setup Menu Operation and Function 3-2
3.3 Entering Values and Strings 3-4
3.4 Using USB Keyboards and Mouse Devices 3-6
3.5 Setting the Menu and Message Languages 3-10
3.6 Synchronizing the Clock 3-12
3.7 Initializing the Settings 3-14
3.8 Displaying Help 3-16
Chapter 4 External Signal I/O
© 4.1 Motor/Auxiliary Inputs (ChA to H, option) 4-1
④.2 External Clock Input (EXT CLK IN) 4-3
© 4.3 External Start Signal I/O (MEAS START). 4-4
© 4.4 VIDEO Output (VIDEO OUT (WXGA)) 4-6
© 4.5 D/A Output and Remote Control (D/A OUTPUT; option) 4-7
Chapter 5 Troubleshooting, Maintenance, and Inspection
5.1 Troubleshooting 5-1
5.2 Power Supply Fuse 5-2
5.3 Recommended Part Replacement 5-3
5.4 Disposing of YOKOGAWA Products 5-4
Chapter 6 Specifications
6.1 Signal Input Section 6-1
6.2 Measurement Output Section 6-3
6.3 Display 6-4
6.4 Control area 6-6
6.5 Wiring Systems 6-6
6.6 Measuring Mode 6-7
6.7 Features 6-8
6.8 Measurement Function Computation 6-18
6.9 Auxiliary I/O 6-22
6.10 Peripheral Device Connection 6-23
6.11 Computer Interface 6-24
6.12 System Maintenance Processing 6-25
6.13 General Specifications 6-26
6.14 External Dimensions 6-28
6.15760901 30A High Accuracy Element Specifications 6-29
6.16760902 5A High Accuracy Element Specifications 6-38
$6.17 \quad 760903$ Current Sensor Element Specifications. 6-47
Appendix
Appendix 1 Symbols and Determination of Measurement Functions App-1
Appendix 2 Power Basics (Power, harmonics, and AC RLC circuits) App-14
Appendix 3 How to Make Accurate Measurements App-22
Appendix 4 Power Range App-24
Appendix 5 Setting the Measurement Period App-40
Appendix 6 User-Defined Function Operands App-48
Appendix 7 USB Keyboard Key Assignments App-53
Appendix 8 List of Initial Settings and Numeric Data Display Order App-57
Appendix 9 Limitations on Modifying Settings and Operations App-71
Appendix 10 Measurement Functions That Can Be Measured in Each Measurement Mode App-73
Appendix 11 Firmware Version App-76
Appendix 12 Block Diagram App-77

Front Panel

Rear Panel

GP-IB port
Use to communicate with the instrument through the GP-IB interface.
\rightarrow Communication Interface User's Manual

USB port for PCs

Use to connect to a PC that has a USB port.
\rightarrow Communication Interface User's Manual

Ethernet port

Use to connect a network
\rightarrow Features Guide and
Communication Interface User's Manual

Models with the motor evaluation function 1 option Torque signal/rotation signal/auxiliary input connector (option) ©
Receives signals from a torque meter, rotation sensor, or sensor during motor evaluation.
\rightarrow section 4.1
Models with the motor evaluation function 2 option Torque signal/rotation signal/auxiliary input connector (option) ©

Models with the $\mathbf{2 0}$ channel D/A output option

D/A output and remote control connector (option) ©

D/A output

Transmits DC voltage (an analog signal) that corresponds to the numeric data. \rightarrow section 4.5

Remote contro

Receives control signals for holding values; performing single measurements; and starting, stopping, and resetting integration. \rightarrow section 4.5

Functional ground terminal © Use this in a noisy environment to reduce operation errors and adverse effects on measurements caused by noise. \rightarrow section 2.2

Power inlet «

\rightarrow section 2.4

VIDEO OUT (WXGA) output

 connector \uparrowTransmits image signals. \rightarrow section 4.4
External start signal I/O
connector 1
Use to perform master and slave synchronized measurement.
\rightarrow section 4.3
External clock input connector ©

- Receives the synchronization source (signal), which determines the measurement period.
\rightarrow section 4.2
- Receives the external PLL source (signal) for harmonic measurement. \rightarrow section 4.2
- Receives the external trigger source (signal) for waveform display.
\rightarrow section 4.2

Input Elements

The following three input elements are available.

30A High Accuracy Element
(Model: 760901)

5A High Accuracy Element (Model: 760902)

Voltage input terminals \triangle
For connecting voltage measurement cables
\rightarrow sections 2.8 to 2.11

External current sensor input terminal ©

For connecting cables from an external current sensor
\rightarrow section 2.10

Current input terminals \triangle

For connecting current measurement cables

\rightarrow sections $2.8,2.9$, and 2.11

Current Sensor Element
(Model: 760903)

Voltage input terminals \triangle

For connecting voltage measurement cables
\rightarrow sections 2.8 to 2.11
Current sensor connection terminal $₫$
For connecting a sensor cable from a current sensor (CT sensor)
\rightarrow section 2.14
Current probe power supply terminal \triangle
For connecting the power plug of a current probe
\rightarrow section 2.13
Current probe input terminal \triangle
For connecting the terminator of a current probe
\rightarrow section 2.13

Top Panel

1.2 Panel Keys

SETUP Area

MENU Key
Press this key to show the setup menu.
SAVE Key
Press this key to show a menu for saving setup parameters.
LOAD Key
Press this key to show a menu for loading setup parameters.

DISPLAY Area

NUMERIC Key (top half of the split display)

Press this key to show numeric data in the top half of the split display.
GRAPH Key (top half of the split display)
Press this key to show graphs (waveforms, trends, bar graphs, vectors) in the top half of the split display.

NUMERIC Key (bottom half of the split display)

Press this key to show numeric data in the bottom half of the split display.
GRAPH Key (bottom half of the split display)
Press this key to show graphs (waveforms, trends, bar graphs, vectors) in the bottom half of the split display.

NUMERIC Key (full screen)

Press this key to show numeric data in full screen.
GRAPH Key (full screen)
Press this key to show graphs (waveforms, trends, bar graphs, vectors) in full screen.
CUSTOM Key (full screen)
Press this key to switch the full screen to a custom display. ${ }^{1}$
1 Up to five screen configurations registered by the user on the Display menu

Functions Common to All Keys

Pressing a key causes the key to light.

Functions Common to the NUMERIC Keys

Pressing the key repeatedly causes the display format of the numeric display to switch as follows: All Items $\rightarrow 4$ Items $\rightarrow 8$ Items $\rightarrow 16$ Items \rightarrow Matrix \rightarrow Hrm List Single \rightarrow Hrm List Dual \rightarrow All Items $\rightarrow \ldots$

Functions Common to the GRAPH Keys

Pressing the key repeatedly causes the display to switch as follows: waveform \rightarrow trend \rightarrow bar graph \rightarrow vector \rightarrow waveform $\rightarrow \ldots$

CUSTOM Key Function

Pressing the key repeatedly causes the display to switch as follows: Custom $1 \rightarrow$ Custom $2 \rightarrow \ldots \rightarrow$ Custom $5 \rightarrow$ Custom $1 \rightarrow \ldots{ }^{2}$
2 The display switches between only the registered screen configurations; unregistered settings are skipped. If no screen configurations are registered, the display does not switch to the Custom display.

CURSOR Area

ESC Key

- Press this key to clear a menu or dialog box.
- If lower level menus are displayed, the menu is cleared one level at a time.

SET Key

Press this key to confirm the parameter selected with the arrow keys or the entered value.

Arrow Keys ($\boldsymbol{\Delta} \boldsymbol{\nabla} \boldsymbol{\square}$ - keys)

- Press the \longleftarrow and keys to move the cursor between digits when entering a number.
- Press the $\boldsymbol{\Delta}$ and $\boldsymbol{\nabla}$ keys to increase and decrease the number you are entering. Press these keys also to select settings.

ELEMENTS/RANGE Area

1 to 7 Keys

- Press this key to select the input element that you want to select the measurement range for.
- The selected element key lights
- When you select the wiring system, input elements that are assigned to the same wiring unit are selected at the same time.

OPTIONS Key

- On models with the motor evaluation option, press this key to show a menu for configuring the motor evaluation function or auxiliary input function.
- Press this key to show the motor evaluation function (option) in the input information area of the display.
- and $\boldsymbol{\nabla}$ Keys
- Press these keys to select the voltage range, current range, or external current sensor range.
- The ranges selected with these keys are valid when the AUTO key described below is not illuminated (when the fixed range feature is being used).

AUTO Key

- Press AUTO to activate the auto range feature. When this feature is active, the AUTO key is lit. The auto range feature automatically sets the voltage, current, external current sensor, and current probe input ranges depending on the amplitude of the received electrical signal.
- Press AUTO again to activate the fixed range feature. The AUTO key turns off.

ELEMENTS

STORE Area

MENU Key
Press this key to show a store menu.

REC Key

Press this key to start storing data and create a file. While storing, this key lights.

PAUSE Key

Press this key to pause the storage operation. While paused, this key blinks.
When storage is complete, this key lights.

ERROR LED

This LED blinks when a storage error occurs.

END Key

Press this key to end the storage operation and close the file.

STORE

DATA SAVE Area

MENU Key
Press this key to show a data save menu.

EXEC Key

Press this key to save data.

DATA SAVE

MENU
EXEC

INTEGRATION Area

MENU Key
Press this key to show an integration menu.

START Key

Press this key to start (execute) integration. While integration is in progress, this key lights.

STOP Key

Press this key to stop integration. While stopped, this key blinks.
When integration is complete, this key lights.

ERROR LED

This LED blinks when an integration error occurs.

RESET Key

Press this key to reset integration.

INTEGRATION

MENU START STOP ERROR RESET

HOLD/SINGLE/NULL/CAL Area

HOLD Key

- Press this key to switch from updating the display after each data update interval to stopping the series of display operations and holding the display of the numeric data. When HOLD is on, the key lights.
- If you press the key again, the hold operation is released, and the updating of the numeric data display resumes.

SINGLE Key

Press SINGLE while data is being held to take a single measurement at the set data update interval, update the data, and hold the data again.
NULL Key

- Press this key to execute the null function. When the null function is on, the key lights.
- Press the key again to release the null function.

CAL Key

Press this key to execute zero-level compensation. When zero level compensation is executed, the instrument creates a zero input condition in its internal circuitry and sets the zero level to the level at that point.

UTILITY Area

UTILITY Key

- Press this key to show a utility menu.
- In remote mode (the REMOTE LED is lit), press this key to change to local mode, which enables front panel key operation.

REMOTE LED

When the instrument is set to remote mode through the communication interface, the LED lights.

TOUCH LOCK Key

- Press this key to lock touch panel operations. The key lights.
- Press the key again to clear that state.

KEY LOCK key

- Press this key to lock the keys on the front panel. The key lights.
- Press the key again to clear that state.

UTILITY REMOTE

1.3 Screens

Display Example When Measuring Power (Numeric and waveform displays)

Menu icons
Input Information (Elements tab)

Input Information (Options tab)

Display example when motor evaluation function 1 is set to single motor (speed: pulse) and motor evaluation function 2 is set to Auxiliary

Non-Numeric Displays

Overload indicator

Displayed if the measured value exceeds $280 \%^{2}$ of the measurement range for crest factor CF6A.
1 160\% for the 1000 V range at CF3 and 500 V range at CF6
2320% for the 500 V range at CF6A

Overflow indicator

Displayed if the measured or computed result cannot be displayed using the specified decimal place or unit.

No-data indicator

Displayed if a measurement function is not selected or if there is no numeric data.

Error

Error indicator

Displayed in cases such as when a measured value is outside of its determined range.

Note

The instrument's LCD may have a few defective pixels. For details, see section 6.3, "Display."

Display Related to the IEC Voltage Fluctuation and Flicker Measurement (Option)

The figure below is a display example of normal flicker measurement.

1.4 System Configuration

2.1 Handling Precautions

Safety Precautions

If you are using this instrument for the first time, make sure to thoroughly read the safety precautions given on pages ix to xv.

Do Not Remove the Case

Do not remove the case from the instrument. Some parts of the instrument use high voltages and are extremely dangerous. For internal inspection and adjustment, contact your nearest YOKOGAWA dealer.

Unplug If Abnormal Behavior Occurs

If you notice smoke or unusual odors coming from the instrument, immediately turn off the power and unplug the power cord. Also, turn off the power to any circuits under measurement that are connected to the input terminals. Then, contact your nearest YOKOGAWA dealer.

Do Not Damage the Power Cord

Nothing should be placed on top of the power cord. The power cord should also be kept away from any heat sources. When removing the plug from the power outlet, do not pull on the cord. Pull from the plug. If the power cord is damaged or if you are using the instrument in a location where the power supply specifications are different, purchase a power cord that matches the specifications of the region that the instrument will be used in.

Operating Environment and Conditions

This instrument complies with the EMC standard under specific operating environment and operating conditions. If the installation, wiring, and so on are not appropriate, the compliance conditions of the EMC standard may not be met. In such cases, the user will be required to take appropriate measures.

General Handling Precautions

Do Not Place Objects on Top of the Instrument
Never stack the instrument or place other instruments or any objects containing water on top of it. Doing so may damage the instrument.

Keep Electrically Charged Objects Away from the Instrument
Keep electrically charged objects away from the input terminals. They may damage the internal circuitry.

Do Not Damage the LCD

Because the LCD is very vulnerable and can be easily scratched, do not allow any sharp objects near it. Also it should not be exposed to vibrations and shocks.

Unplug during Extended Non-Use

Turn off the power to the circuit under measurement and the instrument and remove the power cord from the outlet.

Connecting a PC to the Instrument
Before connecting a PC to the USB port for PCs, ground the PC to the same electrical potential as the instrument.

When Carrying the Instrument

WARNING

- The instrument should only be carried by two persons. Firmly grasp the handles on the side of the case. The instrument can weigh as much as approximately 18 kg . Take care to avoid injury while moving the instrument.
- When you hold or put away the handle, be careful not to get your hand caught between the handle and the case.
- When you carry the instrument, be careful not to get your hand caught between the wall, installation surface, or other objects and the instrument.

French

AVERTISSEMENT

- L'instrument ne doit être transporté que par deux personnes. Saisissez fermement les poignées sur le côté du boîtier. L'instrument peut peser jusqu'à 18 kg environ. Prenez soin d'éviter les blessures lors du déplacement de l'instrument.
- Lorsque vous attrapez ou rabattez la poignée, veillez à ne pas vous coincer la main entre la poignée et l'instrument.
- Lorsque vous déplacez l'instrument, veillez à ne pas vous coincer la main entre l'instrument et le mur, la surface d'installation ou tout autre objet.

First, turn off the circuit under measurement and remove the measurement cables. Then, turn off the instrument and remove the power cord and any attached cables.
In addition, if storage device is inserted in the instrument, be sure to remove the storage device before you move the instrument.

When Cleaning the Instrument

When cleaning the case or the operation panel, turn off the circuit under measurement and the instrument and remove the instrument's power cord from the outlet. Then, wipe the instrument lightly with a clean dry cloth. Do not use chemicals such as benzene or thinner. These can cause discoloring and deformation.

2.2 Installing the Instrument

WARNING

- Do not install or use the instrument outdoors or in locations subject to rain or water.
- Install the instrument so that you can immediately remove the power cord if an abnormal or dangerous condition occurs.

CAUTION

If you block the inlet or outlet holes on the instrument, it will become hot and may break down.

French

AVERTISSEMENT

- Ne pas installer, ni utiliser l'instrument à l'extérieur ou dans des lieux exposés à la pluie ou à l'eau.
- Installer l'instrument de manière à pourvoir immédiatement le débrancher du secteur en cas de fonctionnement anormal ou dangereux.

Abstract

ATTENTION Ne pas boucher les orifices d'entrée ou de sortie de l'instrument pour éviter toute surchauffe et panne éventuelle.

Installation Conditions

Install the instrument in an indoors environment that meets the following conditions.

Flat, Even Surface

Install the instrument on a stable surface that is level in all directions. If you use the instrument on an unstable or tilted surface, the accuracy of its measurements may be impeded.

Well-Ventilated Location

Inlet and vent holes are located on the top and bottom of the instrument. To prevent internal overheating, allow at least 20 mm of space around the inlet and vent holes.

- When connecting measurement wires and other various cables, allow extra space for operation.
- Install the instrument as to avoid hot air from a heat source being sucked in through the inlet holes.

Ambient Temperature and Humidity

Ambient temperature: $5^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$
Ambient humidity: $\quad 20 \%$ to $80 \% \mathrm{RH}$ (No condensation)

Do not install the instrument in the following places.

- Outdoors
- In direct sunlight or near heat sources
- Where the instrument is exposed to water or other liquids
- Where an excessive amount of soot, steam, dust, or corrosive gas is present
- Near strong magnetic field sources
- Near high voltage equipment or power lines
- Where the level of mechanical vibration is high
- On an unstable surface

Note

- For the most accurate measurements, use the instrument in the following kind of environment.

Ambient temperature: $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ Ambient humidity: $20 \% \mathrm{RH}$ to $80 \% \mathrm{RH}$ (no condensation)
When using the instrument in a place where the ambient temperature is $5^{\circ} \mathrm{C}$ to $18^{\circ} \mathrm{C}$ or $28^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$, add the temperature coefficient to the accuracy as specified in chapter 6.

- When installing the instrument in a place where the ambient humidity is 30% or less, take measures to prevent static electricity such as using an anti-static mat.
- Condensation may occur if the instrument is moved to another place where the ambient temperature or humidity is higher, or if the temperature changes rapidly. In these kinds of circumstances, wait for at least an hour before using the instrument, to acclimate it to the surrounding temperature.

Storage Location

- Ambient temperature: $-25^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$ (no condensation)
- Ambient humidity: $20 \% \mathrm{RH}$ to $80 \% \mathrm{RH}$ (no condensation)

When storing the instrument, avoid the following places.

- Where the level of mechanical vibration is high
- In direct sunlight
- Where there are corrosive or explosive gases
- Where an excessive amount of soot, dust, salt, or iron is present
- Near a strong source of heat or moisture
- Where water, oil, or chemicals may splash onto the instrument

We recommend that the instrument be stored in an environment where the temperature is between $5^{\circ} \mathrm{C}$ and $40^{\circ} \mathrm{C}$.

Installation Orientation

Desktop

Place the instrument on a flat, level surface as shown in the figure below.

Rubber Stoppers

If the instrument is installed so that it is flat as shown in the above figure, rubber stoppers can be attached to the feet to prevent the instrument from sliding. Two sets of rubber stoppers (four stoppers) are included in the package.

WARNING

- When you put away the stand, be careful not to get your hand caught between the stand and the instrument.
- Handling the stand without firmly supporting the instrument can be dangerous. Please take the following precautions.
- Only handle the stand when the instrument is on a stable surface.
- Do not handle the stand when the instrument is tilted.
- Do not place the instrument in any position other than those shown in the above figures.

CAUTION

Do not apply excessive force or shock to the stand. Doing so may break the stand support.

French

AVERTISSEMENT

- Lorsque vous rabattez le support, veillez à ne pas vous coincer la main entre le support et l'instrument.
- Lorsque vous manipulez le support, soutenez toujours l'instrument fermement. Prenez les précautions suivantes.
- Ne manipulez le support que lorsque l'instrument est placé sur une surface stable.
- Ne manipulez pas le support lorsque l'instrument est incliné.
- Ne pas placer l'instrument dans des positions autres celles indiquées ci-dessus. Ne pas empiler l'instrument.

ATTENTION

Évitez d'appliquer une force excessive ou des chocs sur le support. Le système de soutien du support peut se casser.

Functional Ground

If you use this instrument in a noisy environment, measurement results may be affected by the noise, or interface communication may not operate properly. These problems may be alleviated by connecting the functional ground terminal to ground.

Rack Mounting

To mount the instrument on a rack, use a rack mount kit (sold separately).

Item	Model	Notes
Rack mount kit	$751542-E 4$	For EIA
Rack mount kit	$751542-\mathrm{J} 4$	For JIS

A summary of the procedure for mounting the instrument on a rack is given below. For detailed instructions, see the manual that is included with the rack mount kit.

1. Remove the handles from both sides of the instrument.

2. Remove the four feet from the bottom of the instrument.
3. Remove the two plastic rivets and the four seals covering the rack mount attachment holes on each side of the instrument near the front.
4. Place seals over the feet and handle attachment holes.
5. Attach the rack mount kit to the instrument.
6. Mount the instrument on a rack.

Note

- Rack mount in the following manner to prevent internal heating.
- Allow at least 20 mm of space around the inlet and vent holes.
- Insert shelves to prevent hot air from peripheral devices from hitting this instrument.
- Make sure to provide adequate support from the bottom of the instrument. The support should not block the inlet and vent holes.

2.3 Installing Input Elements

WARNING

- To prevent electric shock and damage to the instrument, be sure to turn the power off before you install or remove input elements.
- Check that the input cable is not connected to the input terminals before installing or removing input elements.
- To prevent electric shock and to satisfy the specifications, make sure to put the accessory cover panel on the slots that are not being used. Using the instrument without the cover panel allows the dust to enter the instrument and may cause malfunction due to the rise in temperature inside the instrument.
- If an input element happens to come out of the slot while it is in use, it may cause electric shock or cause damage to the instrument as well as the input element. Make sure to screw input elements in place at the two locations (top and bottom).

Torque for tightening the screws: $0.6 \mathrm{~N} \cdot \mathrm{~m}$

- There are protrusions in the slot. Do not put your hand in the slot. If you put your hand in the slot, the protrusions may cut your hand.

Precautions to Be Taken When Using the Elements

- Do not apply an input voltage exceeding the maximum input voltage, maximum isolation voltage, withstand voltage, or allowable surge voltage.
- To avoid electric shock, be sure to ground the instrument.
- To prevent the possibility of electric shock, be sure to fasten the element screws. Failing to do so is extremely dangerous because the electrical and mechanical protection functions will not be activated.
- Avoid continuous connection under an environment in which the surge voltage may occur.

French

AVERTISSEMENT

- Pour éviter tout risque de choc électrique et d'endommagement de l'instrument, veillez à mettre l'instrument hors tension avant d'installer ou de retirer des éléments d'entrée.
- Avant d'installer ou de retirer des éléments d'entrée, vérifiez que le câble d'entrée n'est pas connecté aux bornes d'entrée.
- Afin d'éviter tout risque de choc électrique et de respecter les spécifications, assurezvous de mettre le cache de recouvrement sur les slots non utilisés. L'utilisation de l'instrument sans le cache laisse entrer la poussière dans l'instrument, ce qui peut causer un dysfonctionnement dû à une élévation de la température à l'intérieur de l'instrument.
- Si un élément d'entrée sort du slot en cours d'utilisation, il peut provoquer un choc électrique ou endommager l'instrument, ainsi que l'élément d'entrée. Assurez-vous de visser les éléments d'entrée dans les deux emplacements (haut et bas).

Couple de serrage des vis: $0.6 \mathrm{~N} \cdot \mathrm{~m}$

- Les sots présentent des rebords en saillie. Ne pas insérer les doigts dans les slots, car les saillies pourraient vous blesser.

Précautions à prendre lors de l'utilisation des éléments

- N'appliquez pas de tension d'entrée dépassant la tension d'entrée maximum, la tension d'isolation maximum, la tension de maintient ou la surtension autorisée.
- Pour éviter tout risque de choc électrique, l'instrument doit impérativement être relié à la terre.
- Afin d'éviter toute possibilité de choc électrique, assurez-vous de fixer les vis des éléments. Le non-respect de cette consigne est extrêmement dangereux car les fonctions de protection électrique et mécanique ne seront pas activées.
- Évitez un branchement continu dans un environnement pouvant être soumis à une surtension.

Input Element Types

The following three types are available.

30A High Accuracy Element	760901
5A High Accuracy Element	760902
Current Sensor Element	760903

Notes in Installing and Removing Input Elements

- A wiring unit is configured with adjacent input elements. It is not possible to configure a wiring unit using input elements that are separated apart.
- If you replace one installed input element with another, the settings other than those indicated below will be initialized when the power is turned on.
- Date and time settings
- Communication settings
- Menu and message language settings

If you want to keep the settings, specify a save destination and save them before replacing the input element.

Installing Elements

1. Make sure that the instrument's power switch is turned off.
2. Check the element numbers indicated above the input element installation slots on the rear panel of this instrument. Then install the input elements in the appropriate slots.

While holding the handles on the top and bottom of an input element, press hard until it clicks in place. If there is a cover panel on the slot you want to install an element in, remove the cover panel, first.
3. Fix the elements securely in place by fastening the supplied screws at the top and bottom locations of the input elements. (Screw tightening torque: $0.6 \mathrm{~N} \cdot \mathrm{~m}$)
4. Turn on the instrument's power switch.
5. In the overview screen, check that the names of the elements you installed are displayed correctly at the appropriate slots. If they are not correct, remove the elements according to the steps in "Removing Elements" provided later, and reinstall the elements according to steps 1 to 3 shown above. For instructions on how to display the overview screen, see section 14.7, "Viewing System Information (Overview)" in the User's Manual.

Note

Be sure to attach the supplied cover panels to unused slots.

Installation Positions of Input Elements

Install input elements in order from the smallest numbered slot. Do not skip slots.

Removing Elements

1. Make sure that the instrument's power switch is turned off.
2. Loosen the two screws that are fastened to the input element you want to remove.
3. Hold the two handles at the top and bottom of the input element, and pull it out.

Safety Precautions for Laser Products

The following input elements use laser light sources internally．
－ 760901 30A High Accuracy Element
－ 760902 5A High Accuracy Element
－ 760903 Current Sensor Element
The above input element is a class 1 laser product as defined by IEC 60825－1：Safety of Laser Products—Part1：Equipment Classification，and Requirements．In addition，these instruments comply with 21 CFR 1040.10 and 1040.11 except for deviations pursuant to Laser Notice No．50，dated June 24， 2007.
－ 760901 30A High Accuracy Element
－ 760902 5A High Accuracy Element
－ 760903 Current Sensor Element
The following information is printed on the side．

Complies with 21 CFR 1040.10 and 1040.11
except for deviations pursuant to Laser
Notice No．50，dated June 24， 2007
4－9－8 Myojin－cho，Hachioji－shi， Tokyo 192－8566，Japan

WT5000

The following information is printed on the top．
IF CLASS 1 LASER PRODUCT MODULE IS AVAILABLE
クラス1レーザモジュール実装時
安装Class 1激光模块时

CLASS 1 LASER PRODUCT
クラスルーザ製品
1 类激光产品
（EN 60825－1：2014）
（IEC 60825－1：2007，GB 7247．1－2012）

Complies with 21 CFR 1040.10 and 1040.11
except for deviations pursuant to Laser
Notice No．50，dated June 24， 2007
4－9－8 Myojin－cho，Hachioji－shi，
Tokyo 192－8566，Japan

Laser Specifications

－Laser Class：Class 1
－Maximum Output： 0 mW （This instrument doesn＇t radiate the laser beam to outside．）
－Wavelength： $850 \pm 10 \mathrm{~nm}$
If the instrument is used in a manner not specified in this manual，the protection provided by the instrument may be impaired．YOKOGAWA assumes no liability for the customer＇s failure to comply with these warnings and requirements．

2.4 Connecting the Power Supply

Before Connecting the Power Supply

To prevent electric shock and damage to the instrument, follow the warnings below.

WARNING

- Make sure that the power supply voltage matches the instrument's rated supply voltage and that it does not exceed the maximum voltage range of the power cord to use.
- Connect the power cord after checking that the power switch of the instrument is turned off.
- To prevent electric shock or fire, use the power cord for the instrument.
- To avoid electric shock, be sure to ground the instrument. Connect the power cord to a three-prong power outlet with a protective earth terminal.
- Do not use an ungrounded extension cord. If you do, the instrument will not be grounded.
- If there is no AC outlet that is compatible with the power cord that you will be using and you cannot ground the instrument, do not use the instrument.

French

AVERTISSEMENT

- Assurez-vous que la tension d'alimentation correspond à la tension d'alimentation nominale de l'appareil et qu'elle ne dépasse pas la plage de tension maximale du cordon d'alimentation à utiliser.
- Brancher le cordon d'alimentation après avoir vérifié que l'interrupteur de l'instrument est sur OFF.
- Pour éviter tout risque de choc électrique, utiliser exclusivement le cordon d'alimentation prévu pour cet instrument.
- Relier l'instrument à la terre pour éviter tout risque de choc électrique. Brancher le cordon d'alimentation sur une prise de courant à trois plots reliée à la terre.
- Toujours utiliser une rallonge avec broche de mise à la terre, à défaut de quoi l'instrument ne serait pas relié à la terre.
- Si une sortie CA conforme au câble d'alimentation fourni n'est pas disponible et que vous ne pouvez pas relier l'instrument à la terre, ne l'utilisez pas.

Connecting the Power Cord

1. Check that the instrument's power switch is off.
2. Connect the power cord plug to the power inlet on the rear panel of the instrument.
3. Connect the other end of the cord to an outlet that meets the following conditions. Use a grounded three-prong outlet.

Item	Specifications
Rated supply voltage	100 VAC to $120 \mathrm{VAC}, 220 \mathrm{VAC}$ to 240 VAC
Permitted supply voltage range	90 VAC to $132 \mathrm{VAC}, 198 \mathrm{VAC}$ to 264 VAC
Rated supply frequency	$50 / 60 \mathrm{~Hz}$
Permitted supply frequency range	48 Hz to 63 Hz
Maximum power consumption	560 VA

2.5 Turning the Power Switch On and Off

Before Turning On the Power, Check That:

- The instrument is installed properly. \rightarrow section 2.2, "Installing the Instrument"
- The power cord is connected properly. \rightarrow section 2.3, "Connecting the Power Supply"

Power Switch Location

The power switch is located in the lower left of the front panel.

Turning On and Off the Power Switch

The power switch is a push button. Press the button once to turn the instrument on and press it again to turn the instrument off.

Operations Performed When the Power Is Turned On

When the power switch is turned on, a self-test starts automatically. When the self-test completes successfully, the screen that was displayed immediately before the power was turned off appears. A navigation window also appears.
Before using the instrument, make sure that the self-test completes successfully.

Note

- After turning the power switch off, wait at least 10 seconds before you turn it on again.
- It may take a few seconds for the startup screen to appear.

Navigation window

When the Power-on Operation Does Not Finish Normally

Turn off the power switch, and check the following items.

- Check that the power cord is securely connected.
- Check that the correct voltage is coming to the power outlet. \rightarrow section 2.3, "Connecting the Power Supply"
- Initialize the settings to their factory defaults by turning on the power switch while holding down the ESC key.
If the instrument still does not work properly after checking these items, contact your nearest YOKOGAWA dealer for repairs.

To Make Accurate Measurements

- After turning on the power switch, wait at least 30 minutes to allow the instrument to warm up.
- After warm-up, execute zero-level compensation. \rightarrow see the user's manual

Operations Performed When the Power Is Turned Off

After the power is turned off, the instrument stores the setup parameters in its memory before shutting down. The same is true when the power cord is disconnected from the outlet. The next time the power is turned on, the instrument powers up using the stored setup parameters.

Note

The instrument stores the settings using an internal battery. When the battery voltage falls below a specified value, you will no longer be able to store setup parameters, and a message (error 901) will appear on the screen when you turn on the power. If this message appears frequently, you need to replace the battery soon. You cannot replace batteries by yourself. Contact your nearest YOKOGAWA dealer to have the battery replaced.

CAUTION

Turning off the power switch abruptly or unplugging the power cord while the instrument is saving data may corrupt the media on which data is being saved. Also, the data being saved is not guaranteed. Always turn the power switch off after data has been saved.

French

Abstract

ATTENTION Une mise hors tension abrupte ou le débranchement du cordon d'alimentation tandis que l'instrument enregistre des données peuvent compromettre les supports sur lesquels les données sont enregistrées. De plus, l'enregistrement des données n'est pas garanti. Mettez toujours l'instrument hors tension après l'enregistrement des données.

2.6 Precautions When Wiring the Circuit under Measurement

To prevent electric shock and damage to the instrument, follow the warnings below.

WARNING

- Ground the instrument before connecting measurement cables. The power cord to use is a three-prong type power cord. Insert the power cord into a grounded three-prong outlet.
- Turn the circuit under measurement off before connecting and disconnecting cables to it. Connecting or removing measurement cables while the power is on is dangerous.
- Do not wire a current circuit to the voltage input terminal or a voltage circuit to the current input terminal.
- Strip the insulation covers of measurement cables so that when they are wired to the safety terminal adapters, the conductive parts (bare wires) do not protrude from the adapters. Also, make sure to fasten the safety terminal adapter screws securely so that cables do not come loose.
- When connecting measurement cables to the voltage input terminals, only connect measurement cables that have safety terminals that cover their conductive parts. Using a terminal with bare conductive parts (such as a banana plug) can be dangerous if the terminal comes loose.
- When connecting connectors to the external current sensor input terminals, connect only those that have safety terminals that cover their conductive parts. Using a connector with bare conductive parts can be dangerous if the voltage is 42 V or higher.
- When the voltage of the circuit under measurement is being applied to the current input terminals, do not touch the external current sensor input terminals. Doing so is dangerous because the terminals are electrically connected inside the instrument.
- When connecting a measurement cable from an external current sensor to an external current sensor input terminal, remove the cables connected to the current input terminals. Also, when the voltage of the circuit under measurement is being applied to the external current sensor input terminals, do not touch the current input terminals. Doing so is dangerous because the terminals are electrically connected inside the instrument.
- When using an external voltage transformer (VT) or current transformer (CT), make sure that it has enough dielectric strength for the voltage (U) being measured $(2 \mathrm{U}+1000 \mathrm{~V}$ recommended). Also, make sure that the secondary side of the CT does not become an open circuit while the power is being applied. If this happens, high voltage will appear at the secondary side of the $C T$, making it extremely dangerous.
- When using a 30A High Accuracy Element (760901) and applying a current exceeding 10 A from a current transformer (CT) to this instrument, provide protection.
- When using a 5A High Accuracy Element (760902) and applying a current exceeding 0.7 A from a current transformer (CT) to this instrument, provide protection.
- When using an external current sensor, make sure to use a sensor that comes in a case. The conductive parts and the case should be insulated, and the sensor should have enough dielectric strength for the voltage of the circuit under measurement. Using a bare sensor is dangerous, because there is a high probability that you might accidentally touch it.
- When using a shunt-type current sensor as an external current sensor, turn off the circuit under measurement before you connect the sensor. Connecting or removing the sensor while the power is on is dangerous.
- When using a clamp-type current sensor as an external current sensor, make sure that you understand the voltage of the circuit under measurement and the specifications and handling of the clamp-type sensor, and then confirm that there are no dangers, such as shock hazards.
- When using a current sensor (CT) on a current sensor element (760903), use a sensor with overload protection.
- The sensor input shell and current probe input of the current sensor element (760903) are not isolated.
- The protection function and non-isolation function of the current sensor element (760903) are enabled when the module screws are fastened. It is extremely dangerous if you do not fasten the screws.
- For safety reasons, when using the instrument after mounting it on a rack, furnish a switch for turning off the circuit under measurement from the front side of the rack.
- To make the protective features effective, before applying the voltage or current from the circuit under measurement, check that:
- The power cord for the instrument is being used to connect to the power supply, and the instrument is grounded.
- The instrument is turned on.
- When the instrument is turned on, do not apply a signal that exceeds the following values to the voltage or current input terminals. When the instrument is turned off, turn the circuit under measurement off. For information about other input terminals, see the specifications in chapter 6.

Instantaneous maximum allowable input (1 s or less)

Voltage input (760901, 760902, 760903)
Peak value of 2.5 kV or rms value of 1.5 kV , whichever is less.

Current input

Direct input

30A High Accuracy Element (760901)
Peak value of 150 A or rms value of 55 A , whichever is less. 5A High Accuracy Element (760902)

Peak value of 10 A or rms value of 7 A , whichever is less.
External current sensor input $(760901,760902)$ Peak value less than or equal to 10 times the range.
Current sensor input (760903) (0.1 s or less) Input Resistance: 1Ω

Peak value of 1.8 A or rms value of 1.2 A , whichever is less. Input Resistance: 1.5Ω

Peak value of 1.2 A or rms value of 0.84 A , whichever is less. Input Resistance: 5Ω

Peak value of 0.36 A or rms value of 0.25 A , whichever is less. Input Resistance: 10Ω

Peak value of 0.18 A or rms value of 0.12 A , whichever is less.

Current probe input (760903)

Peak value at 10 times the range or 25 V , whichever is less

Continuous maximum allowable input

Voltage input (760901, 760902, 760903)
Peak value of 1.6 kV or rms value of 1.5 kV , whichever is less. If the frequency of the input voltage exceeds 100 kHz , (1200 - f) Vrms or less. f is the frequency of the input voltage in units of kHz .

Current input

Direct input

30A High Accuracy Element (760901)
Peak value of 90 A or $r m s$ value of 33 A , whichever is less.
5A High Accuracy Element (760902)
Peak value of 10 A or rms value of 7 A , whichever is less.

External current sensor input $(760901,760902)$

Peak value less than or equal to 2.5 times the range.

Current sensor input (760903)

Input Resistance: 1Ω
Peak value of 1.5 A or rms value of 1.1 A , whichever is less. Input Resistance: 1.5Ω

Peak value of 1.0 A or rms value of 0.73 A , whichever is less. Input Resistance: 5Ω

Peak value of 0.3 A or rms value of 0.22 A , whichever is less. Input Resistance: 10Ω

Peak value of 0.15 A or rms value of 0.11 A , whichever is less.

Current probe input (760903)

Peak value at 5 times the range or rms value of 25 V , whichever is less

CAUTION

- Use measurement cables with dielectric strengths and current capacities that are appropriate for the voltage or current being measured.
Example: When making measurements on a current of 20 A , use copper wires that have a conductive cross-sectional area of $4 \mathrm{~mm}^{2}$ or greater.
- Attaching a measurement cable to this product may cause radio interference in which case the user will be required to correct the interference.

French

AVERTISSEMENT

- Relier l'instrument à la terre avant de brancher les câbles de mesure. Le cordon d'alimentation à utiliser est un cordon d'alimentation à trois broches. Brancher le cordon d'alimentation sur une prise de courant à trois plots mise à la terre.
- Mettre le circuit à mesurer hors tension avant de brancher et de débrancher les câbles. Il est dangereux de brancher ou de débrancher les câbles de mesure lorsque le circuit est sous tension.
- Ne pas brancher un circuit de courant sur une borne d'entrée de tension ou un circuit de tension sur une borne d'entrée de courant.
- Retirez les caches d'isolation des câbles de mesure pour qu'ils soient raccordés aux adaptateurs de bornes de sécurité, les parties conductrices (fils nus) ne dépassant pas des adaptateurs. De plus, assurez-vous de fixer correctement les vis des adaptateurs de bornes de sécurité de façon à éviter la désolidarisation des câbles.
- Lors de la connexion des câbles de mesure sur les bornes d'entrée de tension, ne brancher que des câbles de mesure dotés de bornes de sécurité capables de couvrir leurs éléments conducteurs. L'utilisation d'une borne dotée d'éléments conducteurs nus (comme une fiche banane) serait dangereuse si la borne venait à se détacher.
- Lors de la connexion de câbles sur les bornes d'entrée du capteur de courant, ne brancher que des câbles dotés de bornes de sécurité capables de couvrir leurs éléments conducteurs. L'utilisation d'un connecteur doté d'éléments conducteurs peut être dangereuse si la tension est de 42 V ou plus.
- Lorsque la tension du circuit à mesurer est appliquée aux bornes d'entrée de courant, ne pas toucher les bornes d'entrée de capteur de courant externe, car elles sont connectées électroniquement à l'intérieur de l'instrument, ce qui présente un danger.
- Lors du branchement d'un câble de mesure d'un capteur de courant externe sur un connecteur d'entrée de capteur de courant externe, retirer les câbles branchés sur les bornes d'entrée de courant. De plus, lorsque la tension du circuit à mesurer est appliquée aux bornes d'entrée de capteur de courant externe, ne pas toucher les bornes d'entrée de courant, car elles sont connectées électroniquement à l'intérieur de l'instrument, ce qui présente un danger.
- En cas d'utilisation d'un transformateur externe de tension ou de courant, vérifier que la rigidité diélectrique est suffisante pour la tension (U) à mesurer ($2 \mathrm{U}+1000 \mathrm{~V}$ recommandé). De plus, il convient d'éviter que le côté secondaire du transformateur de courant devienne un circuit ouvert pendant que le courant est appliqué. Si cela se produisait, la haute tension se déplacerait du côté secondaire du transformateur de courant, le rendant extrêmement dangereux.
- Il faut fournir une protection en cas d'utilisation d'un élément de haute précision de 30 A (760901) et si le courant appliqué sur cet instrument en provenance d'un transformateur de courant (CT) dépasse 10 A .
- Il faut fournir une protection en cas d'utilisation d'un élément de haute précision de 5 A (760902) et si le courant appliqué sur cet instrument en provenance d'un transformateur de courant (CT) dépasse 0,7 A.
- Lors de l'utilisation d'un capteur de courant externe, toujours utiliser un capteur rangé dans un étui. Les éléments conducteurs et l'étui doivent être isolés, et le capteur doit avoir une rigidité diélectrique suffisante pour la tension du circuit à mesurer. L'utilisation d'un capteur nu est dangereuse car le risque de le toucher accidentellement est très élevé.
- Lors de l'utilisation d'un capteur de courant de type shunt en guise de capteur de courant externe, mettre le circuit à mesurer hors tension avant de brancher le capteur. Il est dangereux de brancher ou de débrancher le capteur lorsque le circuit est sous tension.
- Lors de l'utilisation d'un capteur de courant par serrage en guise de capteur de courant externe, tenir compte de la tension du circuit à mesurer, des spécifications et des consignes de manipulation du capteur par serrage, puis vérifier l'absence de dangers, tels le choc électrique.
- Si vous utilisez un capteur de courant (CT) sur un élément de capteur de courant (760903), utilisez un capteur doté d'une protection contre les surcharges.
- La coque d'entrée du capteur et l'entrée de la sonde de courant de l'élément de capteur de courant (760903) ne sont pas isolées.
- La fonction de protection et la fonction de non-isolation de l'élément de capteur de courant (760903) sont activées lorsque les vis du module sont serrées. Il est extrêmement dangereux de ne pas serrer les vis.
- Pour des raisons de sécurité, lors de l'utilisation de l'instrument après son installation sur un rack, prévoir un commutateur pour mettre le circuit mesuré hors tension depuis l'avant du rack.
- Pour garantir la sécurité, avant d'appliquer la tension ou le courant depuis le circuit à mesurer, vérifier ce qui suit :
- Le cordon d'alimentation de l'instrument est utilisé pour la connexion à l'alimentation, et l'instrument est bien relié à la terre.
- L'instrument est sous tension.
- Lorsque l'instrument est sous tension, ne pas appliquer de signal sur les bornes d'entrée de tension ou de courant dépassant les valeurs suivantes. Lorsque l'instrument est hors tension, éteindre également le circuit à mesurer. Pour de plus amples informations sur d'autres bornes d'entrée, se reporter aux spécifications au chapitre 6 .

Entrée instantanée maximale admissible (1 s ou moins)

Entrée de tension $(760901,760902,760903)$
Valeur crête de 2.5 kV ou valeur efficace de $1,5 \mathrm{kV}$, selon la valeur la plus basse.

Entrée de courant

Entrée directe

Élément de haute précision de 30 A (760901)
Valeur crête de 150 A ou valeur efficace de 55 A , selon la valeur la plus basse.
Élément de haute précision de 5 A (760902)
Valeur crête de 10 A ou valeur efficace de 7 A , selon la valeur la plus basse.

Entrée de capteur externe $(760901,760902)$

Valeur crête inférieure ou égale à 10 fois la plage.
Entrée du capteur de courant (760903) ($0,1 \mathrm{~s}$ ou moins)
Résistance d'entrée : 1Ω
Valeur crête de 1.8 A ou valeur efficace de 1.2 A , selon la valeur la plus basse.
Résistance d'entrée : 1,5 Ω
Valeur crête de 1.2 A ou valeur efficace de 0.84 A , selon la valeur la plus basse.
Résistance d'entrée : 5Ω
Valeur crête de 0.36 A ou valeur efficace de 0.25 A , selon la valeur la plus basse.
Résistance d'entrée : 10Ω
Valeur crête de 0.18 A ou valeur efficace de 0.12 A , selon la valeur la plus basse.

Entrée de la sonde de courant (760903)

Valeur de crête à 10 fois la plage ou 25 V , selon la valeur la moins élevée

Entrée continue maximale admissible

Entrée de tension $(760901,760902,760903)$

Valeur crête de 1.6 kV ou valeur efficace de $1,5 \mathrm{kV}$, selon la valeur la plus basse. Si la fréquence de la tension d'entrée dépasse 100 kHz , (1200-f) Vrms ou moins. f est la fréquence de la tension d'entrée en unités de kHz.

Entrée de courant

Entrée directe
Élément de haute précision de 30 A (760901)
Valeur crête de 90 A ou valeur efficace de 33 A , selon la valeur la plus basse.
Élément de haute précision de 5 A (760902)
Valeur crête de 10 A ou valeur efficace de 7 A , selon la valeur la plus basse.

Entrée de capteur externe (760901, 760902)

Valeur crête inférieure ou égale à 2.5 fois la plage.
Entrée du capteur de courant (760903)
Résistance d'entrée : 1Ω
Valeur crête de 1.5 A ou valeur efficace de 1.1 A , selon la valeur la plus basse.
Résistance d'entrée : 1,5 Ω
Valeur crête de 1.0 A ou valeur efficace de 0.73 A , selon la valeur la plus basse. Résistance d'entrée : 5Ω

Valeur crête de 0.3 A ou valeur efficace de 0.22 A , selon la valeur la plus basse. Résistance d'entrée : 10Ω

Valeur crête de 0.15 A ou valeur efficace de 0.11 A , selon la valeur la plus basse.

Entrée de la sonde de courant (760903)

Valeur de crête à 5 fois la plage ou valeur efficace (rms) de 25 V , selon la valeur la moins élevée

ATTENTION

- Utiliser des câbles de mesure dont la rigidité diélectrique et la capacité de courant conviennent pour la tension ou le courant à mesurer.
Exemple : Lors de la réalisation de mesures sur un courant de 20 A , utiliser des fils en cuivre à section transversale conductrice de $4 \mathrm{~mm}^{2}$.
- Le branchement d'un câble de mesure sur ce produit peut entraîner une interférence radio que l'utilisateur sera tenu de rectifier.

Note

- If you are measuring large currents or voltages or currents that contain high frequency components, take special care in dealing with mutual interference and noise when you wire the cables.
- Keep measurement cables as short as possible to minimize the loss between the circuit under measurement and the instrument.
- The thick lines on the wiring diagrams shown in sections 2.9 to 2.14 are the parts where the current flows. Use wires that are suitable for the current levels.
- To make accurate measurements of the voltage of the circuit under measurement, connect the measurement cable that is connected to the voltage input terminal to the circuit as closely as possible.
- To make accurate measurements, separate the measurement cables as far away from the ground wires and the instrument's case as possible to minimize static capacitance to the ground.
- To measure the apparent power and power factor more accurately on an unbalanced three-phase circuit, we recommend that you use a three-phase three-wire system with a three-voltage three-current method (3P3W; 3V3A or 3P3W;3V3AR).

2.7 Assembling the Adapters for the Voltage Input Terminals

Voltage Input Terminals of the 760901, 760902, and 760903

When connecting a measurement cable to a voltage input terminal of this instrument, use the included B9317WB(black)/B9317WC(red) Safety Terminal Adapter Set or the 758923 Safety Terminal Adapter Set (sold separately). The assembly procedure for the 758931 (sold separately) is the same as that for the B9317WB/B9317WC.

B9317WB(black)/B9317WC(red) Safety Terminal Adapter Set

When assembling an adapter, check the wiring method in sections 2.9 to 2.11 , and connect an appropriate cable.

Assembling the Safety Terminal Adapter

1. Remove approximately 10 mm of the covering from the end of the cable and pass the cable through the internal insulator.

Attachable cable
Covering: max. diameter 3.9 mm
Core wire: max. diameter 1.8 mm
2. Insert the tip of the cable into the plug. Fasten the cable in place using the supplied hexagonal wrench (B9317WD).

Insert the hexagonal wrench into the plug and tighten.
3. Insert the plug into the internal insulator.

4. Attach the external cover. Make sure that the cover does not come off.

Note

Once you attach the cover, it is difficult to disassemble the safety terminal adapter. Use care when attaching the cover.

Below is an illustration of the adapter after it has been assembled.

Current Input Terminal of the 760901 (30 A Element)

When connecting a measurement cable to the 30 A current input terminal of this instrument, use the included A1650JZ(black)/A1651JZ(red) High Current Safety Terminal Adapter Set.
The assembly procedure for the 761951 (sold separately) is the same as that for the A1650JZ/A1651JZ.

A1650JZ(black)/A1651JZ(red) High Current Safety Terminal Adapter Set

Screw (M6 bolt), flat washer, spring washer
When assembling an adapter, check the wiring method in sections 2.10 to 2.12 , and connect an appropriate cable.

Assembling the Safety Terminal Adapter

1. Connect a lug terminal appropriate for the cable thickness.

2. Cut the cap according to the cable thickness.

3. Run the cable through the cap and cover.

4. Pinch the cut-out area of the plug with a wrench, and fix the lug terminal to the plug with a screw (M6 bolt). Fasten the screw (M6 bolt) along with the included flat washer and spring washer.

5. Assemble the plug, cover, and cap together.

Note

\qquad

- Once you attach the cover, it is difficult to disassemble the safety terminal adapter. Use care when attaching the cover.
- The measurement cable, lug terminal, and wrench are not included. Please use your own.
- The screw (M6 bolt) is installed inside the instrument along with the flat washer and spring washer.

Below is an illustration of the adapter after it has been assembled.

Note
Keep measurement cables as short as possible to minimize the loss between the circuit under measurement and the instrument.

Removing the Cover

If the screw (M6 bolt) comes loose, remove the cover, and then tighten the screw (M6 bolt).

Pinch the top and bottom of the cover tightly with your fingers to release the latch, and remove the cover.
Be careful not to apply too much force causing the cover to break and causing injury to your hand.

Inserting the High Current Safety Terminal Adapter Set into an Element

1. Hold the adapter so that the $\mathbf{\Delta}$ mark is facing up.
2. Align the adapter's $\boldsymbol{\Delta}$ mark with the element's $\boldsymbol{\nabla}$ mark, and insert the adapter until its protrusion hits the element. The adapter will be locked in place with a click sound.

3. Pull lightly on the adapter to make sure that it does not come off.

Note

If you insert the adapter when the adapter's $\boldsymbol{\Delta}$ mark is not aligned with the element's $\boldsymbol{\nabla}$ mark, the lock may not engage.

Removing the High Current Safety Terminal Adapter Set from an Element

1. From the position in which the adapter's $\boldsymbol{\Delta}$ mark is aligned with the element's $\boldsymbol{\nabla}$ mark, rotate the adapter to the right or left by 45° to align the adapter protrusion with the element's mark.
2. Push the adapter in until the adapter protrusion is in the element's rectangular indentation. The adapter lock will disengage.

Note

- You need to firmly push the adapter in for the lock to disengage.
- If the slide cover is shifted down, you cannot push the adapter in. Slide the cover up.

3. Pull the adapter out.

Note

\qquad

- Do not pull the adapter with excessive force. This can damage the adapter. If the adapter does not come off when you pull lightly on the adapter, the lock is not disengaged. Repeat steps 1 and 2 to disengage the lock.
- After disengaging the lock, be sure to remove the adapter from the element. If you keep the adapter connected to the element after disengaging the lock, the adapter may unintentionally come off the element later.

Current Input Terminal of the 760902 (5 A Element)

When connecting a measurement cable to the 5 A current input terminal of this instrument, use the included B8213YA(red)/B8213YB(black) Safety Terminal Adapter Set.
The assembly procedure for the 761953 (sold separately) is the same as that for the B8213YA/B8213YB.

B8213YA(red)/B8213YB(black) Safety Terminal Adapter Set

When assembling an adapter, check the wiring method in sections 2.10 to 2.12 , and connect an appropriate cable.

Assembling the Safety Terminal Adapter

1. Remove approximately 15 mm of the covering from the end of the cable and pass the cable through the internal insulator.

Attachable cable Covering: max. diameter 4.0 mm Core wire: max. diameter 2.5 mm

2. Insert the tip of the cable into the plug. Fasten the cable in place using the supplied hexagonal wrench (B9317WD).

3. Insert the plug into the internal insulator.

4. Attach the external cover. Make sure that the cover does not come off.

Note

\qquad
Once you attach the cover, it is difficult to disassemble the safety terminal adapter. Use care when attaching the cover.

Below is an illustration of the adapter after it has been assembled.

Explanation
Wire the adapters that come with this instrument or the adapters and various sensors that are sold separately as shown below:

Wiring When Measuring Voltage

* Optional accessory model: 758931

Wiring When Measuring Current

1 Optional accessory model: 761951
2 Optional accessory model: 761953

Use the 751552 clamp-on probes (sold separately) as shown below.

* The current input terminal and external current sensor input terminal cannot be wired (used) simultaneously.

Use the current sensor that outputs voltage as shown below.

* The current input terminal and external current sensor input terminal on the same element cannot be wired (used) simultaneously.

Use the 720930 or 720931 clamp-on probe (sold separately) as shown below.

* The current sensor input terminal and current probe input terminal cannot be wired (used) simultaneously.

2.8 Wiring for Accurately Measuring a Singlephase Device

When you are wiring a single-phase device, there are the four patterns of terminal wiring positions shown in the following figures for wiring the voltage input and current input terminals. Depending on the terminal wiring positions, the effects of stray capacitance and the effects of the measured voltage and current amplitudes may become large. To make accurate measurements, refer to the items below when wiring the voltage input and current input terminals.

Effects of Stray Capacitance

When measuring a single-phase device, the effects of stray capacitance on measurement accuracy can be minimized by connecting the instrument's current input terminal to the side that is closest to the earth potential of the power supply (SOURCE).

- Easily affected

- Not easily affected

Effects of the Measured Voltage and Current Amplitudes

- When the measured current is relatively large Connect the voltage measurement terminal between the current measurement terminal and the load.

- When the measured current is relatively small Connect the current measurement terminal between the voltage measurement terminal and the load.

Explanation

For details on the effects of stray capacitance and the effects of the measured voltage and current amplitudes, see appendix 3, "How to Make Accurate Measurements."

2.9 Guide for Selecting the Method Used to Measure the Power

Select the measurement method from the table below according to the amplitude of the measured voltage or current. For details about a wiring method, see its corresponding section (indicated in the table).

Voltage Measurement Methods

		Voltage at 1000 V or less	Voltage exceeding 1000 V
Voltage wiring	Direct input	$\begin{aligned} & \rightarrow \text { section } 2.10 \text { (760901, 760902) } \\ & \rightarrow \text { section } 2.13 \text { (760903) } \end{aligned}$	Direct input is not possible.
	VT (voltage transformer)	\rightarrow section 2.12 (760901, 760902), section 2.14 (760903)	

Current Measurement Methods $(760901,760902)$

		Voltage at 1000 V or less		Voltage exceeding 1000 V
Input element	30 A(760901)	Current at 30 A or less	Current exceeding 30 A	
	5 A(760902)	Current at 5 A or less	Current exceeding 5 A	
	Direct input	\rightarrow section 2.10*	Direct input is	not possible.
	Shunt-type current sensor	\rightarrow section	2.11 $\begin{array}{l}\text { Shun } \\ \text { cann }\end{array}$	t-type current sensors ot be used.
Current wiring	Clamp-type current sensor (voltage output type)		\rightarrow section 2.1	
	Clamp-type current sensor (current output type)		\rightarrow section 2.1	
	CT (current transformer)		\rightarrow section 2.1	

* Voltage: 1000 V or less (maximum allowable voltage that can be measured)
(rated voltage of EN61010-2-030)

Current Measurement Methods (760903)

The current cannot be input directly. Use an isolated current sensor to measure current.

- Connecting a current probe (voltage output type) or a clamp-type current sensor (voltage output type): section 2.13
- Connecting a current sensor (CT series, current output type): section 2.14

Notes when Replacing Other Power Meters with the Instrument

In three-phase three-wire systems (3P3W) and three-phase three-wire systems that use a three-voltage three-current method (3P3W; 3V3A or 3P3W;3V3AR), the wiring system of the instrument may be different from that of another product (another digital power meter) depending on whether the reference voltage is set to S phase or T phase when measuring the line voltage (see appendix 2). To make accurate measurements, see the referenced sections in the selection guide above and check the wiring method of the corresponding three-phase three-wire system.

For example, if you replace the WT2000 (used in a three-phase three-wire system) with this instrument and leave the wiring unchanged, the measured power of each element will be different between the WT2000 and this instrument. Refer to this manual and re-wire the system correctly.
If you are replacing a power meter that is remotely controlled from a PC or the like, check not only the differences in the communication commands but also the differences in the Ethernet communication protocol.

2.10 Wiring the Circuit under Measurement for Direct Input $(760901,760902)$

This section explains how to wire the measurement cable directly from the circuit under measurement to the voltage or current input terminal.
To prevent electric shock and damage to the instrument, follow the warnings given in section 2.5, "Precautions When Wiring the Circuit under Measurement."

Connecting to the Input Terminals

Voltage Input Terminals

- The terminals are safety banana jacks (female) that are 4 mm in diameter.
- Only insert a safety terminal whose conductive parts are not exposed into a voltage input terminal.
- If you are using the included B9317WB/B9317WC ${ }^{1}$ Safety Terminal Adapter Set, see section 2.7.

Current Input Terminals

- The terminals on the 760901 30A High Accuracy Element are safety banana jacks (male) that are 6 mm in diameter.
- The terminals on the 760902 5A High Accuracy Element are safety banana jacks (male) that are 4 mm in diameter.
- Slide the input element's slide cover up, and insert a safety terminal whose conductive parts are not exposed into a current input terminal.

CAUTION
When you move the slide cover, be careful not to get your hand caught between the slide cover and the element.

French

ATTENTION

Lorsque vous déplacez le volet coulissant, veillez à ne pas vous coincer la main entre le volet coulissant et l'élément.

- If you are using the included A1650JZ/A1651JZ² High Current Safety Terminal Adapter Set (for the 760901) or the B8213YA/B8213YB ${ }^{3}$ Current Safety Terminal Adapter Set (for the 760902), see section 2.7.

Current input terminals

2 Optional accessory model: 761951
3 Optional accessory model: 761953

Note

When connecting a measurement cable from an external current sensor to an external current sensor input terminal, remove the cables connected to the current input terminals.

Connecting to This Instrument

In the figures that follow, the input elements of this instrument, voltage input terminals, and current input terminals are shown simplified as follows.

The wiring examples shown below are examples of the following wiring systems in which the specified input elements have been wired. To wire other input elements, substitute the numbers in the figures with the appropriate element numbers.

- Single-phase two-wire systems (1P2W): Input element 1
- Single-phase three-wire system (1P3W) and three-phase three-wire system (3P3W): Input elements 1 and 2
- Three-phase three-wire system that uses a three-voltage three-current method (3P3W; 3V3A or 3P3W;3V3AR) and three-phase four-wire system (3P4W): Input elements 1 to 3

CAUTION

The thick lines on the wiring diagrams are the parts where the current flows. Use wires that are suitable for the current levels.

French

ATTENTION

Les lignes épaisses sur les schémas de câblage illustrent l'acheminement du courant. Utiliser des fils qui conviennent aux niveaux de courant.

Wiring Examples of Single-Phase Two-Wire Systems (1P2W)

If seven input elements are available, seven single-phase two-wire systems can be wired. For information about deciding which of the wiring systems shown below you should select, see section 2.8.

Wiring Example of a Single-Phase Three-Wire System (1P3W)

If six or more input elements are available, three single-phase three-wire systems can be wired.

Wiring Example of a Three-Phase Three-Wire System (3P3W)

If six or more input elements are available, three three-phase three-wire systems can be wired.

Wiring Example of a Three-Phase Three-Wire System That Uses a Three-Voltage Three-Current Method (3P3W; 3V3A)

If six or more input elements are available, two three-phase three-wire systems that use a threevoltage three-current method can be wired.

Input element 1 Input element 2 Input element 3 $(\mathrm{U} 1,11)$
(U2,12)
$(\mathrm{U} 3,13)$

Wiring Example of a Three-Phase Three-Wire System That Uses a Three-Voltage Three-Current Method (3P3W; 3V3AR)

If six or more input elements are available, two three-phase three-wire systems that use a threevoltage three-current method can be wired.
When this wiring system is compared with the wiring of 3P3W (3V3A), the connection direction of input element 1's voltage input $U 1$ is reversed. Connect U and \pm of $U 1, U 2$, and $U 3$ so as to create a circular flow. If the three-phase load is balanced in this wiring system, the line voltage of each phase will be 120°, but because the U1 connection is reversed with respect to the direction of the current, power P1 will be negative. (The polarity of power P1 will be displayed reversed with respect to the actual polarity.)

Input element 1 Input element 2 Input element 3 ($\mathrm{U} 1, \mathrm{I} 1$)
($\mathrm{U} 2,12$)
$(\mathrm{U} 3,13)$

Wiring Example of a Three-Phase Four-Wire System (3P4W)
If six or more input elements are available, two three-phase four-wire systems can be wired.

Note
For details about the relationship between the wiring system and how measured and computed values are determined, see appendix 1, "Symbols and Determination of Measurement Functions."

2.11 Wiring the Circuit under Measurement When Using Current Sensors $(760901,760902)$

To prevent electric shock and damage to the instrument, follow the warnings given in section 2.5, "Precautions When Wiring the Circuit under Measurement."

If the maximum current of the circuit under measurement exceeds the maximum range of the input elements, you can measure the current of the circuit under measurement by connecting an external current sensor to the external current sensor input terminal.

- 30A High Accuracy Element (760901): When the maximum current exceeds 30 Arms
- 5A High Accuracy Element (760902): When the maximum current exceeds 5 Arms

Current Sensor Output Type

Voltage Output

Refer to the wiring examples in this section when using a shunt-type current sensor or a clamp-type current sensor that outputs voltage.

Current Output

If you are using a clamp-type current sensor that outputs current, see section 2.12.

Connecting to the Input Terminals

Voltage Input Terminals

- The terminals are safety banana jacks (female) that are 4 mm in diameter.
- Only insert a safety terminal whose conductive parts are not exposed into a voltage input terminal.
- If you are using the included B9317WB/B9317WC ${ }^{1}$ Safety Terminal Adapter Set, see section 2.7.

1 Optional accessory model: 758931

External Current Sensor Input Terminal

- The terminal is an isolated BNC.
- Slide the input element's slide cover down, and connect an external current sensor cable with a BNC (B9284LK, sold separately) to an external current sensor input terminal.

CAUTION

When you move the slide cover, be careful not to get your hand caught between the slide cover and the element.

French

ATTENTION

Lorsque vous déplacez le volet coulissant, veillez à ne pas vous coincer la main entre le volet coulissant et l'élément.

Shunt-type current sensor External current sensor input terminal

Note

- When connecting a measurement cable from an external current sensor to an external current sensor input terminal, remove the cables connected to the current input terminals.
- Make sure that you have the polarities correct when you make connections. If the polarity is reversed, the polarity of the measurement current will be reversed, and you will not be able to make correct measurements. Be especially careful when connecting clamp-type current sensors to the circuit under measurement, because it is easy to reverse the connection.
- Note that the frequency and phase characteristics of the current sensor affect the measured data.
- To measure the apparent power and power factor more accurately on an unbalanced three-phase circuit, we recommend that you use a three-phase three-wire system that uses a three-voltage three-current method (3P3W; 3V3A or 3P3W;3V3AR).

Using Shunt-type Current Sensors and Clamp-on Probes

Connecting an External Current Sensor Cable

To minimize error when using shunt-type current sensors, follow the guidelines below when connecting the external current sensor cable.

- Connect the shielded wire of the external current sensor cable to the L side of the shunt output terminal (OUT).
- Minimize the area of the space between the wires connecting the current sensor to the external current sensor cable. This reduces the effects of the lines of magnetic force (which are caused by the measurement current) and the external noise that enter the space.

Shunt-type current sensor

Position on the (Grounded) Circuit under Measurement That You Should Connect the Shunt-type Current Sensor To

Connect the shunt-type current sensor to the power earth ground as shown in the figure below. If you have to connect the sensor to the non-earth side, use a wire that is thicker than AWG18 (with a conductive cross-sectional area of approximately $1 \mathrm{~mm}^{2}$) between the sensor and the instrument to reduce the effects of common mode voltage. Take safety and error reduction into consideration when constructing external current sensor cables.

Ungrounded Measurement Circuits

When the circuit under measurement is not grounded and the signal is high in frequency or large in power, the effects of the inductance of the shunt-type current sensor cable become large. In this case, use an isolation sensor (CT, DC-CT, or clamp) to perform measurements.

Connecting to This Instrument

In the figures on the following pages, the input elements of this instrument, voltage input terminals, and external current sensor input terminals are shown simplified as follows.

The following wiring examples are for connecting shunt-type current sensors. When connecting a clamp-type current sensor that outputs voltage, substitute shunt-type current sensors with clamp-type current sensors.

Shunt-type current sensor

Input element

Input element

The wiring examples shown below are examples of the following wiring systems in which the specified input elements have been wired. To wire other input elements, substitute the numbers in the figures with the appropriate element numbers.

- Single-phase two-wire systems (1P2W): Input element 1
- Single-phase three-wire system (1P3W) and three-phase three-wire system (3P3W): Input elements 1 and 2
- Three-phase three-wire system that uses a three-voltage three-current method (3P3W; 3V3A or 3P3W;3V3AR) and three-phase four-wire system (3P4W): Input elements 1 to 3

CAUTION

The thick lines on the wiring diagrams are the parts where the current flows. Use wires that are suitable for the current levels.

French

ATTENTION

Les lignes épaisses sur les schémas de câblage illustrent l'acheminement du courant. Utiliser des fils qui conviennent aux niveaux de courant.

Wiring Example of a Single-Phase, Two-Wire System (1P2W) with a Shunt-Type Current Sensor

Wiring Example of a Single-Phase Three-Wire System (1P3W)

 with Shunt-Type Current Sensors

Wiring Example of a Three-Phase Three-Wire System (3P3W) with Shunt-Type Current Sensors

Wiring Example of a Three-Phase Three-Wire System That Uses a Three-Voltage Three-Current Method (3P3W; 3V3A) with ShuntType Current Sensors

Wiring Example of a Three-Phase Three-Wire System That Uses a Three-Voltage Three-Current Method (3P3W; 3V3AR) with ShuntType Current Sensors

Wiring Example of a Three-Phase Four-Wire System (3P4W) with Shunt-Type Current Sensors

Note

For details about the relationship between the wiring system and how measured and computed values are determined, see appendix 1, "Symbols and Determination of Measurement Functions."

2.12 Wiring the Circuit under Measurement When Using Voltage and Current Transformers (760901, 760902)

This section explains how to wire measurement cables from external voltage transformers ${ }^{1}$ or current transformers ${ }^{2}$ to the voltage or current input terminals of elements. Also refer to this section when wiring clamp-type current sensors that output current.
1 VT (voltage transformer)
2 CT (current transformer)
To prevent electric shock and damage to the instrument, follow the warnings given in section 2.5, "Precautions When Wiring the Circuit under Measurement."

Voltage Measurement

When the maximum voltage of the circuit under measurement exceeds 1000 Vrms , you can perform measurements by connecting an external VT to the voltage input terminal.

Current Measurement

If the maximum current of the circuit under measurement exceeds the maximum range of the input elements, you can measure the current of the circuit under measurement by connecting an external CT, or a clamp-type sensor that outputs current, to the current input terminal.

- 30A High Accuracy Element (760901): When the maximum current exceeds 30 Arms
- 5A High Accuracy Element (760902): When the maximum current exceeds 5 Arms

Connecting to the Input Terminals

Voltage Input Terminals

- The terminals are safety banana jacks (female) that are 4 mm in diameter.
- Only insert a safety terminal whose conductive parts are not exposed into a voltage input terminal.
- If you are using the included B9317WB/B9317WC ${ }^{1}$ Safety Terminal Adapter Set, see section 2.7.

1 Optional accessory model: 758931

Current Input Terminals

- The terminals on the 760901 30A High Accuracy Element are safety banana jacks (male) that are 6 mm in diameter.
- The terminals on the 760902 5A High Accuracy Element are safety banana jacks (male) that are 4 mm in diameter.
- Slide the input element's slide cover up, and insert a safety terminal whose conductive parts are not exposed into a current input terminal.

CAUTION

When you move the slide cover, be careful not to get your hand caught between the slide cover and the element.

French

[^0]- If you are using the included A1650JZ/A1651 JZ² High Current Safety Terminal Adapter Set (for the 760901) or the B8213YA/B8213YB ${ }^{3}$ Safety Terminal Adapter Set (for the 760902), see section 2.7.

2 Optional accessory model: 761951
3 Optional accessory model: 761953

WARNING

Do not connect a current transformer without protection.

French

AVERTISSEMENT

Ne pas brancher de transformateur de courant sans protection.

Note

When connecting a measurement cable from an external current sensor to an external current sensor input terminal, remove the cables connected to the current input terminals.

General VT and CT Handling Precautions

- Do not short the secondary side of a VT. Doing so may damage it.
- Do not short the secondary side of a CT. Doing so may damage it.

Also, follow the VT or CT handling precautions in the manual that comes with the VT or CT that you are using.

Note

- The thick lines on the wiring diagrams are the parts where the current flows. Use wires that are suitable for the current levels.
- Make sure that you have the polarities correct when you make connections. If the polarity is reversed, the polarity of the measurement current will be reversed, and you will not be able to make correct measurements. Be especially careful when connecting clamp-type current sensors to the circuit under measurement, because it is easy to reverse the connection.
- Note that the frequency and phase characteristics of the VT or CT affect the measured data.
- For safety reasons, the common terminals (+/-) of the secondary side of the VT and CT are grounded in the wiring diagrams in this section. However, the necessity of grounding and the grounding location (ground near the VT or CT or ground near the power meter) vary depending on the item under measurement.
- To measure the apparent power and power factor more accurately on an unbalanced three-phase circuit, we recommend that you use a three-phase three-wire system that uses a three-voltage three-current method (3P3W; 3V3A or 3P3W;3V3AR).

Connecting to This Instrument

In the wiring examples that follow, the input elements of this instrument, voltage input terminals, and current input terminals are shown simplified as follows.

Also, the wiring examples are for when a CT is connected. When connecting a pass-through CT or a clamp-type current sensor that outputs current, substitute the CT with the pass-through CT or clamp-type current sensor.

Note

Some CTs (including pass-through types) require load resistance and power supplies. Check your CT's manual.
The wiring examples shown below are examples of the following wiring systems in which the specified input elements have been wired.
To wire other input elements, substitute the numbers in the figures with the appropriate element numbers.

- Single-phase two-wire systems (1P2W): Input element 1
- Single-phase three-wire system (1P3W) and three-phase three-wire system (3P3W): Input elements 1 and 2
- Three-phase three-wire system that uses a three-voltage three-current method (3P3W; 3V3A or 3P3W;3V3AR) and three-phase four-wire system (3P4W): Input elements 1 to 3

CAUTION

The thick lines on the wiring diagrams are the parts where the current flows. Use wires that are suitable for the current levels.

French

ATTENTION

Les lignes épaisses sur les schémas de câblage illustrent l'acheminement du courant. Utiliser des fils qui conviennent aux niveaux de courant.

Wiring Example of Single-Phase Two-Wire Systems (1P2W) with a VT and CT

Wiring Example of a Single-Phase Three-Wire System (1P3W) with VTs and CTs

Wiring Example of a Three-Phase Three-Wire System (3P3W) with VTs and CTs

Wiring Example of a Three-Phase Three-Wire System That Uses a Three-Voltage Three-Current Method (3P3W; 3V3A) with VTs and CTs

Wiring Example of a Three-Phase Three-Wire System That Uses a Three-Voltage Three-Current Method (3P3W; 3V3AR) with VTs and CTs

Wiring Example of a Three-Phase Four-Wire System (3P4W) with VTs and CTs

Note

For details about the relationship between the wiring system and how measured and computed values are determined, see appendix 1, "Symbols and Determination of Measurement Functions."

2.13 Wiring the Circuit under Measurement When Using Current Probes (760903)

To prevent electric shock and damage to the instrument, follow the warnings given in section 2.5, "Precautions When Wiring the Circuit under Measurement."

You can connect a current probe to the current probe input terminal to measure the current in the circuit under measurement.

Connecting to the Input Terminals

Voltage Input Terminals

- The terminals are safety banana jacks (female) that are 4 mm in diameter.
- Only insert a safety terminal whose conductive parts are not exposed into a voltage input terminal.
- If you are using the included B9317WB/B9317WC ${ }^{1}$ Safety Terminal Adapter Set, see section 2.7.

1 Optional accessory model: 758931

Current Probe Input Terminal and Current Probe Power Supply Terminal

- The current probe input terminal is a BNC connector.
- Raise the slide cover of the input element, and connect the current probe to the current probe input terminal.
- If necessary, connect the power supply terminal of the current probe to the current probe power supply terminal. The current probe power supply terminal is a dedicated connector.

CAUTION

When you move the slide cover, be careful not to get your hand caught between the slide cover and the element.

French

ATTENTION

Lorsque vous déplacez le couvercle coulissant, veillez à ne pas vous coincer la main entre le couvercle coulissant et l'élément.

Specifications of the Current Probe Power Supply Terminal

Item	Specifications
Connector type	Dedicated connector
Output voltage	$\pm 12 \mathrm{VDC}$
Output current	0.8 A
	Total output when multiple elements are used •- Sensor power: 8 A the power supply is included in the positive sensor power supply current.

- When you connect a current probe to the current probe power supply terminal, be careful not to exceed the output current above. If exceeded, power supply to the current probe will stop due to the activation of the power supply overcurrent protection circuit of this instrument.
- If Terminal is set to Sensor, power supply to the current probe will stop.

Note

- If you want to connect a current probe to the current probe input terminal, remove the cable from the current sensor connection terminal.
- Make sure that you have the polarities correct when you make connections. If the polarity is reversed, the polarity of the measurement current will be reversed, and you will not be able to make correct measurements. Be especially careful when connecting clamp-type current sensors to the circuit under measurement, because it is easy to reverse the connection.
- Note that the frequency and phase characteristics of the current probe affect the measured data.
- To measure the apparent power and power factor more accurately on an unbalanced three-phase circuit, we recommend that you use a three-phase three-wire system that uses a three-voltage three-current method (3P3W; 3V3A or 3P3W;3V3AR).
- Only use the standard accessory probes for this instrument. If you use other probes, the specifications of this instrument may no longer be met.

Connecting to This Instrument

In the figures on the following pages, the input elements, voltage input terminals, and current probe input terminals of this instrument are shown simplified as follows.

The wiring examples shown below are examples of the following wiring systems in which the specified input elements have been wired. To wire other input elements, substitute the numbers in the figures with the appropriate element numbers.

- Single-phase two-wire systems (1P2W): Input element 1
- Single-phase three-wire system (1P3W) and three-phase three-wire system (3P3W): Input elements 1 and 2
- Three-phase three-wire system that uses a three-voltage three-current method (3P3W; 3V3A or 3P3W;3V3AR) and three-phase four-wire system (3P4W): Input elements 1 to 3

CAUTION

The thick lines on the wiring diagrams are the parts where the current flows. Use wires that are suitable for the current levels.

French

Wiring Example of a Single-Phase, Two-Wire System (1P2W) with a Current Probe

Wiring Example of a Single-Phase Three-Wire System (1P3W) with Current Probes

Wiring Example of a Three-Phase Three-Wire System (3P3W) with Current Probes

Wiring Example of a Three-Phase Three-Wire System That Uses a Three-Voltage Three-Current Method (3P3W; 3V3A) with Current Probes

Wiring Example of a Three-Phase Three-Wire System That Uses a Three-Voltage Three-Current Method (3P3W; 3V3AR) with Current Probes

Wiring Example of a Three-Phase Four-Wire System (3P4W) with Current Probes

Note
For details about the relationship between the wiring system and how measured and computed values are determined, see appendix 1, "Symbols and Determination of Measurement Functions."

2.14 Wiring the Circuit under Measurement When Using a Voltage Transformer or Current Sensor (CT Series) (760903)

This section explains how to wire measurement cables from external voltage transformers* or current sensors (CT series) to the voltage or current input terminals of elements.
1 VT (voltage transformer)
To prevent electric shock and damage to the instrument, follow the warnings given in section 2.5,
"Precautions When Wiring the Circuit under Measurement."

Voltage Measurement

When the maximum voltage of the circuit under measurement exceeds 1000 Vrms, you can perform measurements by connecting an external VT to the voltage input terminal.

Current Measurement

You can perform measurements by connecting a current sensor (CT series) and a cable for current sensor element to the current sensor connection terminal.

Connecting to the Input Terminals
 Voltage Input Terminals

- The terminals are safety banana jacks (female) that are 4 mm in diameter.
- Only insert a safety terminal whose conductive parts are not exposed into a voltage input terminal.
- If you are using the included B9317WB/B9317WC ${ }^{1}$ Safety Terminal Adapter Set, see section 2.7. 1 Optional accessory model: 758931

Current Sensor Connection Terminal

- The terminal is a D-sub9 pin (Socket).
- Slide the input element's slide cover down, and connect a cable for current sensor element to the current sensor connection terminal.

CAUTION
When you move the slide cover, be careful not to get your hand caught between the slide cover and the element.

French

ATTENTION

Lorsque vous déplacez le couvercle coulissant, veillez à ne pas vous coincer la main entre le couvercle coulissant et l'élément.

Specifications of the Current Sensor Connection Terminal

Item	Specifications
Connector type	D-sub9 pin (Socket)

A YOKOGAWA CT series AC/DC current sensor can be connected by using a cable for current sensor element (761954, 761955, 761956), sold separately. For the current sensor (CT series) models, see the next page.

- If you use accessories other than those specified in this document, YOKOGAWA assumes no responsibility or liability for the specifications or any failures that occur.
- The input resistance and CT ratio are set automatically by selecting, with the CT Preset setting, the model of the current sensor (CT series) that you are using.
- When the CT Preset is set to Custom, the input resistance can be set to $1 \Omega, 1.5 \Omega, 5 \Omega$, or 10Ω. For the allowable input, see the instantaneous maximum allowable input and continuous maximum allowable input in section 6.17.
- When the input resistance settings are being changed, when the overcurrent protection is active, or when Terminal is set to Probe, the input resistance is bypassed.

AC/DC Current Sensors That Can Be Connected Using a Cable for Current Sensor Element (761954, 761955, 761956)
 AC/DC current sensors (CT Series) that can be connected using a cable for current sensor element

 (761954, 761955, 761956) are the following models:- CT2000A, CT1000A, CT1000, CT200, CT6

When you connect one of the above current sensors (CT series) to the current sensor connection terminal, be careful not to exceed the output current given on page 2-53. If exceeded, power supply to the CT series will stop due to the activation of the power supply overcurrent protection circuit of this instrument.

When using current sensors (CT series), the number of current sensors (CT series) that can be used is limited by the measured current (current measured with current sensors (CT series)). The measured current versus consumed current characteristics of current sensors (CT Series) that can be connected to the instrument are indicated below.

Measured current and current consumption of the CT2000A(example of characteristics)

Measured current and current consumption of the CT1000(example of characteristics)

Measured current and current consumption of the CT60(example of characteristics)

Measured current and current consumption of the CT1000A(example of characteristics)

Measured current and current consumption of the CT200(example of characteristics)

Item	CT2000A	CT1000A	CT1000	CT200	CT60
Current Rating	DC: 0 to 2000 A AC: 3000 Apeak	DC: 0 to 1000 A AC: 1000 Arms, 1500 Apeak	DC: 0 to 1000 A AC: 1000 Apeak	DC: 0 to 200 A AC: 200 Apeak	DC: 0 to 60 A AC: 60 Apeak
Output Current	Primary rated current at 2000 A is 1 A	Primary rated current at 1000 A is 666.6 mA	Primary rated current at 1000 A is 666.6 mA	Primary rated current at 200 A is 200.0 mA	Primary rated current at 60 A is 100.0 mA
Current Transformation Ratio	$2000: 1$	$1500: 1$	$1500: 1$	$1000: 1$	$600: 1$
760903	2000	1500	1500	1000	600

* When a CT Preset is used

For the detailed specifications of the current sensors (CT series), see the manual of the relevant current sensor.

WARNING
Do not connect a current transformer without protection.

CAUTION

- Do not use cables other than the cable for current sensor element. If you do, the instrument or other devices may malfunction.
- Before connecting or disconnecting a current sensor (CT series) from the instrument, turn the instrument off. Connecting or disconnecting the current sensor (CT series) while the instrument is on can damage the instrument or the current sensor (CT series).

French

AVERTISSEMENT

Ne pas brancher de transformateur de courant sans protection.

ATTENTION

- N'utilisez pas de câbles autres que le câble pour l'élément de capteur de courant. Dans le cas contraire, l'instrument ou d'autres appareils peuvent ne pas fonctionner correctement.
- Avant de connecter ou de déconnecter un capteur de courant (série CT) à/de l'instrument, mettez l'instrument hors tension. Connecter ou déconnecter le capteur de courant (série CT) alors que l'instrument est allumé peut endommager l'instrument ou le capteur de courant (série CT).

Note

- If you want to connect a cable to the current sensor connection terminal, remove the cables from the current probe input terminal and current probe power supply terminal.
- Warm up the YOKOGAWA current sensors (CT Series) for at least 30 minutes without input.

Connecting a Current Sensor (CT Series) with a Cable for Current Sensor Element (761954, 761955, 761956)

Connect the element, cable, and current sensor (CT series) as follows:

Connecting the Cable

When you connect a cable to the element and current sensor, be sure to tighten the screws by hand to ensure that the cable is connected securely. If the screws are too tight when loosening them, use a flat-blade screwdriver.

Note \qquad

- Arrange the dedicated cable so that it is not affected by vibration. If necessary, secure the cable in place. Make sure it does not make contact with conductors such as buses or bars that are not isolated.
- The minimum bend radius of the dedicated cable is 100 mm . If you use the cable at a radius less than 100 mm , the characteristics may degrade. Arrange the cable so that the radius is no less than 100 mm .
- Stop using the dedicated cable if the cable sheath is damaged and the internal conductor is exposed.

CAUTION

The temperature range of the dedicated cable is -40 to $+85^{\circ} \mathrm{C}$. When handling the dedicated cable (especially the connector area) after measuring hot or cold temperatures, be careful of injuries and burns.

French

ATTENTION

La plage de température du câble dédié est de -40 à $+85^{\circ} \mathrm{C}$. Lorsque vous manipulez le câble dédié (en particulier la zone du connecteur) après avoir mesuré des températures chaudes ou froides, veillez à ne pas vous blesser ou à ne pas vous brûler.

Pinout and Signal Assignments of the Current Sensor Connection Terminal

The pinout and signal names of the current sensor (CT series) compatible with the current sensor connection terminal are shown below.

760903 Current Sensor Connection Terminal		CT series					
		CT2000A		CT1000A		CT1000/CT200/CT60	
Pin No.	Signal						
1	RETURN	1	Output Return	1	OUTPUT RETURN	1	Output Return
2	N.C.	2	[Do not connect]	2	(DON'T USE)	2	[Do not connect]
3	GND (ST)	3	GND Status	3	GND STATUS	3	[Do not connect]
4	GND	4	0 V Power Supply Input	4	0 V	4	0 V Power Supply Input
5	V-	5	-15 V Power Supply Input	5	-15 V DC	5	-15 V Power Supply Input
6	INPUT	6	Secondary Signal Output	6	OUTPUT	6	Secondary Signal Output
7	CT-ID	7	[Do not connect]	7	(DON'T USE)	7	[Do not connect]
8	ST	8	Operation Status	8	NORMAL OP STATUS	8	[Do not connect]
9	V+	9	+15 V Power Supply Input	9	+15 V DC	9	+15 V Power Supply Input

Note

- The connector shell of the current sensor connection terminal is connected to the WT5000 case.
- GND (pin 4) and GND (ST) (pin 3) of the current sensor connection terminal are connected to the WT5000 case inside the 760903.
- For the detailed specifications of the current sensors (CT series), see the manual of the relevant current sensor.
- The cable for current sensor element (sold separately) is a straight cable.

Sensor Current Input (INPUT, RETURN)

When a current sensor (CT series) is connected to the 760903 (current sensor element), the current from the current sensor (CT series) can be measured.

CAUTION

Do not apply more than $\pm 10 \mathrm{~V}$ between the sensor current input pins (INPUT, RETURN) and the WT5000 case. If you do, the instrument may malfunction.

French

ATTENTION

N'appliquez pas plus de $\pm 10 \mathrm{~V}$ entre les broches d'entrée de courant du capteur (ENTRÉE, RETOUR) et le boîtier du WT5000. Dans le cas contraire, l'instrument peut présenter un dysfonctionnement.

Item	Specifications
Pin name	INPUT (pin 6), RETURN (pin 1)
Input type	See section 6.17 (between INPUT and RETURN).
Input impedance	See section 6.17 (between INPUT and RETURN).
Maximum allowable input (continuous/ discontinuous)	See section 6.17 (between INPUT and RETURN).
Impedance to ground	Approx. $2 \mathrm{k} \Omega$ (when the power supply is stopped, when a current sensor (CT series) is not connected) (Between INPUT and WT5000) (Between RETURN and WT5000)
Maximum applied voltage to ground	$\pm 10 \mathrm{~V}$ (Between INPUT and WT5000) (Between RETURN and WT5000)

Note

- RETURN and GND need to be connected on the current sensor end.

If they are not connected, the sensor current input pin may be subject to the voltage to ground and may not meet the measurement performance specifications.

- If an overcurrent is detected in the sensor current input, the protection function will be activated, and the input impedance between INPUT and RETURN will be approximately 0Ω.

Sensor Power Output (V+, V-)
When a current sensor (CT series) is connected to the 760903 (current sensor element), power can be supplied to the current sensor (CT series).

- Do not short between the sensor power output pins ($\mathrm{V}_{+}, \mathrm{V}_{-}$) and the WT5000 case. If you do, the instrument may malfunction.
- Do not short the $\mathrm{V}+$ and V - sensor power output pins. If you do, the instrument may malfunction.
- Do not apply external voltage to the sensor power output pins ($\mathrm{V}+, \mathrm{V}-$). If you do, the instrument may malfunction.

French

ATTENTION

- Ne court-circuitez pas entre les broches de sortie d'alimentation du capteur (V+, V-) et le boîtier WT5000. Dans le cas contraire, l'instrument peut présenter un dysfonctionnement.
- Ne court-circuitez pas les broches de sortie d'alimentation du capteur V+ et V-. Dans le cas contraire, l'instrument peut présenter un dysfonctionnement.
- N'appliquez pas de tension externe aux broches de sortie d'alimentation du capteur (V +, V-). Dans le cas contraire, l'instrument peut présenter un dysfonctionnement.

Item	Specifications
Pin name	$\mathrm{V}+($ pin 9$), \mathrm{V}-($ pin 5$)$
Output voltage	+15 V (between $\mathrm{V}+$ and GND)
	-15 V (between V- and GND)
Output current	1.8 A
	• Sensor power: 8 A
	Probe power supply: The total absolute value of the positive and negative currents of
	the power supply is included in the positive sensor power supply current.

Note

If an overcurrent is detected in the sensor power output, the protection function will be activated, and the $\mathrm{V}+$ and V - power supply will stop. In addition, the input impedance between the INPUT and RETURN pins of the sensor current input will be approximately 0Ω.

Sensor Status Input (ST)

When a current sensor (CT series) is connected to the 760903 (current sensor element), the status of the current sensor (CT series) is detected.

CAUTION
Do not apply a voltage outside the 0 V to 5 V range to the sensor status input pin. If you do, the instrument may malfunction.

French

\triangle

ATTENTION

N'appliquez pas de tension en dehors de la plage $0 \vee$ à 5 V à la broche d'entrée d'état du capteur. Dans le cas contraire, l'instrument peut présenter un dysfonctionnement.

Item	Specifications
Pin name	ST (pin 8)
Input level	$0 \vee$ to 5 V
Logic	Normal status: Low

Note

- When the current sensor (CT series) status is normal and the power supply to the current sensor (CT series) is normal ($\pm 80 \mathrm{~mA}$ or more is being supplied), the sensor status indicator displays Connection Power Supply.
If the above conditions are not met, the sensor status indicator displays Non-Connection.
- If ST is not connected, connection to the current sensor (CT series) cannot be detected.

Input Circuit of the Sensor Status Input (ST)

Sensor ID Input (CT-ID)

If the instrument is restarted when a current sensor (CT series) is connected to the 760903 (current sensor element), the instrument detects the CT-ID (model) of the current sensor (CT series). The detected CT-ID is displayed in the detail window of the sensor status indicator.

CAUTION

Do not apply a voltage outside the 0 V to 3.3 V range to the sensor ID input pin. If you do, the instrument may malfunction.

French

今

ATTENTION

N'appliquez pas de tension en dehors de la plage 0 V à $3,3 \vee$ à la broche d'entrée d'identification du capteur. Dans le cas contraire, l'instrument peut présenter un dysfonctionnement.

Item	Specifications
Pin name	CT-ID (pin7)
Input level	0 V to 3.3 V

Note

- Unknown is displayed when a CT1000, CT200, or CT60 is connected because they cannot be detected.
- If CT-ID is not connected, the CT-ID detection of current sensor (CT series) is not possible.

Input Circuit of the Sensor ID Input (CT-ID)

Ground (GND, GND(ST))

These are ground pins.
The ground pins are connected to the WT5000 case inside the 760903.

CAUTION
Do not apply external voltage to the ground pins. If you do, the instrument or other devices may malfunction.

French

ATTENTION

N'appliquez pas de tension externe aux broches de terre. Dans le cas contraire, l'instrument ou d'autres appareils peuvent ne pas fonctionner correctement.

Item	Specifications
Pin name	GND (pin 4), GND (ST) (pin 3)

N.C. (N.C.)

This is a no-connection pin.

CAUTION

- Do not connect anything to the N.C. pin.
- Do not apply external voltage to the N.C. pin. If you do, the instrument may malfunction.

French

ATTENTION

- Ne connectez rien à la broche N.C.
- N'appliquez pas de tension externe à la broche N.C. Dans le cas contraire, l'instrument peut présenter un dysfonctionnement.

Item	Specifications
Pin name	N.C. (pin 2)

Current Sensor Status Display

The status of power supply to the current sensor (CT series) is displayed in the sensor status indicator at the upper left of the screen.

Input element number

Current sensor status	Description
(Non-CS Element)	An input element other than the 760903 is installed.
(Connection Power Supply)	Terminal is set to Sensor, but a current sensor (CT Series) is not connected.
(Oven)	Terminal is set to Sensor, a current sensor (CT series) is connected, and power is supplied to it. You can also check the presence of a power supply with the current sensor's (CT series') NORMAL OPERATION indicator.
(Probe)	Overcurrent is detected. For details, check the displayed error message.
	Terminal is set to Probe.

If an overcurrent is detected in any of the current sensor elements, the current sensor status is displayed as follows, and the power supply output to all the sensors and probes is stopped.

X Over Current

If the total output current becomes excessive and an overcurrent is detected, the current sensor status is displayed as follows, and the power supply to all the sensors and probes stops.

x Total Over Current

To resume the power supply, remove the cause of the overcurrent, and then restart the instrument. If the sensor status indicator still indicates Over Current/Total Over Current after the instrument is restarted, the instrument needs to be repaired.

Detecting the CT Series

If the instrument is restarted when a current sensor (CT series) is connected to the 760903 (current sensor element), the instrument detects the CT-ID (model) of the current sensor (CT series). The detected CT-ID is displayed in the detail window of the sensor status indicator.

- In the case of a CT1000, CT200, or CT60, Unknown is displayed because they are not detectable.
- Do not connect a signal wire to the sensor ID pin because it can cause detection errors.

Configuration after Connection

Set Terminal and CT Preset according to the instructions in section 2.2, "Setting the Voltage Range and Current Range," in the User's Manual. If the configuration is not appropriate, measured values will not be read correctly.

General VT and CT Handling Precautions

- Do not short the secondary side of a VT. Doing so may damage it.
- Do not short the secondary side of a CT. Doing so may damage it.

Also, follow the VT or CT handling precautions in the manual that comes with the VT or CT that you are using.

Note

- The thick lines on the wiring diagrams are the parts where the current flows. Use wires that are suitable for the current levels.
- Make sure that you have the polarities correct when you make connections. If the polarity is reversed, the polarity of the measurement current will be reversed, and you will not be able to make correct measurements.
- Note that the frequency and phase characteristics of the VT or CT affect the measured data.
- For safety reasons, the common terminals $(+/-)$ of the secondary side of the VT is grounded in the wiring diagrams in this section. However, the necessity of grounding and the grounding location (ground near the VT or ground near the power meter) vary depending on the item under measurement.
- To measure the apparent power and power factor more accurately on an unbalanced three-phase circuit, we recommend that you use a three-phase three-wire system that uses a three-voltage three-current method (3P3W; 3V3A or 3P3W;3V3AR).

Connecting to This Instrument

In the wiring examples that follow, the input elements of this instrument, voltage input terminals, and current sensor connection terminals are shown simplified as follows.

The wiring examples shown below are examples of the following wiring systems in which the specified input elements have been wired.
To wire other input elements, substitute the numbers in the figures with the appropriate element numbers.

- Single-phase two-wire systems (1P2W): Input element 1
- Single-phase three-wire system (1P3W) and three-phase three-wire system (3P3W): Input elements 1 and 2
- Three-phase three-wire system that uses a three-voltage three-current method (3P3W; 3V3A or 3P3W;3V3AR) and three-phase four-wire system (3P4W): Input elements 1 to 3

CAUTION

The thick lines on the wiring diagrams are the parts where the current flows. Use wires that are suitable for the current levels.

French
!

ATTENTION

Les lignes épaisses sur les schémas de câblage illustrent l'acheminement du courant. Utiliser des fils qui conviennent aux niveaux de courant.

Wiring Example of Single-Phase Two-Wire Systems (1P2W) with a VT and Current Sensor (CT Series)

Wiring Example of a Single-Phase Three-Wire System (1P3W) with VTs and Current Sensors (CT Series)

Wiring Example of a Three-Phase Three-Wire System (3P3W) with VTs and Current Sensors (CT Series)

Input element 1
Input element 2

Wiring Example of a Three-Phase Three-Wire System That Uses a Three-Voltage Three-Current Method (3P3W; 3V3A) with VTs and Current Sensors (CT Series)

Wiring Example of a Three-Phase Three-Wire System That Uses a Three-Voltage Three-Current Method (3P3W; 3V3AR) with VTs and Current Sensors (CT Series)

Wiring Example of a Three-Phase Four-Wire System (3P4W) with VTs and Current Sensors (CT Series)

Note

For details about the relationship between the wiring system and how measured and computed values are determined, see appendix 1, "Symbols and Determination of Measurement Functions."

2.15 Connecting to a Current Sensor (CT Series) and Using the Phase Correction Function (760903)

Phase errors can be corrected and accurate power can be calculated by connecting to a current sensor (CT series) and using the phase correction function.

Propagation Delay Correction

When the propagation delay is corrected, phase errors can be minimized over the bandwidth up to the frequency (table below) corresponding to the propagation delay on each current sensor (CT series). Set the frequency and phase error according to section 2.6, "Setting the Sensor Correction," in the User's Manual. In the case of the CT2000A, for example, set the frequency (Frequency) to 10 kHz and the phase difference between I/O (Phase Difference between I/O) to -0.144°.

Frequency and phase error corresponding to the propagation delay

Current sensor (CT series)	CT60	CT200	CT1000	CT1000A	CT2000A
Frequency [kHz]	10	10	5	5	10
Phase difference $\left[{ }^{\circ}\right]$	-0.252	-0.252	-0.198	-0.018	-0.144

- The phase error is negative for phase lag.
- The above settings apply to all cases regardless of the cable for current sensor element (761954 (3 $\mathrm{m}), 761955(5 \mathrm{~m}), 761956(10 \mathrm{~m})$) in use.

Note

Propagation Delay
The propagation delay of each current sensor (CT series) is as follows:

Current sensor (CT series)	CT60	CT200	CT1000	CT1000A	CT2000A
Propagation delay (Typical)[ns]	70	70	110	10	40

Conditions

- A cable for current sensor element is used.
- The influence of external magnetic fields and conductor location is not present.
- The input resistance of the current measurement terminal is set to a CT preset.

3.1 Touch Panel Operations

Touch Panel Operations

The basic touch panel operations are described below.

Tap

Tap refers to the act of gently hitting the screen with your finger.
This is used to select an item on a setup menu, close a setup menu, and so on.

Drag, Swipe, and Slide

Press your finger against the screen and move your finger across the screen.
Drag refers to the act of selecting and moving items.
Swipe refers to the act of moving a relatively wide display range, such as scrolling the setting screen.
Slide is also a term sometimes used depending on the movement operation.

Pinch Out and Pinch In

Pinch out refers to the act of pressing two fingers against the screen and spreading them apart. Pinch in refers to the act of pressing two fingers against the screen and drawing them together.
On a screen displaying waveforms, you can pinch out to zoom in and pinch in to zoom out.

Pinch out

Pinch in

Flick

Flick refers to the act of pressing your finger against the screen and moving your finger abruptly. This is used to change the display.

Key Operation and Functions

For the key operation and functions, see section 1.2.

3.2 Setup Menu Operation and Function

When you tap an item on a setup menu or select an item using the arrow keys and SET key, any of the following responses will result.

- Available options are displayed.

Example: Voltage range

Voltage Range
1000 V
$(1500 \mathrm{Vdc})$

- The value toggles between on and off. Example: Voltage auto range

Auto

(0FF)

- The value (check box) toggles between selected and unselected.

Example: Saved items

- The selected setting changes.

Example: Integration resume operation at power failure recovery
Resume Action
Start Stop Error

- You can change the value.

Example: Cutoff frequency of a line filter

0.5 kHz

- You can change the text using the keyboard.

Example: Save file name

- A related setup menu is displayed.

Example: User-defined computation

User Defined Functions

- The function is executed.

Example: Starts integration

How to Clear Setup Menus
You can clear the setup menu from the screen by:

- Pressing ESC.
- Tap X in the upper right of the menu.

3.3 Entering Values and Strings

Entering Values

Using the Touch Panel
Tap the keys on the screen to change the value.

Using the Cursor Keys
Press the arrow keys and SET key to change the value.

Entering Character Strings

Use the keyboard that appears on the screen to enter character strings such as file names and comments. Tap the keyboard, or use the cursor keys and the SET key to operate the keyboard and enter a character string.

How to Operate the Keyboard

1. With the keyboard displayed, select the character you want to enter.
2. Repeat step 1 to enter all of the characters in the string.
3. Tap ENTER, or move the cursor to ENTER, and press SET. The character string is confirmed, and the keyboard disappears.

Preset Character Strings

The following operands and equations, which are used with user-defined functions, are included as preset character strings.

ABS(LOG10(COS(CF	TIF(EAU(MN(
SQR(EXP(TAN(ITIME(HVF(EAII	RMN(
SQRT(NEG(PPK(THD(HCF(PLLFRQ(DC(
LOG(SIN(MPK(THF(KFACT(RMS(AC(

Note

- @ cannot be entered consecutively.
- File names are not case-sensitive. Comments are case-sensitive. The following file names cannot be used due to MS-DOS limitations:
AUX, CON, PRN, NUL, CLOCK, COM1 to COM9, and LPT1 to LPT9
- For details on file name limitations, see the features guide, IM WT5000-01EN.

3.4 Using USB Keyboards and Mouse Devices

Connecting a USB Keyboard

You can connect a USB keyboard and use it to enter file names, comments, and other items.

Compatible Keyboards

You can use the following keyboards that conform to USB Human Interface Devices (HID) Class Ver. 1.1.

- When the USB keyboard language is English: 104-key keyboards
- When the USB keyboard language is Japanese: 109-key keyboards

Note

- Do not connect incompatible keyboards.
- The operation of USB keyboards that have USB hubs or mouse connectors is not guaranteed.
- For USB keyboards that have been tested for compatibility, contact your nearest YOKOGAWA dealer.

USB Ports for Peripherals

Connect a USB keyboard to one of the USB ports for peripherals on the front panel of the instrument.

Connection Procedure

Connect a USB keyboard directly to the instrument using a USB cable. You can connect or remove the USB cable regardless of whether the instrument's power switch is on or off (hot-plugging is supported). Connect the type A connector of the USB cable to the instrument, and connect the type B connector to the keyboard. When the power switch is turned on, the keyboard is detected and enabled approximately 6 seconds after it is connected.

Note

- Only connect compatible USB keyboards, mouse devices, or memory devices to the USB ports for peripherals.
- Do not connect multiple keyboards. You can connect one keyboard and one mouse.
- Do not connect and disconnect multiple USB devices repetitively. Wait for at least 10 seconds after you connect or remove one USB device before you connect or remove another USB device.
- Do not remove USB cables during the time from when this instrument is turned on until key operation becomes available (approximately 20 seconds).

Setting the USB Keyboard Language

1. Tap the menu icon
2. Tap the Utility tab.
3. Tap System Configuration.

Set the USB keyboard language.

Entering File Names, Comments, and Other Items
When a keyboard is displayed on the screen, you can enter file names, comments, and other items using the USB keyboard.

Entering Values from a USB Keyboard

You can use the USB keyboard to enter values for settings shown on the menu screen of this instrument.

- \uparrow key or " 8 " on the numeric keypad: The value increases.
- \downarrow key or " 2 " on the numeric keypad: The value decreases.
- \rightarrow key or " 6 " on the numeric keypad: The digit cursor moves to the next digit on the right.
- \leftarrow key or " 4 " on the numeric keypad: The digit cursor moves to the next digit on the left.

Using a USB Mouse

You can connect a USB mouse and use it to perform the same operations that you can perform with the keys of this instrument. Also, by clicking a menu item, you can perform the same operation that you can perform by pressing the menu item's soft key or selecting the menu item and pressing the SET key.

Compatible USB Mouse Devices

You can use mouse devices (with wheels) that are compliant with USB HID Class Version 1.1.

Note

- For USB mouse devices that have been tested for compatibility, contact your nearest YOKOGAWA dealer.
- Some settings cannot be configured by a mouse without a wheel.

USB Ports for Peripherals

Connect a USB mouse to one of the USB ports for peripherals on the front panel of the instrument.

Connection Procedure

To connect a USB mouse to this instrument, use one of the USB ports for peripherals. You can connect or disconnect the USB mouse at any time regardless of whether the instrument is on or off (hot-plugging is supported). When the power switch is on, the mouse is detected approximately 6 seconds after it is connected, and the mouse pointer (\mathbb{A}) appears.

Note

- Only connect compatible USB keyboards, mouse devices, or memory devices to the USB ports for peripherals.
- Even though there are two USB ports for peripherals, do not connect two mouse devices to the instrument.

Operating the Instrument Using a USB Mouse

Left Button

Move the pointer to an item such as a menu icon, button, or toggle box you want to select on the screen, and click the left button. This is equivalent to tapping the item.

Right Button

The right button is invalid. Clicking the right button produces no effect.

Mouse Wheel

- Selecting an option

Rotate the mouse wheel to scroll the options.

- Specifying Values

In a box for setting a value, the value can be set in the following manner.

- Rotate the mouse wheel backward to decrease the value.
- Rotate the mouse wheel forward to increase the value.
- Selecting a File, Folder, or Media Drive from the File List Window

Rotate the mouse wheel to scroll through the file list.

3.5 Setting the Menu and Message Languages

This section explains how to set the language that is used to display the menus and messages on the screen. The factory default setting is ENG (English).

1. Tap the menu icon
under Setup, or press MENU under SETUP.
2. Tap the Utility tab.
3. Tap System Configuration.

Setting the Menu Language (Menu Language)

You can choose to display menus in any of the following languages.

- English
- Japanese
- Chinese
- German

Setting the Message Language (Message Language)

Error messages appear when errors occur. You can choose to display these messages in any of the following languages. The error codes for error messages are the same for all languages. For details on error messages, see the user's manual, IM WT5000-02EN.

- English
- Japanese
- Chinese
- German

Note

- Even if you set the menu or message language to a language other than English, some terms will be displayed in English.
- You can set different languages for the menu language and message language.

3.6 Synchronizing the Clock

This section explains how to set the instrument's clock, which is used to generate timestamps for measured data and files. The instrument is factory shipped with a set date and time. You must set the clock before you start measurements.

1. Tap the menu icon under Setup, or press MENU under SETUP.
2. Tap the Utility tab.
3. Tap System Configuration.

Setting the Setting Method (Setting Method)

- If you select Manual, tap Date/Time, and set the date, time, and time zone.

- If you select SNTP, the instrument uses an SNTP server to set its date and time. This setting is valid when Ethernet communications have been established. For information on SNTP, see the user's manual. If you select SNTP, set the time difference from Greenwich Mean Time (Time Difference from GMT), and then tap Adjust.

Time Difference from Greenwich Mean Time (Time Difference From GMT)

This setting is valid when the method for setting the date and time is set to SNTP.
Set the time difference between the region where you are using the instrument and Greenwich Mean Time to a value within the following range.
-12 hours 00 minutes to 13 hours 00 minutes
For example, Japan standard time is ahead of GMT by 9 hours. In this case, set Hour to 9 and Minute to 0 .

Checking the Standard Time

Using one of the methods below, check the standard time of the region where you are using the instrument.

- Check the Date, Time, Language, and Regional Options on your PC.
- Check the website at the following URL: http://www.worldtimeserver.com/

Note

- This instrument does not support Daylight Saving Time. To set the Daylight Savings Time, reset the time difference from Greenwich Mean Time.
- Date and time settings are backed up using an internal battery. They are retained even if the power is turned off.
- This instrument has leap-year information.
- The Time Difference from GMT setting is shared with the same setting found in the SNTP settings in the Ethernet communication (Network) settings. If you change this setting in the date and time settings, the Time Difference from GMT in the Ethernet communication (Network) settings also changes.

3.7 Initializing the Settings

You can reset the instrument settings to their factory default values. This feature is useful when you want to cancel all the settings that you have entered or when you want to redo measurement from scratch. For information about the initial settings, see appendix 8, "List of Initial Settings and Numeric Data Display Order."

1. Tap the menu icon
under Setup, or press MENU under SETUP.

		$\begin{aligned} & \text { Input } \\ & \text { (Basic) } \end{aligned}$	Input (Advanced/Options)	Computation/0ut	tput Utili	X
Element 1 30A	Element 2 30A	Element 3 30A	Element 4 30A	Element 5 30A	Element 6 30A	Element 7 30A
Wiring 1P2W	Wiring 1P2W	Wliring 1P2W	Wliring 1P2W	Wiring 1P2W	Wliring 1P2W	Wiring 1P2W
Voltage Range 1000 V	Voltage 1000 V	Voltage 1000 V	Voltage 1000 V	Voltage $1000 \mathrm{~V}$	Voltage 1000 V	Voltage 1000 V
Current Range 30A	Gurrent 30A	Current 30A	Current 30A	Gurrent 30A	Current 30A	Current 30A
Sensor Ratio 10.0000	Sensor Ratio 10.0000	Sensor Ratio 10.0000	Sensor Ratio 10.0000	Sensor Ratio 10.0000	Sensor Ratio 10.0000	Sensor Ratio 10.0000
Scaling OFF	Scaling 0FF					
	VT Ratio					
$\text { CT Ratio } 1.0000$	$\text { CT Ratio }{ }^{1.0000}$	$\text { CT Ratio } 1.0000$	CT Ratio ${ }^{1.0000}$	$\text { CT Ratio } 1.0000$	$\text { CT Ratio }{ }^{1.0000}$	$\text { CT Ratio }{ }^{1.0000}$
1.0000	1.0000	1.0000		1.0000	1.0000	1.0000
SF Ratio 1.0000	SF Ratio 1.0000	SF Ratio 1.0000	SF Ratio 1.0000	SF Ratio 1.0000	SF Ratio 1.0000	SF Ratio 1.0000
Line Filter OFF Cutoff \square $0.5 \mathrm{kHz}$	Line Filter OFF \square Cutoff 0.5 kHz	Line Filter OFF \square Cutoff 0.5 kHz	Line Filter \square OFF Cutoff 0.5 kHz	Line Filter OFF \square Cutoff 0.5 kHz	Line Filter OFF \square Cutoff 0.5 kHz	Line Filter \square Cutoff 0.5 kHz
Freq Filter OFF \square Cutoff \qquad	Freq Filter OFF \square Cutoff \qquad	Freq Filter Cutoff \square 0.1 kHz	Freq Filter OFF \square Cutoff 0.1 kHz	Freq Filter OFF \square Cutoff 0.1 kHz	Freq Filter OFF \square Cutoff 0.1 kHz	Freq Filter Cutoff \square 0.1 kHz
Sync Source I6	Sync Source					
Initialize Settings	- Navig	gation	- File	List \quad Sa	Setup	Load Setup

2. Tap the Initialize Settings tab.

Settings That Cannot Be Reset to Their Factory Default Values

- Date and time settings
- Communication settings
- Menu and message language settings
- Environment settings

Frequency display at low frequency
MTR display at low pulse frequency
Decimal point and separator used when saving to ASCII format (.csv)

- Custom display settings

To Reset All Settings to Their Factory Default Values

While holding down the ESC key, turn the power switch on. All settings are reset to their factory default values except the date and time settings (the display on/off setting will be reset) and the setup data stored in internal memory.

Note

Only initialize the instrument if you are sure that it is okay for all of the settings to be returned to their default values. You cannot undo an initialization. We recommend that you save the setup parameters before you initialize the instrument.

3.8 Displaying Help

Displaying Help

Tap ? in the upper right of the screen. A help document appears.
The table of contents and index appear in the left frame, and text appears in the right frame.

Switching between Frames

To switch to the frame that you want to control, use the left and right cursor keys.

Moving Cursors and Scrolling

To scroll through the screen or to move the cursor in the table of contents or index, use the up and down cursor keys.

Moving to the Link Destination

To move to a description that relates to blue text or to move from the table of contents or index to the corresponding description, move the cursor to the appropriate blue text or item, and press SET.

Displaying Panel Key Descriptions

With help displayed, press a panel key to display an explanation of it.

Hiding Help

Tap ? in the upper right of the screen, or press ESC. The help closes.

4.1 Motor/Auxiliary Inputs (ChA to H, option)

CAUTION

Signals that do not meet the specifications may damage this instrument, because of factors such as excessive voltage.

French

ATTENTION

N'appliquer que des signaux correspondant aux spécifications suivantes. Les autres signaux pourraient endommager l'instrument en raison de divers facteurs, notamment la tension excessive.

Motor/Auxiliary Inputs (ChA to H)

- /MTR1 option: ChA to D
- /MTR2 option: ChE to H

You can apply the following types of signals.

- Torque meter output signal—a DC voltage (analog) signal or pulse signal that is proportional to the motor's torque
- Revolution sensor output signal—a DC voltage (analog) signal or pulse signal that is proportional to the motor's rotating speed
(Apply the signal using a safety BNC cable (sold separately).)
- Sensor output DC voltage signal (an analog signal)
(Apply the signal using a safety BNC cable (sold separately).)

Apply any of the above signals by following the specifications below.
DC Voltage (Analog input)

Item	Specifications
Connector type	Isolated BNC
Input range	$1 \mathrm{~V}, 2 \mathrm{~V}, 5 \mathrm{~V}, 10 \mathrm{~V}, 20 \mathrm{~V}$
Effective input range	0% to $\pm 110 \%$ of the measurement range
Input resistance	Approx. $1 \mathrm{M} \Omega$
Maximum allowable input	$\pm 22 \mathrm{~V}$
Maximum isolation voltage	$\pm 42 \mathrm{Vpeak}$ or less

Pulse Input

Item	Specifications
Connector type	Isolated BNC
Frequency range	2 Hz to 2 MHz
Amplitude input range	$\pm 12 \mathrm{Vpeak}$
Detection level	H level: approx. 2 V or higher; L level: approx. 0.8 V or less
Pulse width	250 ns or more
Input resistance	Approx. $1 \mathrm{M} \Omega$
Maximum isolation voltage	$\pm 42 \mathrm{Vpeak}$ or less

Apply input signals to the terminals shown in the following table according to the motor configuration.*

* See the User's Manual.

Motor evaluation function 1 (/MTR1)

Input terminal	Motor configuration			
	Single Motor (Speed:Pulse)	Single Motor (Speed:Analog)	Double Motor	Auxiliary
	Torque signal	Torque signal	Torque signal 1	External signal 1
ChB	A phase of the rotary encoder	Not use	Speed signal 1	External signal 3
ChC	B phase of the rotary encoder	Speed signal	Torque signal 2	External signal 2
ChD	Z phase of the rotary encoder	Not use	Speed signal 2	External signal 4

Motor evaluation function 2 (/MTR2)

Input terminal				
	Single Motor (Speed:Pulse)	Single Motor (Speed:Analog)	Double Motor	Auxiliary
	Torque signal	Torque signal	Torque signal 3	External signal 5
ChF	A phase of the rotary encoder	Not use	Speed signal 3	External signal 7
ChG	B phase of the rotary encoder	Speed signal	Torque signal 4	External signal 6
ChH	Z phase of the rotary encoder	Not use	Speed signal 4	External signal 8

Terminal Used for Pulse Input

- If you do not need to detect the revolution direction of a revolution signal (SPEED), apply pulse input to the ChB terminal.
- If you need to detect the revolution direction, apply the A and B phases of a rotary encoder to the ChB and ChC terminals, respectively.
- If you need to measure the electrical angle, apply the Z phase of a rotary encoder to the ChD terminal.

4.2 External Clock Input (EXT CLK IN)

CAUTION

Signals that do not meet the specifications may damage this instrument, because of factors such as excessive voltage. Signals that do not meet the specifications may damage this instrument, because of factors such as excessive voltage.

French

ATTENTION

N'appliquer que des signaux correspondant aux spécifications suivantes. Les autres signaux pourraient endommager l'instrument en raison de divers facteurs, notamment la tension excessive.

External Clock Signal Input Connector

Apply a clock signal that meets the following specifications to the external clock input connector (EXT CLK) on the rear panel.

Common

Item	Specifications
Connector type	BNC
Input level	TTL $(0 \mathrm{~V}$ to 5 V$)$

To Apply a Synchronization Source That Determines the Measurement Period

Item	Specifications
Frequency range	Same as the measurement ranges listed under "Frequency Measurement" in section 6.7, "Features"
Input waveform	50% duty ratio rectangular wave

To Apply a PLL Source during Harmonic Measurement

Item	Specifications
Frequency range	0.1 Hz to 300 kHz
Input waveform	50% duty ratio rectangular wave
To Apply a Trigger Source for Displaying Waveforms	
Item	Specifications
Input logic	Negative logic, falling edge
Minimum pulse width	$1 \mu \mathrm{~s}$
Trigger delay	Within $2 \mu \mathrm{~s}+12 \mu \mathrm{~s}+$ Phase correction time

4.3 External Start Signal I/O (MEAS START)

CAUTION

- When the instrument is set to master, do not apply external voltage to the external start signal input/output connector (MEAS. START). If you do, the instrument may malfunction.
- If you have set this instrument as a slave unit or set External Sync to ON in high speed data capturing mode, only apply signals to the external start signal I/O connector that meet the following specifications. Signals that do not meet the specifications may damage this instrument, because of factors such as excessive voltage.

French

ATTENTION

- Lorsque l'instrument est réglé sur maître, ne pas appliquer de tension externe au connecteur d'entrée/de sortie du signal externe de démarrage (MEAS. START). Le cas échéant, un dysfonctionnement de l'instrument est possible.
- Si vous avez réglé cet instrument comme une unité esclave, appliquez uniquement des signaux conformes aux spécifications suivantes sur le connecteur E/S de signal de démarrage externe. Les signaux qui ne sont pas conformes aux spécifications, comme ceux dont la tension est excessive, risquent d'endommager cet instrument.

External Start Signal I/O Connector

Applying Master/Slave Sync Signals for Normal Measurement
Connect the external start signal I/O connectors on the rear panels of the master and slave instruments using a BNC cable (sold separately).

Item	Specifications	Notes
Connector type	BNC	Same for both master and slave
I/O level	TTL $(0 \mathrm{~V}$ to 5 V$)$	Same for both master and slave
Output logic	Negative logic, falling edge	Applies to the master
Output hold time	Low level, 500 ns or more	Applies to the master
Input logic	Negative logic, falling edge	Applies to slaves
Minimum pulse width	Low level, 500 ns or more	Applies to slaves
Measurement start output signal delay	Within $1 \mu \mathrm{~s}$	Applies to the master
Measurement start delay	Within $2 \mu \mathrm{~s}$	Applies to slaves

Note

The measurement of the master and slave units cannot be synchronized under the following conditions:

- When the data update interval differs between the master and slave.
- In real-time integration mode or real-time storage mode.

Follow the procedure below to hold values during synchronized measurement.

- To hold values: Hold the values on the master first.
- To stop holding values: Stop holding values on the slaves first.

External Start Signal Output Circuit and Timing Chart

External Start Signal Input Circuit and Timing Chart

4.4 VIDEO Output (VIDEO OUT (WXGA))

CAUTION

- Connect the cable after turning OFF this instrument and the monitor.
- Do not short the VIDEO OUT terminal or apply external voltage to it. If you do, the instrument may malfunction.

French

ATTENTION

- Connecter le câble après avoir mis cet instrument et le moniteur hors tension.
- Ne pas court-circuiter la borne VIDEO OUT ni y appliquer de tension externe. Le cas échéant, un dysfonctionnement de l'instrument est possible.

VIDEO Output Terminal

VIDEO OUT
(WXGA)

D-Sub 15-pin receptacle

You can use RGB output to display the screen of this instrument on a monitor. Any multisync monitor that supports WXGA can be connected.

Item	Specifications
Connector type	D-sub 15-pin
Output format	Analog RGB output
Output resolution	WXGA output, 1280×800 dots, approx. 60 Hz Vsync

Pin No.	Signal	Specifications
1	Red	0.7 VP-P
2	Green	0.7 VP-P
3	Blue	0.7 VP-P
4	-	
5	-	
6	GND	
7	GND	
8	GND	
9	-	
10	GND	
11	-	Approx. 36.4 kHz, TTL positive logic
12	Horizontal sync signal $60 \mathrm{~Hz}, \mathrm{TTL}$ positive logic	
13	Vertical sync signal	
14	-	
15		

Connecting to a Monitor

1. Turn off this instrument and the monitor.
2. Connect this instrument and the monitor using an analog RGB cable.
3. Turn on this instrument and the monitor.

4．5 D／A Output and Remote Control（D／A OUTPUT； option）

If you select the／DA option，20－channel D／A output and remote control features are installed in this instrument．

Connector Pinout

The connector＇s pinout is explained in the table below．

	Pin No．	Signal	Pin No．	Signal
	1	D／A CH1	19	D／A CH2
\triangle	2	D／A CH3	20	D／A CH4
DAA OUTPUT	3	D／A CH5	21	D／A CH6
	4	D／A CH7	22	D／A CH8
成近 19	5	D／A CH9	23	D／A CH10
\square	6	D／A CH11	24	D／A CH12
\because	7	D／A CH13	25	D／A CH14
：＇	8	D／A CH15	26	D／A CH16
：	9	D／A CH17	27	D／A CH18
	10	D／A CH19	28	D／A CH20
：＇	11	D／A COM	29	D／A COM
	12	D／A COM	30	D／A COM
＇-	13	D／A COM	31	D／A COM
\checkmark	14	Not Connected	32	EXT RESET
18 岛5 36	15	EXT STOP	33	EXT START
\bigcirc	16	EXT SINGLE	34	EXT HOLD
	17	INTEG BUSY	35	EXT COM
	18	EXT COM	36	EXT COM

Note
The D／A COM and EXT COM signals are connected internally．

D／A Output（D／A OUTPUT）

You can generate numeric data as ± 5 V FS DC voltage signals from the rear panel D／A output connector．You can set up to 20 items（channels）．

CAUTION

－Do not short the D／A output terminal or apply external voltage to it．If you do，the instrument may malfunction．
－When connecting the D／A output to another device，do not connect the wrong signal pin． Doing so may damage this instrument or the connected instrument．

French

ATTENTION

－Ne pas court－circuiter la borne de sortie D／A et ne pas y appliquer de tension externe．Le cas échéant，un dysfonctionnement de l＇instrument est possible．
－Lors de la connexion de la sortie D／A à un autre dispositif，veiller à connecter les broches de signal correctes．Cela pourrait endommager cet instrument ou l＇instrument connecté．

Item	Specifications
D/A conversion resolution	16 bits
Output voltage	Each rated value $\pm 5 \mathrm{~V}$ FS (maximum of approx. $\pm 7.5 \mathrm{~V}$)
Update interval	Same as the data update interval of this instrument
	Synchronizes to the trigger when the measurement mode is trigger
Number of outputs	20 channels
	The output items can be set for each channel.
Maximum isolation voltage	± 42 Vpeak or less
Relationship between output items	See "D/A Output (D/A Output, option)" in chapter 6, "Computation and
and D/A output voltage	Output," of the Features Guide, IM WT5000-01EN.

Remote Control

Through external control, you can hold values, perform single measurements, and start, stop, and reset integration.

CAUTION

Do not apply voltage outside the range of 0 V to 5 V to the remote control input pins. Also, do not short the output pins or apply external voltage to them. If you do, the instrument may malfunction.

French

ATTENTION

Ne pas appliquer de tension hors de la plage 0 V à 5 V aux broches d'entrée de la télécommande. Ne pas court-circuiter non plus les broches de sortie, ni y appliquer de tension externe. Le cas échéant, un dysfonctionnement de l'instrument est possible.

Item	Specifications
Input signal	$\overline{\text { EXT START, EXT STOP, EXT RESET, EXT HOLD, EXT SINGLE }}$
Output signal	$\overline{\text { INTEG BUSY }}$
Input level	0 V to 5 V

Remote Control I/O Circuit

L level: 0 V to 1 V
H level: 4 V to 5 V

L level: 0 V to $1.5 \mathrm{~V}(8 \mathrm{~mA})$
H level: 2.8 V to $5 \mathrm{~V}(-8 \mathrm{~mA})$

Controlling Integration Remotely
Apply signals according to the following timing chart.

The INTEG BUSY output signal is set to low level during integration. Use this signal when you are observing integration.

Holding the Updating of Displayed Data (The same functionality as pressing HOLD)

Apply an EXT HOLD signal as shown in the following figure.

Updating Held Display Data (The same functionality as pressing

 SINGLE)While the display is being held, you can update it by applying an EXT SINGLE signal.

Note
If the width of the low pulse of the EXT SINGLE signal does not meet the conditions shown in the above figure, the signal may not be detected by this instrument.

5.1 Troubleshooting

Faults and Corrective Actions

- If a message appears on the screen, see the appendix in the User's Manual, IM WT5000-02EN.
- If "Problems and Solutions" in the following table indicates that servicing is necessary, or if the instrument does not operate properly even after you have attempted to deal with the problem according to the instructions in this section, contact your nearest YOKOGAWA dealer.

Problems and Solutions		Reference Section
Nothing appears on the screen when the power is turned on.		
	Securely connect the power cord to the instrument and to the power outlet.	2.4
	Set the supply voltage to within the permitted range.	2.4
	Check the screen settings.	$20.4{ }^{1}$
	The built-in power supply fuse may have blown. Servicing is required.	5.2
The displayed data is not correct.		
	Confirm that the ambient temperature and humidity are within their specified ranges.	2.2
	Confirm that the display is not being affected by noise.	2.1, 2.6
	Check the measurement cable wiring.	2.9 to 2.12
	Check the wiring system.	$\begin{aligned} & 2.9 \text { to } 2.12, \\ & 1.1^{1} \end{aligned}$
	Confirm that the line filter is off.	1.13^{1}
	Check the measurement period settings.	1.12^{1}
	Check the FAQ at the following URL. http://tmi.yokogawa.com/	-
	Turn the power off and then on again.	2.5
Keys do not work.		
	Check the REMOTE indicator. If the REMOTE indicator is illuminated, press LOCAL to turn it off.	-
	Confirm that keys are not locked.	20.10^{1}
	Perform a key test. If the test fails, servicing is necessary.	$20.7{ }^{1}$
Triggering does not work.		
	Check the trigger conditions.	9.1^{1}
	Confirm that the trigger source is being applied.	$9.1{ }^{1}$
Unable to make harmonic measurements.		
	Check the PLL source settings.	2.1^{1}
	Confirm that the input signal that you have selected as the PLL source meets the specifications.	$2.1{ }^{1}$
Unable to recognize a storage device.		
	Check the storage device format. If necessary, format the storage device.	-
	The storage device may be damaged.	-
Unable to save data to the selected storage device.		
	Check the free space on the storage device. Remove files or use a different storage device as necessary.	-
	If necessary, format the storage device.	-
Unable to configure or control the instrument through the communication interface.		
	Confirm that the GP-IB address and the IP address settings meet the specifications.	$-^{2}$
	Confirm that the interface meets the electrical and mechanical specifications.	$-^{2}$

[^1]
5.2 Power Supply Fuse

Because the power supply fuse used by this instrument is inside the case, you cannot replace it yourself. If you believe that the power supply fuse inside the case has blown, contact your nearest YOKOGAWA dealer.

5.3 Recommended Part Replacement

The life and replacement period for expendable items varies depending on the conditions of use. Refer to the table below as a general guideline.
For part replacement and purchase, contact your nearest YOKOGAWA dealer.

Parts with Limited Service Life

Part Name	Service Life
LCD backlight	Under normal conditions of use, approximately 100000 hours

Consumable Parts

We recommend replacing them at the following intervals.

Part Name	Recommended Replacement Interval
Cooling fan	3 year
Backup battery	3 years

5.4 Disposing of YOKOGAWA Products

When disposing of YOKOGAWA products, follow the laws and ordinances of the country or region where the product will be disposed of.
If you are disposing of the product in the EU, see also page xvii.

6.1 Signal Input Section

Power Measurement

Item	Specifications
Element	Plug-in input unit
Number of elements	7
Installable input elements	Elements exclusive to the WT5000
Input element mixing	Allowed
Empty element	Allowed
	However, element 1 to the element before the first empty element can be used. Elements installed after the empty element number cannot be used.
Not swapping	Not allowed

Motor Evaluation Function (Option)

Item	Specifications		
Input connector type	Isolated BNC		
Input type	Unbalanced, functional isolation		
Input resistance	Input resistance: $1 \mathrm{M} \Omega \pm 1 \%$, input capacitance: approx. 47 pF		
Continuous maximum allowable $\pm 22 \mathrm{~V}$ input			
Maximum rated voltage to earth ± 42 Vpeak			
Input channels	MTR1:	ChA (Torque1/Aux1):	Analog/Pulse input
		ChB (Speed1/Aux3):	Pulse input
		ChC (B/Torque2/Aux2):	Analog/Pulse input
		ChD (Z/Speed2/Aux4):	Pulse input
	MTR2:	ChE (Torque3/Aux5):	Analog/Pulse input
		ChF (Speed3/Aux7):	Pulse input
		ChG (B/Torque4/Aux6):	Analog/Pulse input
		ChH (Z/Speed4/Aux8):	Pulse input
Input type	Analog input	Range	1/2/5/10/20 V
		Range setting	Fixed/Auto
			Auto range
			Range increase:
			When the measured value exceeds 110\% of the range
			When the peak value exceeds approximately 150\%
			Range decrease:
			When the measured value is 30% of the range or less and the peak value is less than 125% of the next lower range
		Input range	$\pm 110 \%$
		Bandwidth	20 kHz (-3dB)
		Sample rate	Approx. 200 kS/s
		Resolution	16 bit
		Accuracy	Accuracy at 6 months
		* Analog input accuracy	$\pm(0.03 \%$ of reading $+0.03 \%$ of range $)$
		guarantee conditions	For the accuracy at 1 year, multiply the reading of the accuracy at 6 months by 1.5 .
		Temperature coefficient	$\pm 0.03 \%$ of range $/{ }^{\circ} \mathrm{C}$
		Line filter	Low-pass filter
			Filter response: Butterworth
			$\mathrm{fc}: 100 \mathrm{~Hz}, 500 \mathrm{~Hz}, 1 \mathrm{kHz}$
	Pulse input	Range	10 V
		Input range	± 12 Vpeak
		Detection level	H level: approx. 2 V or higher L level: approx. 0.8 V or less
		Pulse width	250 ns or more
			However, 50\% duty ratio for detecting forward rotation

6.2 Measurement Output Section

D/A Output (/DA20 option)

Item	Specifications	
Output connector type	Micro ribbon connector (Amphenol 57LE connector), 36-pin	
Output source	The set measurement function	
	Normal measurement:	Voltage, current, power: $\mathrm{U} / \mathrm{l} \mathrm{rms}, \mathrm{mn}$, dc, rmn, ac P/S/Q/ג/Ф/Pc and Σ
		Peak value : U/I/P, $\pm \mathrm{pk}$
		Frequency: fU/fl/f2U/f2I/fPLLx
		Integration: ITime/WPx/qx/WS/WQ
		Efficiency
		User-defined function
		User-defined event
	Harmonic measurement:	Voltage, current, power harmonics: U/I/P/S/Q/ $/$ and Σ
		UI, inter-harmonic, inter-element phase difference: $\Phi \times x$
		Load circuit constant: Z/Rs/Xs/Rp/Xp
		Relative harmonic content, strain: U/I/P
		Telephone harmonic factor: U/I
		Telephone influence factor: U/I
		K-factor

Delta computation:	$\mathrm{U} / I / \mathrm{P}$ and $\Sigma \mathrm{U}, \mathrm{P}$
Motor evaluation	Speed, Torque, SyncSp, Slip, Pm, EaM1U, EaM1I, EaM3U, EaM3I, Aux1 to 8

* 0 V to +5 V when the phase angle display setting is 360°
* The \% output measurement function is +5 V at 100%.
* Rated integrated value is range rating \times set integration time
* Approx. 7.5 V for setting function errors.

However, U/I -pk is approx. -7.5 V .
${ }^{*} \mathrm{x}$ consists of characters and numbers.
\(\left.$$
\begin{array}{ll}\hline \text { D/A resolution } & 16 \text { bit } \\
\hline \text { Output type } & \text { Voltage output, functional isolation } \\
\hline \text { Output voltage } & \text { Rating: } \pm 5 \mathrm{~V} \text {, maximum output voltage: approx. } \pm 7.5 \mathrm{~V} \\
\hline \text { Range mode } & \begin{array}{c}\text { Fixed } \\
\pm 5 \mathrm{~V} \mathrm{FS} \\
\text { Manual } \\
\text { Maximum range value: } 9.999 \mathrm{~T}, \text { minimum range value: }-9.999 \mathrm{~T}\end{array}
$$

\hline Number of channels \& 20

\hline Accuracy \& \pm(output source measurement accuracy+0.1 \% of FS), accuracy at 1 year

\hline Output resistance \& Approx. 100 \Omega

\hline Minimum load \& 100 k \Omega\end{array}\right]\)| Temperature coefficient | $\pm 0.05 \%$ of FS/ ${ }^{\circ} \mathrm{C}$ |
| :--- | :--- |
| Maximum ratedvoltage to | $\pm 42 \mathrm{Vpeak}$ or less |
| earth | |
| Output update interval | Same as the data update interval
 Synchronizes to the trigger when the measurement mode is trigger |
| Remote control | See auxiliary I/O |

6.3 Display

Item	Specifications			
Display	10.1-inch color TFT LCD with a capacitive touch panel			
Resolution of the entire	1280 $\times 800$ dots (H \times V)			
screen*			\quad	Japanese/English/Chinese/German
:---	:---			

Item	Specifications	
Trend display	Time series graph of a measurement function's data updates	
	Display items:	Up to 16 items*, most recent measured values * Up to 8 items when the data update interval is 10 ms .
	Screen division:	Single, Dual, Triad, Quad
	Vertical axis:	Auto or Manual (set the upper and lower limits)
	Time axis:	Time/div, 3 s to 1 day
Bar graph display	Displays a bar graph of the amplitude and phase of each harmonic	
	Graph division:	Single, Dual, Triad
	Vertical scale:	Log, Linear
	Range setting:	Auto or Manual (set the upper and lower limits)
	Display range:	Starting harmonic: 0 to 490, ending harmonic: 10 to 500
Vector display	Displays the phase difference between the fundamental voltage signal and fundamental current signal as a vector.	
	Divisions:	2
	Screen zoom feature:	0.1 to 100x
	Numeric display:	Allowed
Custom display	The user registers up to five screen configurations.	
	Register tab:	Custom 1 to 5
	Register Name:	14 characters
	Register:	Registers the current screen configuration as a new configuration
	Over Write:	Registers the current screen configuration by overwriting
	Clear:	Deletes registered contents

Other measurement screen Setup menu
display items Measurement mode, time, data update interval, data update count, peak over-range information, integration settings/status, storage status, crest factor, averaging, element settings/status, option settings/status

* Relative to the total number of pixels, 0.002% of the LCD screen may be defective.

6.4 Control area

Item	Specifications
Control devices	Power switch, control keys, capacitive touch panel
Key operation features	Features controlled directly with keys
	Direct control items:
	Setup menu display, display format change, range change, storage, data save, integration start/
	stop/reset, remote clear, key lock, touch lock
	Panel menus can be controlled using the arrow keys and SET key.
Touch panel	Controls all features
	Touch lock: Stops the touch panel operation feature

6.5 Wiring Systems

Item	Specifications
Method	Single-phase two-wire (1P2W)
	Single-phase three-wire (1P3W)
	Three-phase three-wire (3P3W, 3V3A, 3V3AR)
	Three-phase four-wire (3P4W)

6.6 Measuring Mode

Item	Specifications
Normal measurement	Measurement method
	Select sync source period average or digital filter average.
	Fixed-period data
	Update interval: $10 \mathrm{~ms} / 50 \mathrm{~ms} / 100 \mathrm{~ms} / 200 \mathrm{~ms} / 500 \mathrm{~ms} / 1 \mathrm{~s} / 2 \mathrm{~s} / 5 \mathrm{~s} / 10 \mathrm{~s} / 20 \mathrm{~s}$
	Display screen:
	Single, split screen and the measurement display of the trend
	Numeric, waveform (free run), trend, bar, vector
	Measurement function: Normal, harmonic
	Trigger update
	Display screen:
	Single, split screen and the measurement display of the trend
	Numeric, waveform (triggered), trend, bar, vector
	Measurement function: Normal, harmonic
	However, the integration feature is not available.
IEC harmonic measurement	Display screen: Displays one screen of measured values
	Measuring function: Harmonic measurement, frequency
IEC flicker measurement	Update interval: 2 s
	Display screen: Displays one screen of dedicated measured values
	Measurement function: Flicker function

6.7 Features

General Features

Item	Specifications
Crest factor setting	Select crest factor CF3, crest factor CF6, or crest factor CF6A.
Element range setting	Can be set for each input element and wiring unit Fixed/auto range setting Fixed range setting Manually set the range of your choice (except only the ranges selected by the valid measurement range selection feature). Range Σ link: ON: Set the range for each wiring unit. OFF: Set the range for each element. Auto range setting Auto range setting feature Range increase When Urms or Irms exceeds 110% of the measurement range (220% for crest factor CF6A). When the peak value of the input signal exceeds approximately 310% (approximately 620% for crest factor CF6 or CF6A) of the range. Range decrease When the measured Urms or Irms value is less than or equal to 30% of the range, Upk and Ipk are less than equal to 290% of the lower range (range to decrease to) (less than equal to 580% for crest factor CF6 or CF6A), and Urms and Irms are less than 105\% Changes the range directly to the appropriate range when the range-decrease conditions are met. A feature for changing to the specified range when a peak over-range occurs * The null value is not used for peak over-range detection. Valid measurement range selection feature A feature for selecting the valid measurement range according to the usage conditions Only the selected ranges are used.
Element scaling	A feature that allows direct reading by setting the current sensor conversion ratio, VT ratio, CT ratio, and power coefficient SF - Auto CT ratio configuration is possible by selecting the CT series model name. Source measurement function Set voltage U, current I, power ($\mathrm{P}, \mathrm{S}, \mathrm{Q}$), maximum voltage ($\mathrm{U}+\mathrm{pk}$)/minimum voltage ($\mathrm{U}-\mathrm{pk}$), maximum current $(\mathrm{l}+\mathrm{pk}) /$ /minimum current $(\mathrm{l}-\mathrm{pk})$, maximum power $(\mathrm{P}+\mathrm{pk}) /$ minimum power ($\mathrm{P}-\mathrm{pk}$), and VT ratio in the following range. Selectable range: 0.0001 to 99999.9999
Averaging	Type: Exponential average, moving average Source: Normal measurement function Urms, Umn, Udc, Urmn, Uac, Irms, Imn, Idc, Irmn, Iac, P, S, Q, fU, fl, f2U, f2I, $\Delta \mathrm{U} 1$ to $\triangle \mathrm{P} \Sigma$, Torque, Speed, Pm, Aux(/MTR1/MTR2 option) Harmonic measurement function $U(k), I(k), P(k), S(k), Q(k)$ Exponential averaging, attenuation constant: 2 to 64 Moving average, average count: 8 to 64 Data reset: Averaging is reset if a setting of any of the functions below is changed. Averaging type, averaging attenuation constant Range, crest factor, range Σ link, wiring Scale value Line filter, frequency filter Data update interval, averaging method, sync source Zero-level compensation Maximum harmonic order, minimum harmonic order, harmonic window span Waveform observation time
Hold	Measurement hold: Suspends the measurement and display operations and holds the data display of each measurement function. However, measurement is not suspended during integration. Only the display is held. D/A output, communication output, and the like are also held. However, if only the display is held and measurement is continuing during integration, the storage function saves the measured values that are being updated.

Item	Specifications
Single measurement	A single measurement is performed at the specified data update interval while a measurement is being held and the hold state is maintained. If you press SINGLE when the measurement is not being held, measurement is performed again from that point.
Zero-level compensation (Cal)	Measurement element's circuit offset correction feature Manual: Executed under the current settings through a key operation or communication. Auto: Automatically execute when the measurement range is changed or the filter is changed.
Zero-level compensation (Null)	Offset correction feature for all measurement circuits including measurement elements Executed under the current settings through a key operation or communication. Null status: Can be set separately for each function ON: Updates the null value every time a null is executed. HOLD: Holds the null value set once. OFF: Disables null correction. [Upper null limit] Analog input (Element/Motor/Aux): 10\% of range rating Pulse input (Motor/Aux): Speed: 10% of [60/PulseN $\times 10000 \mathrm{~Hz}][\mathrm{rpm}]$ Torque: 10% of the absolute value of Rated Upper [Nm] Rated Upper: The larger of "Nm-Hz coordinates $\times 2$ points" for determining the linear scaling value Aux: 10% of the upper pulse input specification limit $2 \mathrm{MHz}[\mathrm{Hz}]$
Phase difference polarity	The phase difference Φ between the voltage and current indicates the current phase relative to the voltage of each element. Select the signs to apply to the lead and lag of this phase difference. - Lead(-)/Lag(+) Lead: Negative (-) Lag: Positive (+) - Lead(+)/Lag(-) Lead: Positive (+) Lag: Negative (-) The following measurement functions change signs depending on the phase difference polarity. Phase difference: Φ, phase difference between the fundamental components: Φ fnd, Phase difference of harmonic measurement: $\Phi(\mathrm{k}), \Phi \mathrm{U} 1-\mathrm{U} 2, \Phi \mathrm{U} 1-\mathrm{U} 3, \Phi \mathrm{U} 1-\mathrm{I} 1, \Phi \mathrm{U} 2-\mathrm{I} 2, \Phi \mathrm{U} 3-\mathrm{I} 3$ * Other angles, the phase angle between $\mathrm{U}(1)$ and $\mathrm{U}(\mathrm{k})$: $\Phi \mathrm{U}(\mathrm{k})$, the phase angle between $\mathrm{I}(1)$ and $I(k)$: $\Phi I(k)$, and the electric angles: EaM1U1 to EaM1I7 and EaM3U1 to EaM3I7 are not affected by the phase difference polarity setting. Lead is positive (+), and lag is negative (-).
Phase correction	The phase correction feature of the current of the input element Target element 30A High Accuracy Element (760901), 5A High Accuracy Element (760902), Current Sensor Element (760903) Correction time Setting accuracy\quad1ns typical
Storage	Stores numeric data to internal memory and a USB memory device Save Interval Data update interval, specified time, or specified interval Synchronization Manual, real time, integration, event Storage count 1 to 9999999 Time interval 10 ms to $99 n 59 \mathrm{~m} 59 \mathrm{~s}$ File Format Binary Maximum data file size 1 GB Saved data conversion Converts to CSV (CSV file size of up to 2 GB can be converted.)
Data save	Save numeric data, waveform data, and screen images to the internal memory, a USB memory device, or a network drive
Saving and loading setup parameters	Save setup parameters to the internal memory, a USB memory device, or a network drive Load saved setup parameters.
File operations	Create folder, copy, move, rename, protect, delete

Item	Specifications	
Master and slave	A feature for synchronizing the measurement start on slave devices to the master device	
synchronized measurement	Connector type	BNC: Same for master and slaves
	I/O level	TTL: Same for master and slaves
	Output logic	Negative logic, falling edge: Applies to the master
	Output hold time	Low level, 500 ns or more: Applies to the master
	Input logic	Negative logic, falling edge: Applies to slaves
	Minimum pulse width	Low level, 500 ns or more: Applies to slaves
	Measurement start output signal delay	Applies to the master: Within $1 \mu \mathrm{~s}$
	Measurement start delay	Applies to slaves: Within $2 \mu \mathrm{~s}$
	Maximum number of connected units	4 unit
	Data update interval	10 ms to 20 s
	Measuring Mode	Normal measurement
User-Defined Function	A feature for performing computation by combining measurement function symbols	
	Number of computations	20
	Maximum number of operands	16
	Number of characters in an expression	Up to 60 characters
	Number of unit characters	Up to 8 characters
	Operators	$+,-, \times, \div, A B S, S Q R$, SQRT, LOG, LOG10, EXP, NEG, SIN, COS, TAN, ASIN, ACOS, ATAN
	Parameters	Element, Σ unit, harmonic order
MAX hold	Can be defined using the user-defined function	
Efficiency equation	Efficiency computation of up to 4 systems is possible.	
User-defined events	Uses the measurement function and the user-defined event as trigger conditions	
	Event	Measurement condition
	Judgment condition	<, <=, =, >, >=, !=
	Number of events	8
Peak over-range detection	Elements, Motor (/MTR1/MTR2)	
	Displays over-range information on the screen when the allowable range of each element and motor (/MTR1/MTR2) is exceeded.	
System configuration	Date and time, message language, menu language	
Time setting	Sets the time at startup using the Simple Network Time Protocol (SNMP)	
Time synchronization function	Synchronization source: Sup Supports PTP packets of L Supports Ordinary Clock Supports E2E and P2P de Synchronization target: Time Synchronization accuracy: \pm	ports IEEE1588-2008 (PTP v2) (slave only) ayer3 (UDP/IPv4) and Layer2 (Ethernet) ay correction data 0μ s typical (synchronous), $\pm 0.02 \%$ (asynchronous)
Initialization feature	* Environmental settings (Preference): Indication that appears when the frequency or motor pulse frequency is less than the lower limit, decimal point and separator used when saving to ASCII format (.csv) * Starting the instrument with the ESC key held down returns all settings except the date and time to their factory default values.	
Help	Displays explanations of features	
Self-test	Memory, keyboard	
Upgrade	Updates the firmware and prompts the user to input the add-on package license keys	

Delta Computation Function

Item	Delta Computation Setting	Symbols and Meanings
Voltage (V)	difference	Δ UE
		Differential voltage UE between UE+1 determined through computation
	$3 P 3 W->3 V 3 A$	$\Delta \mathrm{UE}$
		Unmeasured line voltage computed in a three-phase three-wire system
	DELTA->STAR	$\Delta \mathrm{UE}, \Delta \mathrm{UE}+1, \Delta \mathrm{UE}+2$
		Phase voltage computed in a three-phase three-wire (3V3A, 3V3AR) system
	STAR->DELTA	$\Delta \mathrm{UE}, \Delta \mathrm{UE}+1, \Delta \mathrm{UE}+2$
		Line voltage calculated in a three-phase four-wire system
Current (A)	difference	$\Delta \mathrm{l}$
		Differential current iE between $\mathrm{iE}+1$ determined through computation
	$3 P 3 W->3 V 3 A$	$\Delta \mathrm{l}$
		Unmeasured phase current
	DELTA->STAR	$\Delta \mathrm{l}$
		Neutral line current
	STAR->DELTA	$\Delta 1$
		Neutral line current
Power (W)	difference	-
	$3 \mathrm{P} 3 \mathrm{~W}->3 \mathrm{~V} 3 \mathrm{~A}$	-
	DELTA->STAR	$\Delta \mathrm{PE}, \triangle \mathrm{PE}+1, \Delta \mathrm{PE}+2$
		Phase power computed in a three-phase three-wire system
	STAR->DELTA	-

Delta computation is not possible when the computing method is digital filter average.

Averaging Function

Method	Computation			
Sync source period average	Averaging performed over a specified period			
	Set the calculation period using the set reference signal (sync source) (excluding WP and DCq) Sync source: Ux, Ix, EXT CLK, Z (/MTR1/MTR2 option)			
	The period of UE and IE is detected using a specified trigger value from the waveform sampling data			
	Data update interval: $10 \mathrm{~ms} / 50 \mathrm{~ms} / 100 \mathrm{~ms} / 200 \mathrm{~ms} / 500 \mathrm{~ms} / 1 \mathrm{~s} / 2 \mathrm{~s} / 5 \mathrm{~s} / 10 \mathrm{~s} / 20 \mathrm{~s}$ Averaging period: Data update interval or less			
Digital filter average	Digital low-pass filter Filter form: FIR			
	Filter response	Attenuation characteristics (<-100 dB)	Computation rate	Settling time
	FAST	100 Hz	10 kHz	40 ms
	MID	10 Hz	1 kHz	400 ms
	SLOW	1 Hz	100 Hz	4 s
	VSLOW	0.1 Hz	10 Hz	40 s

[^2]However, the computed value is reset to 0 when a range change, line filter change, zero cal, filter response change, or data update interval change is executed. Data update interval: $10 \mathrm{~ms} / 50 \mathrm{~ms} / 100 \mathrm{~ms} / 200 \mathrm{~ms} / 500 \mathrm{~ms} / 1 \mathrm{~s} / 2 \mathrm{~s} / 5 \mathrm{~s} / 10 \mathrm{~s} / 20 \mathrm{~s}$

Filter Function

Item	Specifications	
Line filter	For elements 1 to 7	
	Can be set separately for each element	
	Computation rate Filter response	Maximum computation rate: $10 \mathrm{MS} / \mathrm{s}$
		Bessel
		Filter form: IIR
		Filter type: LPF
		Filter order: 4
		LPF:
		Cutoff frequency: 100 Hz to $100 \mathrm{kHz}, 1 \mathrm{MHz}{ }^{1}$
		Resolution: 100 Hz
		Cutoff characteristic: -24 dB/Oct (typical)
	Filter response	Butterworth
		Filter form: IIR
		Filter type: LPF
		Filter order: 4
		LPF:
	Resolution: 100 Hz	
	1 Anti-aliasing filter: element's internal analog filter, Bessel	
	For MOTOR (/MTR1/MTR2 option)	
	Can be used during analog input	
	Computation rate	Maximum computation rate: $200 \mathrm{kS} / \mathrm{s}$
	Filter response	Butterworth
	Filter form: IIR	
	Filter type: LPF	
	Filter order: 4	
	LPF:	
		Cutoff frequency: $100 \mathrm{~Hz}, 500 \mathrm{~Hz}, 1 \mathrm{kHz}$
	Cutoff characteristic: $-24 \mathrm{~dB} /$ Oct (typical)	
	For harmonic measurement	
	Stable measurement is possible through the anti-aliasing filter provided for each sampling frequency.	
	Harmonic analysis in an area different from normal measurement is possible.	
	When the line filter According to the element's line filter advanced setting is off	
	When the line filter advanced setting is on Filter response	Filter exclusive to harmonic measurement (independent of the element's line filter)
		Bessel
	Filter form: IIR	
	Filter type: LPF	
	Filter order: 4	
	LPF:	
	Cutoff frequency: 100 Hz to 100 kHz	
	Resolution: 100 Hz	
	Cutoff characteristic: -24 dB/Oct (typical)	
	Filter response	Butterworth
		Filter form: IIR
		Filter type: LPF
		Filter order: 4
		LPF:
		Cutoff frequency: 100 Hz to 100 kHz
		Resolution: 100 Hz
		Cutoff characteristic: $-24 \mathrm{~dB} /$ Oct (typical)
Frequency filter	Elements 1 to 7, for frequency measurement and sync source	
	Can be set separately for each element	
	Computation rate	Maximum computation rate: $10 \mathrm{MS} / \mathrm{s}$
		The computation rate is selected automatically based on the set frequency $100,1 \mathrm{k}, 10 \mathrm{k}, 100 \mathrm{k}, 1 \mathrm{M}, 5 \mathrm{M}$, or 10 MHz .

Integration Function

Item	Specifications
Sample rate	$5 \mathrm{MS} / \mathrm{s}$
Calculation period	Manual, integration time, real-time control Integration time repetition, real-time control repetition Integration timer range: Oh00m00s to 10000h00m00s Count over: When the maximum integration time (10000 hours) is reached or when an integrated value reaches the maximum or minimum displayable integrated value ($\pm 999999 \mathrm{MWh}, \pm 999999$ MAh, ± 999999 MVAh, ± 999999 Mvarh), the integration time and value at that point are held and integration is stopped.
Rower failure recovery	Resumes integration if a power failure occurs during integration.
Independent integration	Integration can be executed separately for each element.
External control	With the /DA20 option, start, stop, and reset are possible through external signals.
Auto calibration	Auto offset calibration feature Zero-level compensation is performed at the current range of all elements approximately every hour.
Timer accuracy	$\pm 0.02 \%$ of reading
Integration accuracy	$\pm[$ Power accuracy (or current accuracy) + timer accuracy]

Frequency Measurement Function

Item	Specifications
Measured item	Measures the frequency of the voltage or current applied to all input elements.
Measurement system	A/D data level trigger gate generation Reciprocal method
Display resolution	99999
Minimum frequency resolution	0.0001 Hz
Measurement range	$0.1 \mathrm{~Hz} \leq \mathrm{f} \leq 2 \mathrm{MHz}$ For the relationship between the data update interval and the measurement range, see the specifications of each element (sections 6.15 and 6.16). * Measurement frequency range is limited by the element. * The display limit is 1.1 times the upper limit of the measurement range (2.2 MHz). Display: Error, 32-bit floating-point value: 0xFFFFFFFE
Accuracy	Depends on the element
Condition	When the input signal level is 30% or more (60% or more when the crest factor is set to CF6 or CF6A) of the measurement range. However, 1) Input condition for 50% of the range or more - Twice the lower frequency limit above or less - Minimum current range 500 mA range (760901)(CF3) 5 mA range (760902)(CF3) Input resistance: $1 \Omega, 10 \mathrm{~mA}$ range (760903)(CF3) Input resistance: $1.5 \Omega, 6.67 \mathrm{~mA}$ range (760903)(CF3) - Minimum external current sensor range 50 mV range (760901, 760902)(CF3) - Minimum current probe input range 50 mV range (760903)(CF3) 2) Frequency filter setup conditions 0.1 Hz to 100 Hz : fc $=100 \mathrm{~Hz}$ 100 Hz to $1 \mathrm{kHz}: \mathrm{fc}=1 \mathrm{kHz}$ 1 kHz to 100 kHz : fc $=100 \mathrm{kHz}$
Frequency detection signal level setting	Selectable range HPF: ON: Auto HPF: OFF: Rectifier OFF: $\pm 100 \%$ of range Rectifier ON: 0% to $+100 \%$ of range

Harmonic Measurement Feature

Item	Specifications				
Measured item	All installed elements				
Method	PLL synchronization method				
Frequency range	Fundamental frequency: 0.1 Hz to 300 kHz Analysis frequency: 0.1 Hz to 1.5 MHz				
PLL source	Select the input element's voltage or current or external clock. Input level: 50% or more of the rated measurement range when the crest factor is CF3. 100% or more of the rated measurement range when the crest factor is CF6 or CF6A. The conditions in which frequency filters are turned on $\begin{aligned} & 0.1 \mathrm{~Hz} \leq \mathrm{f}<100 \mathrm{~Hz}: 100 \mathrm{~Hz} \\ & 100 \mathrm{~Hz} \leq \mathrm{f}<1 \mathrm{kHz}: 1 \mathrm{kHz} \\ & 1 \mathrm{kHz} \leq \mathrm{f}<10 \mathrm{kHz}: 10 \mathrm{kHz} \\ & 10 \mathrm{kHz} \leq \mathrm{f}<100 \mathrm{kHz}: 100 \mathrm{kHz} \end{aligned}$				
Number of FFT points	Select 1024 or 8192.				
Window function	Rectangular				
Anti-Aliasing Filter	Set using a line filter or harmonic filter				
When the number of FFT points is 1024					
	Fundamental frequency	Sample	Window width Upper limit of harmonic analysis*		
	0.1 Hz to 3 kHz	$\mathrm{f} \times 1024$	1 wave	100th	100th
	3 kHz to 7.5 kHz	$\mathrm{f} \times 512$	2 waves	100th	100th
	7.5 kHz to 15 kHz	$\mathrm{f} \times 256$	4 waves	50th	50th
	15 kHz to 30 kHz	$\mathrm{f} \times 128$	8 waves	20th	20th
	30 kHz to 75 kHz	$\mathrm{f} \times 64$	16 waves	10th	10th
	75 kHz to 150 kHz	$\mathrm{f} \times 32$	32 waves	5th	5th

* Harmonic analysis is not executed (disabled) when the update interval is 10 ms .

When the number of FFT points is 8192 (at $10 \mathrm{MS} / \mathrm{s}$)

Fundamental frequency	Sample rate	Window width	Upper limit of harmonic analysis* U,I, $, \Phi, \Phi \cup, \Phi I$	
0.5 Hz to 3 kHz	$\mathrm{f} \times 1024$	8 waves	Other measured values	
3 kHz to 7.5 kHz	$\mathrm{f} \times 1024$	8 waves harmonic	100th	
7.5 kHz to 15 kHz	$\mathrm{f} \times 512$	16 waves	200th	100th
15 kHz to 30 kHz	$\mathrm{f} \times 256$	32 waves	50 th	100th
30 kHz to 75 kHz	$\mathrm{f} \times 128$	64 waves	20th	50th
75 kHz to 150 kHz	$\mathrm{f} \times 64$	128 waves	10th	20th
150 kHz to $300 \mathrm{kHz} \times 32$	256 waves	5th	10th	

* The upper harmonic limit is 100 when the update interval is 50 ms .

Further, harmonic analysis is not executed (disabled) when the update interval is 10 ms .

When the number of FFT points is 8192 (at $5 \mathrm{MS} / \mathrm{s}$)					
	Fundamental frequency	Sample rate	Window width	Upper limit of harmonic analysis*	
				$\mathrm{U}, \mathrm{I}, \mathrm{P}, \Phi, \Phi \mathrm{U}, \Phi \mathrm{I}$	Other measured values
	0.5 Hz to 1.2 kHz	$\mathrm{f} \times 1024$	8 waves	500th harmonic	100th
	1.2 kHz to 3 kHz	$\mathrm{f} \times 1024$	8 waves	200th	100th
	3 kHz to 7.5 kHz	$\mathrm{f} \times 512$	16 waves	100th	100th
	7.5 kHz to 15 kHz	$\mathrm{f} \times 256$	32 waves	50th	50th
	15 kHz to 30 kHz	$f \times 128$	64 waves	20th	20th
	30 kHz to 75 kHz	$\mathrm{f} \times 64$	128 waves	10th	10th
	75 kHz to 150 kHz	$\mathrm{f} \times 32$	256 waves	5th	5th

* The upper harmonic limit is 100 when the update interval is 50 ms .

Further, harmonic analysis is not executed (disabled) when the update interval is 10 ms .

IEC Harmonic Measurement Feature (G7 option)

IEC Voltage Fluctuation/Flicker Measurement Function (G7 option)

Item	Specifications
Flicker meter class	F2
Applicable standards	IEC 61000-4-15 Ed 1.1/Ed 2.0

Normal Voltage Fluctuation/Flicker Measurement Mode

Item	Specifications	
Measured item	dc	Relative
	dmax	Maximu
	Tmax	Time dur voltage
	Pst	Short-te
	Plt	Long-ter
One observation period	30 s to	15 min
Number of observation periods	1 to 99	

"Measurement of dmax caused by manual switching" Mode

Item	Specifications
Measured item	dmax Maximum relative voltage change
One observation period	1 min
Number of observation periods	24 (outputs 22 average values excluding the maximum and minimum values)

Items Common to Both Measurement Modes

Item	Specifications
Target voltage/frequency	$230 \mathrm{~V} / 50 \mathrm{~Hz}, 230 \mathrm{~V} / 60 \mathrm{~Hz}, 120 \mathrm{~V} / 50 \mathrm{~Hz}, 120 \mathrm{~V} / 60 \mathrm{~Hz}$
Measurement target input	Voltage (no current measurement function)
Target element	30A High Accuracy Element (760901), 5A High Accuracy Element (760902)
Number of measurement elements	Up to three elements
Voltage input level	At least 50\% of the range rating
Flicker scale	$0.0001-6400$ P.U. (20\%) divided logarithmically into 1400
Display update	2 s (dc, dmax, Tmax) At the end of each observation period (Pst)
Communication output	dc, dmax, Tmax, Pst, Plt, instantaneous flicker sensation (Pinst), cumulative probability function (CPF)
External storage output	Screen image

Data Streaming Feature (DS option)

Item	Specifications
Waveform sampling	Select from $10 \mathrm{kS} / \mathrm{s}$ to $2 \mathrm{MS} / \mathrm{s}(1-2-5$ steps, simple decimation), 1 MS/s maximum during integration
Waveform data to be streamed	All inputs (U, I, Motor)
Numeric data to be saved	All numeric data (normal data, harmonic data)
Data update interval	Operates in constant-interval update mode at an update interval of $50 \mathrm{~ms}, 100 \mathrm{~ms}, 200 \mathrm{~ms}, 500$ ms, or 1 s
Time data	IEEE1588 compatible
Data format	32-bit single precision floating point

6.8 Measurement Function Computation

Normal Measurement

For details about how the measurement function values are computed and determined, see appendix 1.

Item	Symbols and Meanings
Voltage (V)	Urms: true rms value, Umn: rectified mean value calibrated to the rms value, Urmn: current rectified mean value, Udc: simple average, Uac: AC component, Ufnd: fundamental component
Current (A)	Irms: true rms value, Imn: rectified mean value calibrated to the rms value, Irmn: current rectified mean value, Idc: simple average, lac: AC component, Ifnd: fundamental component
Active power (W)	P
	Pfnd: fundamental component
Apparent power (VA)	S
	Sfnd: fundamental component
Reactive power (var)	Q
	Qfnd: fundamental component
Power factor	λ
	λ fnd: fundamental component
Phase difference (${ }^{\circ}$)	Φ
	Фfnd: fundamental component
Frequency (Hz)	fU (FreqU): voltage frequency, fl (Freql): current frequency
	The fU and fl of elements 1 to 7 can be measured simultaneously.
	f2U (Freq2U): voltage frequency, f2I (Freq2I): the current frequency when the second frequency filter is applied
Corrected Power(W)	Pc
	Applicable standards IEC76-1 (1976), IEC76-1 (2011)
Voltage max. and min. (V)	U+pk: maximum voltage, U-pk: minimum voltage
Current max. and min. (A)	I+pk: maximum current, I-pk: minimum current
Power max. and min. (W)	P+pk: maximum power, P-pk: minimum power
Crest factor (peak-to-rms ratio)	CfU: voltage crest factor, Cfl: current crest factor
Integration	ITime: integration time
	WP: sum of positive and negative watt hours
	WP+: sum of positive P (consumed watt hours)
	WP-: sum of negative P (watt hours returned to the power supply)
	q : sum of positive and negative ampere hours
	$q+$: sum of positive I (ampere hours)
	q-: sum of negative I (ampere hours)
	WS: volt-ampere hours
	WQ: var hours
	By using the current mode setting, you can select to integrate the ampere hours using Irms, Imn, Idc, lac, or Irmn.
Voltage measurement range	RngU
Current measurement range	Rngl

Measurement Functions (Σ Functions) Determined for Each Wiring Unit ($\Sigma \mathrm{A}, \mathbf{\Sigma B}, \mathbf{\Sigma C}$)

For details about how Σ function values are computed and determined, see appendix 1 .

Item	Symbols and Meanings
Voltage (V)	Urms Σ : true rms value, Umn Σ : rectified mean value calibrated to the rms value, Urmn Σ : current rectified mean value, Udc Σ : simple average, Uac Σ : $A C$ component
Current (A)	Irms Σ : true rms value, $\operatorname{Imn} \Sigma$: rectified mean value calibrated to the rms value, Irmn Σ : current rectified mean value, IdcE: simple average, lac Σ : AC component
Active power (W)	P Σ
Apparent power (VA)	S Σ
Reactive power (var)	Q
Corrected Power(W)	```Pc\Sigma Applicable standards IEC76-1 (1976), IEC76-1 (2011)```
Integration	WP Σ : sum of positive and negative watt hours WP $+\Sigma$: sum of positive P (consumed watt hours) WP- Σ : sum of negative P (watt hours returned to the power supply) $\mathrm{q} \Sigma$: sum of positive and negative ampere hours $q+\Sigma$: sum of positive I (ampere hours) $\mathrm{q}-\Sigma$: sum of negative I (ampere hours) WQE: Integration of QE WSE: Integration of $\mathrm{S} \mathrm{\Sigma}$
Power factor	$\lambda \Sigma$
Phase difference (${ }^{\circ}$)	Ф Σ

6.8 Measurement Function Computation

Harmonic Measurement Computation Feature

Measurement Functions Determined for Each Input Element

Item	Symbols and Meanings
Voltage (V)	$\mathrm{U}(\mathrm{k})$: rms voltage value of harmonic order $\mathrm{k}^{1} \quad \mathrm{U}$: total rms voltage ${ }^{2}$
Current (A)	$\mathrm{I}(\mathrm{k})$: rms current value of harmonic order k k : total rms current ${ }^{2}$
Active power (W)	$\mathrm{P}(\mathrm{k})$: active power of harmonic order k $\quad \mathrm{P}$: total active power ${ }^{2}$
Apparent power (VA)	$\mathrm{S}(\mathrm{k})$: apparent power of harmonic order k S : total apparent power ${ }^{2}$
Reactive power (var)	$\mathrm{Q}(\mathrm{k})$: reactive power of harmonic order k \quad Q: total reactive power ${ }^{2}$
Power factor	$\lambda(k)$: power factor of harmonic order k $\quad \lambda$: total power factor ${ }^{2}$
Phase difference (${ }^{\circ}$)	$\Phi(\mathrm{k})$: phase difference between the voltage and current of harmonic order k, Φ : total phase difference $\Phi U(k)$: phase difference between harmonic voltage $U(k)$ and the fundamental wave $U(1)$
	$\Phi \mathrm{l}(\mathrm{k})$: phase difference between harmonic current $\mathrm{l}(\mathrm{k})$ and the fundamental wave $\mathrm{l}(1)$

$Z(k)$: impedance of the load circuit in relation to harmonic order k
impedance (Ω
Load circuit resistance and Rs (k): resistance of the load circuit in relation to harmonic order k when resistor R, inductor L, and capacitor C are connected in series
Xs (k): reactance of the load circuit in relation to harmonic order k when resistor R, inductor L, and capacitor C are connected in series
$R p(k)$: resistance of the load circuit in relation to harmonic order k when R, L, and C are connected in paralle
Xp (k): reactance of the load circuit in relation to harmonic order k when R, L, and C are connected in parallel

Fundamental component of voltage (V)	Ufnd: U (1)
Fundamental component of current (A)	Ifnd: I (1)
Fundamental active power (W)	Pfnd: P (1)
Fundamental apparent power (VA)	Sfnd: S (1)
Fundamental reactive power (var)	Qfnd: Q (1)
Fundamental power factor	λ fnd: λ (1)
Phase difference between the fundamental voltage and current $\left({ }^{\circ}\right)$	Фfnd: Φ (1)
Harmonic distortion factor (\%)	Uhdf (k): ratio of harmonic voltage $\mathrm{U}(\mathrm{k})$ to $\mathrm{U}(1)$ or U Ihdf (k): ratio of harmonic current $I(k)$ to $I(1)$ or I Phdf (k): ratio of harmonic active power $P(k)$ to $P(1)$ or P
Total harmonic distortion (\%)	Uthd: ratio of the total harmonic voltage to $\mathrm{U}(1)$ or U^{3} Ithd: ratio of the total harmonic current to $\mathrm{I}(1)$ or I^{3} Pthd: ratio of the total harmonic active power to $P(1)$ or P^{3}
Telephone harmonic factor [applicable standard: IEC34-1 (1996)]	Uthf: voltage telephone harmonic factor, Ithf: current telephone harmonic factor
```Telephone influence factor [applicable standard: IEEE Std 100 (1996)]```	Utif: voltage telephone influence factor, Itif: current telephone influence factor
Harmonic voltage factor ${ }^{4}$	hvf:harmonic voltage factor
Harmonic current factor ${ }^{4}$	hcf:harmonic current factor
K-factor	Ratio of the squared sum weighted harmonic components to the squared sum harmonic currents

1 Harmonic order $k$ is an integer from 0 to the upper limit of harmonic analysis. The 0th order is the DC component. The upper limit is determined automatically according to the PLL source frequency. It can go up to the 500th harmonic order
2 The total value is determined according to the equation on page 4 of the appendix from the fundamental wave (1st harmonic) and all harmonic components (2nd harmonic to the upper limit of harmonic analysis). The DC component can also be included.
3 Total harmonic values are determined from all harmonic components (the 2nd harmonic to the upper limit of harmonic analysis) according to the equations on page 5 of the appendix.
4 The expression may vary depending on the definitions in the standard. For details, see the corresponding standard.

Item	Symbols and Meanings	
Voltage (V)	U $\Sigma(1)$ : rms voltage of harmonic order 1	UE: total rms voltage ${ }^{1}$
Fundamental component of voltage (V)	Ufnd $\Sigma$	
Current (A)	İ (1): rms current of harmonic order 1	I $\Sigma$ : total rms current ${ }^{1}$
Fundamental component of current (A)	Ifnd $\Sigma$	
Active power (W)	$\mathrm{P} \sum$ (1): active power of harmonic order 1	P $\sum$ : total active power ${ }^{1}$
Fundamental active power (W)	Pfnd乏	
Apparent power (VA)	S $\Sigma$ (1): apparent power of harmonic order 1	S $\Sigma$ : total apparent power ${ }^{1}$
Fundamental apparent power (VA)	Sfnd乏	
Reactive power (var)	QE (1): reactive power of harmonic order 1	QE: total reactive power ${ }^{1}$
Fundamental reactive power (var)	Qfnd $\Sigma$	
Power factor	$\lambda \Sigma(1)$ : power factor of harmonic order 1	$\lambda \Sigma$ : total power factor ${ }^{1}$
Fundamental power factor	$\lambda \mathrm{fnd} \mathrm{\Sigma}$	
Phase difference ( ${ }^{\circ}$ )	Фг	

1 The total value is determined according to the equation on page 4 of the appendix from the fundamental wave (1st harmonic) and all harmonic components (2nd harmonic to the upper limit of harmonic analysis). The DC component can also be included.

## Measurement Functions that Indicate Fundamental Voltage and Current Phase Differences between Input Elements

These measurement functions indicate the phase differences between the fundamental voltage $\mathrm{U}(1)$ of the smallest numbered input element in a wiring unit and the fundamental voltages $U(1)$ or currents $\mathrm{I}(1)$ of other input elements. The following table indicates the measurement functions for a wiring unit that combines elements 1,2 , and 3 .

Item	Symbols and Meanings
Phase angle U1-U2 $\left({ }^{\circ}\right)$	$\Phi U 1-\mathrm{U} 2:$ phase angle between U1 (1) and the fundamental voltage of element 2, U2 (1)
Phase angle U1-U3 $\left({ }^{\circ}\right)$	$\Phi U 1-\mathrm{U}$ : phase angle between U1 (1) and the fundamental voltage of element 3, U3 (1)
Phase angle U1-I1 $\left({ }^{\circ}\right)$	$\Phi U 1-I 1:$ phase angle between U1 (1) and the fundamental current of element 1, I1 (1)
Phase angle U2-I2 $\left({ }^{\circ}\right)$	$\Phi U 2-I 2:$ phase angle between U2 (1) and the fundamental current of element 2, I2 (1)
Phase angle U3-I3 $\left({ }^{\circ}\right)$	$\Phi U 3-I 3:$ phase angle between U3 (1) and the fundamental current of element 3, I3 (1)
EAM1U1 to EAM1U7 $\left({ }^{\circ}\right)$,	Phase angles of the fundamental waves of U1 to I7 with the rising edge of the signal received
through the Motor1 (MTR1) Z terminal of the motor evaluation function as the reference.	
EAM1I1 to EAM1I7 $\left({ }^{\circ}\right)$	Phase angles of the fundamental waves of U1 to I7 with the rising edge of the signal received   to EAM3U7 $\left({ }^{\circ}\right)$,   EAM3I1 to EAM3I7 $\left({ }^{\circ}\right)$

## Motor Evaluation Function (Option)

Item	Symbols and Meanings
Motor rotating speed	Speed
Motor torque	Torque
Synchronous speed	SyncSp
Slip (\%)	Slip
Motor output	Pm
Auxiliary input	AUX

## Measurement Range

Item	Symbols and Meanings
Voltage measurement range	RngU
Current measurement range	Rngl
Speed measurement range	RngSpd
Torque measurement range	RngTrq
Aux measurement range	RngAux

### 6.9 Auxiliary I/O

## External Clock Input Section

Item	Specifications
Input connector type	BNC
Input level	TTL
Sync signal input	Normal measurement: Frequency range: Same as the frequency measurement range
	Harmonic measurement: Frequency range: 0.1 Hz to 300 kHz         * Input waveform: $50 \%$ duty ratio rectangular wave
Trigger input	Input logic: Negative logic, falling edge
	Minimum pulse width: $1 \mu \mathrm{~s}$
	Trigger delay: Within $(2 \mu \mathrm{~s}+12 \mu \mathrm{~s}+$ phase correction time $)$

## External Monitor

Item	Specifications
Input connector type	D-sub 15 pin (receptacle)
Output format	Analog RGB output
Output resolution	WXGA output, $1280 \times 800$ dots
	Approx. 60 Hz Vsync $(66 \mathrm{MHz}$ dot clock frequency)

Remote, D/A (Option)

Item	Specifications
Input connector type	Micro ribbon connector (Amphenol 57LE connector), 36-pin
Control signal	Integration
	RESET: $\overline{\text { EXT RESET }}$
	START: EXT START
	STOP: $\overline{\text { EXT STOP }}$
BUSY: $\overline{\text { INTEG BUSY }}$	
	Updating Data
	HOLD: $\overline{\text { EXT HOLD }}$
	SINGLE: $\overline{\text { EXT SINGLE }}$
Input	0 to 5 V
Output	0 to 5 V

### 6.10 Peripheral Device Connection

## USB

Item	Specifications
Connector type	Type A connector (receptacle)
Ports	2
Electrical and mechanical	Complies with USB Rev. 2.0
Supported transfer modes	HS (High Speed) mode (480 Mbps), FS (Full Speed) mode (12 Mbps), LS (Low Speed) mode (1.5 Mbps)
Compatible devices	Mass storage devices that comply with USB Mass Storage Class Ver. 1.1 Usable capacity: 8 TB, partition format: MBR/GPT, format type: FAT32/FAT16/exFAT 104 or 109 keyboards that comply with USB HID Class Ver. 1.1 Mouse devices that comply with USB HID Class Ver. 1.1
Power supply	$5 \mathrm{~V}, 500 \mathrm{~mA}$ (each port)   You cannot connect devices whose maximum current consumptions exceed 100 mA to two different ports on the instrument at the same time.

### 6.11 Computer Interface

## GP-IB Interface

Item	Specifications
Input connector type	24-pin connector
Electrical and mechanical	Complies with IEEE St'd 488-1978 (JIS C 1901-1987)
Functional specifications	SH1, AH1, T6, L4, SR1, RL1, PP0, DC1, DT1, and C0
Protocol	Conforms to IEEE St'd 488.2-1992
Code	ISO (ASCII) code
Mode	Addressable mode
Address	0 to 30
Clear remote mode	Press UTILITY (LOCAL) to clear remote mode (except during Local Lockout).

## Ethernet interface

Item	Specifications
Connector type	RJ-45 connector
Ports	1
Electrical and mechanical	IEEE802.3 compliant, Auto-MDIX
Transmission system	Ethernet1000Base-T/100BASE-TX/10BASE-T
Communication protocol	TCP/IP
Supported services	FTP server, DHCP, DNS, remote control (VXI-11, Socket), SNTP, FTP client, Modbus/TCP server,   and web server

## USB PC Interface

Item	Specifications
Connector type	Type B connector (receptacle)
Ports	1

### 6.12 System Maintenance Processing

## Alarm Generation and Operation

Item	Specifications
Fan stop	Fan stop alarm indication
	Emergency operation stop after about 60 seconds*
Internal temperature error	Temperature error alarm indication
	Emergency operation stop

* Emergency operation stop

Stops the power supply for running the instrument
Stops the power supply to elements, motor (/MTR1/MTR2), and D/A output (/DA20)
Generates intermittent beeps, MENU key in the SETUP area blinks in red
Continues the fan operation

### 6.13 General Specifications

Item	Specifications
Warm-up time	Approx. 30 minutes
Operating environment	Temperature $5^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$
	Humidity $20 \%$ RH to $80 \%$ RH (no condensation)
	Operating altitude $\quad 2000 \mathrm{~m}$ or less
	Installation location Indoor use
Storage environment	Temperature $\quad-25^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$ (no condensation)
	Humidity $\quad 20 \%$ RH to $80 \%$ RH (no condensation)
Rated supply voltage	100 VAC to 120 VAC, 220 VAC to 240 VAC
Permitted supply voltage range 90 VAC to 132 VAC, 198 VAC to 264 VAC	
Rated supply frequency	$50 \mathrm{~Hz} / 60 \mathrm{~Hz}$
Permitted supply frequency 48 Hz to 63 Hz range	
Maximum power consump	560 VA
Cooling method	Forced air cooling, air vents on the left, right, and top panels
Installation orientation	Horizontal, tilted (using the stand)
External dimensions	$177 \mathrm{~mm}(\mathrm{H}) \times 426 \mathrm{~mm}(\mathrm{~W}) \times 496 \mathrm{~mm}(\mathrm{D})$   (excluding the handles and protrusions)
Weight	Approx. 12.5 kg (main unit only with /M1/MTR1/DA20 installed)
Battery backup	Setup parameters and the internal clock are backed up with a lithium battery.
Safety standards ${ }^{1}$	Compliant standards EN 61010-1, EN 61010-2-030, EN 61010-031, EN 60825-1   Overvoltage category $\mathrm{II}^{2}$   Measurement category CAT $I^{3}$   Pollution degree $2^{4}$
Emissions ${ }^{1}$	Compliant standards   EN 61326-1 ClassA, EN 61326-2-1, EN 61000-3-2, EN 61000-3-3   EMC Regulatory Arrangement in Australia and New Zealand EN 55011 Class A, Group 1   Korea Electromagnetic Conformity Standard ( 한국 전자파적합성기준 )   This product is a Class A (for industrial environment) product. Operation of this product in a residential area may cause radio interference in which case the user will be required to correct the interference. In addition, when a measurement lead or probe is connected to an input element or when the device under measurement is connected to the instrument, the emission requirements may no longer be met. In such cases, the user will be required to take appropriate measures.   Cable conditions   - Current sensor connection terminals (760903)   Use a dedicated cable (761956).   - EXT CLK, MEAS. START input terminals Use BNC cables. ${ }^{5}$   - Motor evaluation function terminals, AUX input terminals Use safety BNC cables. ${ }^{5}$   - GP-IB interface connector   Use a shielded GP-IB cable. ${ }^{5}$   - RGB output connector   Use a shielded D-sub 15 pin cable. ${ }^{5}$   - USB port (PC)   Use a shielded USB cable. ${ }^{5}$   - USB port (for peripheral devices)   Use a shielded USB cable. ${ }^{5}$   - Ethernet connector   Use a category 5 or better Ethernet cable (STP). ${ }^{6}$


Item	Specifications
Immunity1	Compliant standards
	EN 61326-1 Table 2 (for use in industrial locations)
	EN 61326-2-1
	When a measurement lead or probe is connected to an input element or when the device under measurement is connected to the instrument, the immunity requirements may no longer be met. In such cases, the user will be required to take appropriate measures.
	Influence in the immunity environment
	Measurement input: within $\pm 20 \%$ of range
	(When the crest factor is set to 6 , within $\pm 40 \%$ of range.)
	External current sensor input (760901, 760902): within $\pm 300 \mathrm{mV}$
	Current probe input (760903): within $\pm 300 \mathrm{mV}$
	D/A output: within $\pm 20 \%$ of FS; FS $=5 \mathrm{~V}$
	Cable conditions
	Same as the cable conditions for emission above.
	- Current probe input terminal (760903)
	$50 \Omega$ termination 700976
Environmental standards ${ }^{1}$	EU RoHS Directive compliant

1 Applies to products with CE marks. For information on other products, contact your nearest YOKOGAWA dealer.
2 The overvoltage category is a value used to define the transient overvoltage condition and includes the rated impulse withstand voltage. Overvoltage category II applies to electrical equipment that is powered through a fixed installation, such as a wall outlet wired to a distribution board.
3 This instrument is a measurement category II product. Do not use it for measurement category III or IV measurements. Measurement category O applies to measurement of other types of circuits that are not directly connected to a main power source.
Measurement Category II applies to electrical equipment that is powered through a fixed installation, such as a wall outlet wired to a distribution board, and to measurement performed on such wiring.
Measurement category III applies to measurement of facility circuits, such as distribution boards and circuit breakers. Measurement category IV applies to measurement of power source circuits, such as entrance cables to buildings and cable systems, for low-voltage installations.
4 Pollution Degree applies to the degree of adhesion of a solid, liquid, or gas that deteriorates withstand voltage or surface resistivity. Pollution Degree 2 applies to normal indoor atmospheres (with only non-conductive pollution).
5 Use cables of length 3 m or less.
6 Use cables of length 30 m or less.

### 6.14 External Dimensions



Unless otherwise specified, tolerances are $\pm 3 \%$ (however, tolerances are $\pm 0.3 \mathrm{~mm}$ when below 10 mm ).

### 6.15 760901 30A High Accuracy Element Specifications

Item	Specifications
Input terminal type	Voltage   Plug-in terminal (safety terminal)   Current   Direct input: Plug-in terminal (safety terminal)   External current sensor input: isolated BNC
Input type	Voltage   Floating input through resistive voltage divider Current   Floating input through shunt
Measurement range	```Voltage 1.5 V/3 V/6 V/10 V/15 V/30 V/60 V/100 V/150 V/300 V/600 V/1000 V (crest factor CF3) 0.75 V/1.5 V/3 V/5 V/7.5 V/15 V/30 V/50 V/75 V/150 V/300 V/500 V (crest factor CF6/CF6A) Current Direct input 500 mA, 1 A, 2 A, 5 A, 10 A, 20 A, 30 A (crest factor CF3) 250 mA, 500 mA, 1 A, 2.5 A, 5 A, 10 A, 15 A (crest factor CF6/CF6A) External current sensor input 50 mV, 100 mV, 200 mV, 500 mV, 1 V, 2 V, 5 V, 10 V (crest factor CF3) 25 mV, 50 mV, 100 mV, 250 mV, 500 mV, 1 V, 2.5 V, 5 V (crest factor CF6/CF6A)```
Input impedance	Voltage   Input resistance: $10 \mathrm{M} \Omega \pm 1 \%$, input capacitance: approx. 15 pF   Current   Direct input: $6.5 \mathrm{~m} \Omega \pm 10 \%+$ approx. $0.3 \mu \mathrm{H}$   External current sensor input: input resistance: $1 \mathrm{M} \Omega \pm 1 \%$, input capacitance: approx. 50 pF
Instantaneous maximum allowable input (within 1 s)	Voltage   Peak value of 2.5 kV or RMS value of 1.5 kV , whichever is less Current   Direct input   Peak value of 150 A or rms value of 50 A , whichever is less.   External current sensor input   Peak value 10 times the range or 25 V , whichever is less
Continuous maximum allowable input	Voltage   Peak value of 1.6 kV or RMS value of 1.5 kV , whichever is less   If the frequency of the input voltage exceeds 100 kHz ,   (1200 - f) Vrms or less. $f$ is the frequency of the input voltage in units of kHz .   Current   Direct input   Peak value of 90 A or rms value of 33 A , whichever is less.   External current sensor input   Peak value 5 times the range or 25 V , whichever is less
Maximum rated voltage to earth (DC to $50 / 60 \mathrm{~Hz}$ )	Voltage input terminal $1000 \text { V CAT II }$   Current input terminal $1000 \text { V CAT II }$   External current sensor input connector 1000 V CAT II


Item	Specifications
Influence of voltage to earth	When 1000 Vrms is applied between the input terminal and the WT5000 case with the voltage input terminals shorted, current input terminals open and external current sensor input terminals shorted. $50 / 60 \mathrm{~Hz}: \pm 0.01 \%$ of range or less.   Reference value for up to 200 kHz   Voltage: $\pm\{($ maximum rated range $) /($ rated range $) \times 0.001 \times f \%$ of range $\}$ or less   Current:   Direct input: $\pm\{($ maximum rated range $) /($ rated range $) \times 0.001 \times f \%$ of range $\}$ or less   External current sensor input: $\pm\{($ maximum rated range $) /($ rated range $) \times 0.001 \times f \%$ of range $\}$ or less   However, $0.01 \%$ or greater. The unit of $f$ is kHz .   The maximum range rating in the equation is for a voltage of 1000 V , direct current input of 30 A , and external current sensor input of 10 V .
A/D converter	Simultaneous conversion of voltage and current inputs.   Resolution: 18 bits   Sample rate: $10 \mathrm{MS} / \mathrm{s}$ max.
Measurement frequency bandwidth	DC, 0.1 Hz to 2 MHz
Lower limit of measuremen frequency	Sync source period average method Data update interval   Digital filter average method
Maximum display	$140 \%$ of the rated voltage or current range ( $160 \%$ for the 1000 V range) $280 \%$ of the voltage and current range rating for CF6A (except $320 \%$ for the 500 V range)
Minimum display	Depending on the measurement range, the following are the minimum values that are displayed:   - Urms, Uac, Irms, and Iac: $0.3 \%$ ( $0.6 \%$ when the crest factor is set to 6)   - Umn, Urmn, Imn, and Irmn: 2\% (4\% when the crest factor is set to 6)   When input level is lower than above, the display shows zero if rounding to zero setting is ON, otherwise measured value will be shown. Current integration value $q$ also depends on the current value.

Accuracy

Item	Specifications
Accuracy (6 months)	Condition
	Temperature: $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$
	Input waveform: Sine wave
	$\lambda$ (power factor): 1
	Voltage to ground: 0 V
	Crest factor: CF3
	Line filter: OFF
	Sync source period average method
	Frequency filter: Used for signal frequencies at 1 kHz or less
	Sync source signal level: Same as the frequency measurement conditions
	Input range: DC $0 \%$ to $\pm 110 \%$ of range, AC $1 \%$ to $110 \%$ of range
Defined using rms values for AC	
	After the warm-up time has elapsed.
	Wired condition after zero-level compensation or measurement range change.
	The unit of f in the accuracy equations is kHz .


Item	Specifications	
	Voltage	
	DC	$\pm(0.02 \%$ of reading $+0.05 \%$ of range)
	$0.1 \mathrm{~Hz} \leq \mathrm{f}<10 \mathrm{~Hz}$	$\pm(0.03 \%$ of reading $+0.05 \%$ of range)
	$10 \mathrm{~Hz} \leq \mathrm{f}<45 \mathrm{~Hz}$	$\pm(0.03 \%$ of reading $+0.05 \%$ of range)
	$45 \mathrm{~Hz} \leq \mathrm{f} \leq 66 \mathrm{~Hz}$	$\pm(0.01 \%$ of reading $+0.02 \%$ of range)
	$66 \mathrm{~Hz}<\mathrm{f} \leq 1 \mathrm{kHz}$	$\pm(0.03 \%$ of reading $+0.04 \%$ of range)
	$1 \mathrm{kHz}<\mathrm{f} \leq 10 \mathrm{kHz}$	$\pm(0.1 \%$ of reading $+0.05 \%$ of range)
		Add $0.015 \times \mathrm{f} \%$ of reading ( 10 V range or less).
	$10 \mathrm{kHz}<\mathrm{f} \leq 50 \mathrm{kHz}$	$\pm(0.3 \%$ of reading $+0.1 \%$ of range)
	$50 \mathrm{kHz}<\mathrm{f} \leq 100 \mathrm{kHz}$	$\pm(0.6 \%$ of reading $+0.2 \%$ of range)
	$100 \mathrm{kHz}<\mathrm{f} \leq 500 \mathrm{kHz}$	$\pm\{(0.006 \times \mathrm{f}) \%$ of reading $+0.5 \%$ of range $\}$
	$500 \mathrm{kHz}<\mathrm{f} \leq 1 \mathrm{MHz}$	$\pm\{(0.022 \times f-8) \%$ of reading $+1 \%$ of range $\}$
	Frequency bandwith	DC to 10 MHz (typical)
	Current	
	DC	$\pm(0.02 \%$ of reading $+0.05 \%$ of range)
	$0.1 \mathrm{~Hz} \leq \mathrm{f}<10 \mathrm{~Hz}$	$\pm(0.03 \%$ of reading $+0.05 \%$ of range)
	$10 \mathrm{~Hz} \leq \mathrm{f}<45 \mathrm{~Hz}$	$\pm(0.03 \%$ of reading $+0.05 \%$ of range)
	$45 \mathrm{~Hz} \leq \mathrm{f} \leq 66 \mathrm{~Hz}$	$\pm(0.01 \%$ of reading $+0.02 \%$ of range)
	$66 \mathrm{~Hz}<\mathrm{f} \leq 1 \mathrm{kHz}$	$\pm(0.03 \%$ of reading $+0.04 \%$ of range)
	$1 \mathrm{kHz}<\mathrm{f} \leq 10 \mathrm{kHz}$	$\pm(0.1 \%$ of reading $+0.05 \%$ of range)
	$10 \mathrm{kHz}<\mathrm{f} \leq 50 \mathrm{kHz}$	$\pm(0.3 \%$ of reading $+0.1 \%$ of range)
	$50 \mathrm{kHz}<\mathrm{f} \leq 100 \mathrm{kHz}$	$\pm(0.6 \%$ of reading $+0.2 \%$ of range)
	$100 \mathrm{kHz}<\mathrm{f} \leq 200 \mathrm{kHz}$	$\pm\{(0.00725 \times f-0.125) \%$ of reading $+0.5 \%$ of range $\}$
	$200 \mathrm{kHz}<\mathrm{f} \leq 500 \mathrm{kHz}$	$\pm\{(0.00725 \times f-0.125) \%$ of reading $+0.5 \%$ of range $\}$
	$500 \mathrm{kHz}<\mathrm{f} \leq 1 \mathrm{MHz}$	$\pm\{(0.022 \times f-8) \%$ of reading $+1 \%$ of range $\}$
	Frequency bandwidth	Direct input: DC to 5 MHz (typical)
		External current sensor input: DC to 5 MHz (typical)
	Active power (power factor 1)	
	DC	$\pm(0.02 \%$ of reading $+0.05 \%$ of range)
	$0.1 \mathrm{~Hz} \leq \mathrm{f}<10 \mathrm{~Hz}$	$\pm(0.08 \%$ of reading $+0.1 \%$ of range)
	$10 \mathrm{~Hz} \leq \mathrm{f}<30 \mathrm{~Hz}$	$\pm(0.08 \%$ of reading $+0.1 \%$ of range)
	$30 \mathrm{~Hz} \leq \mathrm{f}<45 \mathrm{~Hz}$	$\pm(0.05 \%$ of reading $+0.05 \%$ of range)
	$45 \mathrm{~Hz} \leq \mathrm{f} \leq 66 \mathrm{~Hz}$	$\pm(0.01 \%$ of reading $+0.02 \%$ of range)
	$66 \mathrm{~Hz}<\mathrm{f} \leq 1 \mathrm{kHz}$	$\pm(0.05 \%$ of reading $+0.05 \%$ of range)
	$1 \mathrm{kHz}<\mathrm{f} \leq 10 \mathrm{kHz}$	$\pm(0.15 \%$ of reading $+0.1 \%$ of range)
		Add $0.01 \times \mathrm{f} \%$ of reading ( 10 V range or less).
	$10 \mathrm{kHz}<\mathrm{f} \leq 50 \mathrm{kHz}$	$\pm(0.3 \%$ of reading $+0.2 \%$ of range)
	$50 \mathrm{kHz}<\mathrm{f} \leq 100 \mathrm{kHz}$	$\pm(0.7 \%$ of reading $+0.3 \%$ of range)
	$100 \mathrm{kHz}<\mathrm{f} \leq 200 \mathrm{kHz}$	$\pm\{(0.008 \times \mathrm{f}) \%$ of reading $+1 \%$ of range $\}$
	$200 \mathrm{kHz}<\mathrm{f} \leq 500 \mathrm{kHz}$	$\pm\{(0.008 \times \mathrm{f}) \%$ of reading $+1 \%$ of range $\}$
	$500 \mathrm{kHz}<\mathrm{f} \leq 1 \mathrm{MHz}$	$\pm\{(0.048 \times f-20) \%$ of reading $+1 \%$ of range $\}$

[^3]- For the direct current input range, add the following values to the accuracies listed above:

DC current accuracy: 0.1 mA
DC power accuracy: ( $0.1 \mathrm{~mA} /$ rated value of the direct current input range) $\times 100 \%$ of range

- For the accuracies of waveform data functions Upk and Ipk:

Add the following values (reference values) to the accuracies listed above.
The effective input range is within $\pm 300 \%( \pm 600 \%$ when the crest factor is set to CF6 or CF6A) of the range.
Voltage input: $\{\sqrt{ }(1.5 /$ range $)+0.5\} \%$ of range
Direct current input range
$\{\sqrt{ }(1 /$ range $)+0.5\} \%$ of range +10 mA
External current sensor input range
$\{V(0.01 /$ range $)+0.5\} \%$ of range ( 50 mV to 200 mV range)
$\{\downarrow(0.1 /$ range $)+0.5\} \%$ of range ( 500 mV to 10 V range)

- Influence of temperature changes after zero-level compensation or range change

Add the following values to the accuracies listed above.

- DC voltage accuracy: $\pm 0.02 \%$ of range $/^{\circ} \mathrm{C}(1.5 \mathrm{~V}$ to 10 V range $)$
$\pm 0.005 \%$ of range $/{ }^{\circ} \mathrm{C}(15 \mathrm{~V}$ to 1000 V range $)$
- Direct current input DC accuracy: $\pm 0.1 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$
- External current sensor input DC accuracy: $\pm 50 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ ( 50 mV to 200 mV range)

$$
\pm 200 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \text { ( } 0.5 \mathrm{~V} \text { to } 10 \mathrm{~V} \text { range) }
$$

For the DC power accuracy, add the voltage influence $\times I$ and the current influence $\times U$.
U is the voltage reading $(\mathrm{V})$.
$I$ is the current reading (A).

- Influence of self-generated heat caused by current input

Add the following values to the current accuracy:
For the power accuracy, add the voltage and the current influence.

- AC input signal Current, active power, apparent power: $0.00002 \times 1^{2} \%$ of reading
- DC input signal

Current: $0.00002 \times 1^{2} \%$ of reading $+3 \times 1^{2} \mu \mathrm{~A}$
Power: $0.00002 \times 1^{2} \%$ of reading $+3 \times I^{2} \mu \mathrm{~A} \times U$
U is the voltage reading $(\mathrm{V})$.
$I$ is the current reading (A).
Even if the current input decreases, the influence from self-generated heat continues until the temperature of the shunt resistor decreases.

- Guaranteed accuracy ranges for frequency, voltage, and current

All accuracy figures for 0.1 Hz to 10 Hz are reference values.
The voltage and power accuracy figures for 30 kHz to 100 kHz when the voltage exceeds 750 V are reference values.
The current and power accuracy figures for DC, 10 Hz to 45 Hz , and 400 Hz to 100 kHz when the current exceeds 20 A are reference values.

- Influence of data update interval

Add the following value for signal sync period average
$10 \mathrm{~ms}: 0.03 \%$ of reading
$50 \mathrm{~ms}: 0.03 \%$ of reading
$100 \mathrm{~ms}: 0.02 \%$ of reading

- Accuracy when the crest factor is set to CF6 or CF6A:

The same as the accuracy when the crest factor is CF3 after doubling the range.


Item	Specifications	
Frequency measurement	Frequency measurement range	
	Data update interval	Measurement range
	10 ms	$200 \mathrm{~Hz} \leq \mathrm{f} \leq 2 \mathrm{MHz}$
	50 ms	$45 \mathrm{~Hz} \leq \mathrm{f} \leq 2 \mathrm{MHz}$
	100 ms	$20 \mathrm{~Hz} \leq \mathrm{f} \leq 2 \mathrm{MHz}$
	200 ms	$10 \mathrm{~Hz} \leq \mathrm{f} \leq 2 \mathrm{MHz}$
	500 ms	$5 \mathrm{~Hz} \leq \mathrm{f} \leq 2 \mathrm{MHz}$
	1 s	$2 \mathrm{~Hz} \leq \mathrm{f} \leq 2 \mathrm{MHz}$
	2 s	$1 \mathrm{~Hz} \leq \mathrm{f} \leq 2 \mathrm{MHz}$
	5 s	$0.5 \mathrm{~Hz} \leq \mathrm{f} \leq 2 \mathrm{MHz}$
	10 s	$0.2 \mathrm{~Hz} \leq \mathrm{f} \leq 2 \mathrm{MHz}$
	20 s	$0.1 \mathrm{~Hz} \leq \mathrm{f} \leq 2 \mathrm{MHz}$
	Accuracy: $\pm 0.06 \%$ of reading $\pm 0.1 \mathrm{mHz}$	
	Conditions:	
	Input signal level:	
	Crest factor CF3: At least 30\% of the measurement range	
	Crest factor CF6/CF6A: At least 60\% of the measurement range	
	However, at least $50 \%$ of the range if the signal is less than or equal to twice the lower measurement frequency	
	Frequency filter	
	$0.1 \mathrm{~Hz} \leq \mathrm{f}<100 \mathrm{~Hz}: 100 \mathrm{~Hz}$	
	$100 \mathrm{~Hz} \leq \mathrm{f}<1 \mathrm{kHz}: 1 \mathrm{kHz}$	
	$1 \mathrm{kHz} \leq \mathrm{f}<100 \mathrm{kHz}: 100 \mathrm{kHz}$	


Item	Specifications	
Harmonic measurement	PLL source input level	
	$50 \%$ or more of the rated measurement range when the crest factor is CF3.	
	$100 \%$ or more of the rated measurement range when the crest factor is CF6 or CF6A.	
	Accuracy	
	Add the following accuracy values to the normal measurement accuracy values.	
	- When line filters are turned off	
	Frequency	Voltage, current
	$0.1 \mathrm{~Hz} \leq \mathrm{f}<10 \mathrm{~Hz}$	$\pm(0.01 \%$ of reading $+0.03 \%$ of range)
	$10 \mathrm{~Hz} \leq \mathrm{f}<45 \mathrm{~Hz}$	$\pm(0.01 \%$ of reading $+0.03 \%$ of range)
	$45 \mathrm{~Hz} \leq \mathrm{f} \leq 66 \mathrm{~Hz}$	$\pm(0.01 \%$ of reading $+0.03 \%$ of range)
	$66 \mathrm{~Hz}<\mathrm{f} \leq 440 \mathrm{~Hz}$	$\pm(0.01 \%$ of reading $+0.03 \%$ of range)
	$440 \mathrm{~Hz}<\mathrm{f} \leq 1 \mathrm{kHz}$	$\pm(0.01 \%$ of reading $+0.03 \%$ of range)
	$1 \mathrm{kHz}<\mathrm{f} \leq 10 \mathrm{kHz}$	$\pm(0.01 \%$ of reading $+0.03 \%$ of range)
	$10 \mathrm{kHz}<\mathrm{f} \leq 50 \mathrm{kHz}$	$\pm(0.05 \%$ of reading $+0.1 \%$ of range)
	$50 \mathrm{kHz}<\mathrm{f} \leq 100 \mathrm{kHz}$	$\pm(0.1 \%$ of reading $+0.2 \%$ of range)
	$100 \mathrm{kHz}<\mathrm{f} \leq 500 \mathrm{kHz}$	$\pm(0.1 \%$ of reading $+0.5 \%$ of range)
	$500 \mathrm{kHz}<\mathrm{f} \leq 1.5 \mathrm{MHz}$	$\pm(0.5 \%$ of reading $+2 \%$ of range)
	Frequency	Power
	$0.1 \mathrm{~Hz} \leq \mathrm{f}<10 \mathrm{~Hz}$	$\pm(0.02 \%$ of reading $+0.06 \%$ of range)
	$10 \mathrm{~Hz} \leq \mathrm{f}<45 \mathrm{~Hz}$	$\pm(0.02 \%$ of reading $+0.06 \%$ of range)
	$45 \mathrm{~Hz} \leq \mathrm{f} \leq 66 \mathrm{~Hz}$	$\pm(0.02 \%$ of reading $+0.06 \%$ of range)
	$66 \mathrm{~Hz}<\mathrm{f} \leq 440 \mathrm{~Hz}$	$\pm(0.02 \%$ of reading $+0.06 \%$ of range)
	$440 \mathrm{~Hz}<\mathrm{f} \leq 1 \mathrm{kHz}$	$\pm(0.02 \%$ of reading $+0.06 \%$ of range)
	$1 \mathrm{kHz}<\mathrm{f} \leq 10 \mathrm{kHz}$	$\pm(0.02 \%$ of reading $+0.06 \%$ of range)
	$10 \mathrm{kHz}<\mathrm{f} \leq 50 \mathrm{kHz}$	$\pm(0.1 \%$ of reading $+0.2 \%$ of range)
	$50 \mathrm{kHz}<\mathrm{f} \leq 100 \mathrm{kHz}$	$\pm(0.2 \%$ of reading $+0.4 \%$ of range)
	$100 \mathrm{kHz}<\mathrm{f} \leq 500 \mathrm{kHz}$	$\pm(0.2 \%$ of reading $+1 \%$ of range)
	$500 \mathrm{kHz}<\mathrm{f} \leq 1.5 \mathrm{MHz}$	$\pm(1 \%$ of reading $+4 \%$ of range)

- When line filters are turned on

Add the line filter influence to the accuracy values when the line filters are turned off.

- When the crest factor is set to CF3
- When $\lambda$ (the power factor) is 1
- Power figures that exceed 10 kHz are reference values.
- For the voltage range, add 25 mV to the voltage accuracy and ( $25 \mathrm{mV} /$ current range rating $) \times$ $100 \%$ of range to the power accuracy.
- For the direct current input range, add 20 mA to the current accuracy and ( $20 \mathrm{~mA} /$ current range rating) $\times 100 \%$ of range to the power accuracy.
- For the external current sensor range, add 2 mV to the current accuracy and ( $2 \mathrm{mV} / \mathrm{rated}$ value of the external current sensor range) $\times 100 \%$ of range to the power accuracy.
- When the number of FFT points is 1024 , add $\pm 0.2 \%$ to the voltage and current range errors and $\pm 0.4 \%$ to the power range error.
- Add ( $n / 500$ )\% of reading to the $\mathrm{n}^{\text {th }}$ component of the voltage and current, and add ( $\mathrm{n} / 250$ ) \% of reading to the $\mathrm{n}^{\text {th }}$ component of the power.
- The accuracy when the crest factor is CF6 or CF6A is the same as the accuracy when the crest factor is CF3 after doubling the measurement range.
- The guaranteed accuracy ranges for frequency, voltage, and current, are the same as the guaranteed ranges for normal measurement.
- The neighboring harmonic orders may be affected by the side lobes from the input harmonic order.

When FFT points is set to 8192
When the frequency of the PLL source is 2 Hz or greater, for $\mathrm{n}^{\text {th }}$ order component input, add $\{[n /(m+1)] / 50\} \%$ of (the $n^{\text {th }}$ order reading) to the $n+m^{\text {th }}$ order and $n-m^{\text {th }}$ order of the voltage and current, and add $\{[\mathrm{n} /(\mathrm{m}+1)] / 25\} \%$ of (the $\mathrm{n}^{\text {th }}$ order reading) to the $\mathrm{n}+\mathrm{m}^{\text {th }}$ order and $\mathrm{n}-$ $\mathrm{m}^{\text {th }}$ order of the power.

When the frequency of the PLL source is less than 2 Hz , for $\mathrm{n}^{\text {th }}$ order component input, add $\{[\mathrm{n} /(\mathrm{m}+1)] / 20\} \%$ of (the $\mathrm{n}^{\text {th }}$ order reading) to the $\mathrm{n}+\mathrm{m}^{\text {th }}$ order and $\mathrm{n}-\mathrm{m}^{\text {th }}$ order of the voltage and current, and add $\{[n /(m+1)] / 10\} \%$ of (the $n^{\text {th }}$ order reading) to the $n+m^{\text {th }}$ order and $n-$ $\mathrm{m}^{\text {th }}$ order of the power.

Item	Specifications
	When FFT points is set to 1024   When the frequency of the PLL source is 75 Hz or greater, for $\mathrm{n}^{\text {th }}$ order component input, add $(\{n /(m+1)\} / 50) \%$ of (the $n^{\text {th }}$ order reading) to the $n+m^{\text {th }}$ order and $n-m^{\text {th }}$ order of the voltage and current, and add $(\{n /(m+1)\} / 25) \%$ of (the $\mathrm{n}^{\text {th }}$ order reading) to the $\mathrm{n}+\mathrm{m}^{\text {th }}$ order and $\mathrm{n}-$ $\mathrm{m}^{\text {th }}$ order of the power.   When the frequency of the PLL source is less than 75 Hz , for $\mathrm{n}^{\text {th }}$ order component input, add ( n / $(m+1)\} / 5) \%$ of (the $\mathrm{n}^{\text {th }}$ order reading) to the $\mathrm{n}+\mathrm{m}^{\text {th }}$ order and $\mathrm{n}-\mathrm{m}^{\text {th }}$ order of the voltage and current, and add $(2\{n /(m+1)\} / 5) \%$ of (the $n^{\text {th }}$ order reading) to the $n+m^{\text {th }}$ order and $n-m^{\text {th }}$ order of the power.
Item	Specifications
IEC Harmonic measurement	PLL source input level   $50 \%$ or more of the rated measurement range when the crest factor is CF3.   $100 \%$ or more of the rated measurement range when the crest factor is CF6 or CF6A.   Accuracy
	Frequency Power   $45 \mathrm{~Hz} \leq \mathrm{f} \leq 66 \mathrm{~Hz}$ $\pm(0.4 \%$ of reading $+0.05 \%$ of range $)$   $66 \mathrm{~Hz}<\mathrm{f} \leq 440 \mathrm{~Hz}$ $\pm(0.4 \%$ of reading $+0.1 \%$ of range $)$   $440 \mathrm{~Hz}<\mathrm{f} \leq 1 \mathrm{kHz}$ $\pm(0.4 \%$ of reading $+0.1 \%$ of range $)$   $1 \mathrm{kHz}<\mathrm{f} \leq 2.5 \mathrm{kHz}$ $\pm(0.6 \%$ of reading $+0.1 \%$ of range $)$   $2.5 \mathrm{kHz}<\mathrm{f} \leq 3.3 \mathrm{kHz}$ $\pm(0.8 \%$ of reading $+0.1 \%$ of range $)$   $3.3 \mathrm{kHz}<\mathrm{f} \leq 10 \mathrm{kHz}$ $\pm(2 \%$ of reading $+0.1 \%$ of range $)$

- When the 30 kHz Butterworth line filter is on
- When the crest factor is set to CF3
-When $\lambda$ (the power factor) is 1
- When group is off
- The neighboring harmonic orders may be affected by the side lobes from the input harmonic order.

For $n^{\text {th }}$ order component input, add $\{[n /(m+1)] / 50\} \%$ of (the $n^{\text {th }}$ order reading) to the $n+m^{\text {th }}$ order and $n-m^{\text {th }}$ order of the voltage and current, and add $\{[n /(m+1)] / 25\} \%$ of (the $n^{\text {th }}$ order reading) to the $n+m^{\text {th }}$ order and $n-m^{\text {th }}$ order of the power.

- The accuracy when the crest factor is CF6 or CF6A is the same as the accuracy when the crest factor is CF3 after doubling the measurement range.
- The guaranteed accuracy ranges for frequency, voltage, and current, are the same as the guaranteed ranges for normal measurement.
- The guaranteed accuracy ranges for frequency, voltage, and current, are the same as the guaranteed ranges for normal measurement.
- Influence of self-generated heat caused by current input is the same as with normal measurement.
- The temperature coefficient is the same as with normal measurement
- Influence of humidity is the same as with normal measurement.
- Accuracy at 1 year is the same as with normal measurement.
- Frequency measurements are reference values.

Item	Specifications
IEC voltage fluctuation and	Accuracy
flicker measurement	dc, dmax: $\pm 4 \%$ (at dmax $=4 \%$ )
	Pst: $\pm 5 \%$ (at Pst $=1$ to 3 ), $\pm 0.05$ (at Pst $=0.2$ to 1 )
	Conditions for the accuracies above
	- Ambient temperature: 23 to $1^{\circ} \mathrm{C}$
	- Line filter: 10 Hz ON
	- Frequency filter: 1 kHz ON
	Frequency measurements are reference values.

## Dimensions

Item	Specifications
Dimensions	Approx. $145 \mathrm{~mm} \mathrm{(H)} \times 42 \mathrm{~mm} \mathrm{(W)} \times 297 \mathrm{~mm}(\mathrm{D})$            Weight   The depth includes the slide cover $(293 \mathrm{~mm}$ if slide cover is excluded).   Connection

For general specifications, see section 6.13.

### 6.16760902 5A High Accuracy Element Specifications

Item	Specifications
Input terminal type	Voltage   Plug-in terminal (safety terminal)   Current   Direct input: Plug-in terminal (safety terminal)   External current sensor input: isolated BNC
Input type	Voltage   Floating input through resistive voltage divider Current   Floating input through shunt
Measurement range	Voltage   1.5 V/3 V/6 V/10 V/15 V/30 V/60 V/100 V/150 V/300 V/600 V/1000 V (crest factor CF3)   0.75 V/1.5 V/3 V/5 V/7.5 V/15 V/30 V/50 V/75 V/150 V/300 V/500 V (crest factor CF6/CF6A)   Current   Direct input   $5 \mathrm{~mA}, 10 \mathrm{~mA}, 20 \mathrm{~mA}, 50 \mathrm{~mA}, 100 \mathrm{~mA}, 200 \mathrm{~mA}, 500 \mathrm{~mA}, 1 \mathrm{~A}, 2 \mathrm{~A}, 5 \mathrm{~A}$ (crest factor CF3)   $2.5 \mathrm{~mA}, 5 \mathrm{~mA}, 10 \mathrm{~mA}, 25 \mathrm{~mA}, 50 \mathrm{~mA}, 100 \mathrm{~mA}, 250 \mathrm{~mA}, 500 \mathrm{~mA}, 1 \mathrm{~A}, 2.5 \mathrm{~A}$ (crest factor CF6/CF6A)   External current sensor input   $50 \mathrm{mV}, 100 \mathrm{mV}, 200 \mathrm{mV}, 500 \mathrm{mV}, 1 \mathrm{~V}, 2 \mathrm{~V}, 5 \mathrm{~V}, 10 \mathrm{~V}$ (crest factor CF3)   $25 \mathrm{mV}, 50 \mathrm{mV}, 100 \mathrm{mV}, 250 \mathrm{mV}, 500 \mathrm{mV}, 1 \mathrm{~V}, 2.5 \mathrm{~V}, 5 \mathrm{~V}$ (crest factor CF6/CF6A)
Input impedance	Voltage   Input resistance: $10 \mathrm{M} \Omega \pm 1 \%$, input capacitance: approx. 15 pF   Current   Direct input:   $0.5 \Omega \pm 10 \%+$ approx. $0.3 \mu \mathrm{H}$ ( 200 mA range or less)   $0.11 \Omega \pm 10 \%+$ approx. $0.3 \mu \mathrm{H}$ ( 500 mA range or more)   External current sensor input: input resistance: $1 \mathrm{M} \Omega \pm 1 \%$, input capacitance: approx. 50 pF
Instantaneous maximum allowable input (within 1 s )	Voltage   Peak value of 2.5 kV or RMS value of 1.5 kV , whichever is less Current   Direct input   Peak value of 30 A or rms value of 15 A , whichever is less.   External current sensor input   Peak value 10 times the range or 25 V , whichever is less
Continuous maximum allowable input	Voltage   Peak value of 1.6 kV or RMS value of 1.5 kV , whichever is less   If the frequency of the input voltage exceeds 100 kHz ,   $(1200-f)$ Vrms or less. $f$ is the frequency of the input voltage in units of kHz .   Current   Direct input   Peak value of 10 A or rms value of 7 A , whichever is less.   External current sensor input   Peak value 5 times the range or 25 V , whichever is less
Maximum rated voltage to earth (DC to $50 / 60 \mathrm{~Hz}$ )	Voltage input terminal $1000 \text { V CAT II }$   Current input terminal $1000 \text { V CAT II }$   External current sensor input connector $1000 \text { V CAT II }$


Item	Specifications
Influence of voltage to earth	When 1000 Vrms is applied between the input terminal and the WT5000 case with the voltage input terminals shorted, current input terminals open and external current sensor input terminals shorted.   $50 / 60 \mathrm{~Hz}: \pm 0.01 \%$ of range or less.   $\pm 0.01 \%$ of range $+0.5 \mu \mathrm{~A}$ or less   Reference value for up to 200 kHz   Voltage: $\pm\{($ maximum rated range $) /($ rated range $) \times 0.001 \times f \%$ of range $\}$ or less   Current:   Direct input: $\pm\{($ maximum rated range $) /($ rated range $) \times 0.001 \times f \%$ of range $\}$ or less   External current sensor input: $\pm\{($ maximum rated range $) /($ rated range $) \times 0.001 \times f \%$ of range $\}$ or less   However, $0.01 \%$ or greater. The unit of $f$ is kHz .   The maximum range rating in the equation is for a voltage of 1000 V , direct current input of 5 A , and external current sensor input of 10 V .
A/D converter	Simultaneous conversion of voltage and current inputs.   Resolution: 18 bits   Sample rate: 10 MS/s max.
Measurement frequency bandwidth	DC, 0.1 Hz to 2 MHz
Lower limit of measurement frequency	Sync source period average method Data update interval
	10 ms , 200 Hz
	50 ms , 45 Hz
	100 ms , 20 Hz
	$200 \mathrm{~ms} \quad 10 \mathrm{~Hz}$
	500 ms , 5 Hz
	1 s 2 2 Hz
	2 s , 1 Hz
	$5 \mathrm{~s} \quad 0.5 \mathrm{~Hz}$
	$10 \mathrm{~s} \quad 0.2 \mathrm{~Hz}$
	$20 \mathrm{~s} \quad 0.1 \mathrm{~Hz}$




Item	Specifications	
	Voltage	
	DC	$\pm(0.02 \%$ of reading $+0.05 \%$ of range)
	$0.1 \mathrm{~Hz} \leq \mathrm{f}<10 \mathrm{~Hz}$	$\pm(0.03 \%$ of reading $+0.05 \%$ of range)
	$10 \mathrm{~Hz} \leq \mathrm{f}<45 \mathrm{~Hz}$	$\pm(0.03 \%$ of reading $+0.05 \%$ of range)
	$45 \mathrm{~Hz} \leq \mathrm{f} \leq 66 \mathrm{~Hz}$	$\pm(0.01 \%$ of reading $+0.02 \%$ of range)
	$66 \mathrm{~Hz}<\mathrm{f} \leq 1 \mathrm{kHz}$	$\pm(0.03 \%$ of reading $+0.04 \%$ of range)
	$1 \mathrm{kHz}<\mathrm{f} \leq 10 \mathrm{kHz}$	$\pm(0.1 \%$ of reading $+0.05 \%$ of range)
		Add $0.015 \times \mathrm{f} \%$ of reading ( 10 V range or less).
	$10 \mathrm{kHz}<\mathrm{f} \leq 50 \mathrm{kHz}$	$\pm(0.3 \%$ of reading $+0.1 \%$ of range)
	$50 \mathrm{kHz}<\mathrm{f} \leq 100 \mathrm{kHz}$	$\pm(0.6 \%$ of reading $+0.2 \%$ of range)
	$100 \mathrm{kHz}<\mathrm{f} \leq 500 \mathrm{kHz}$	$\pm\{(0.006 \times \mathrm{f}) \%$ of reading $+0.5 \%$ of range $\}$
	$500 \mathrm{kHz}<\mathrm{f} \leq 1 \mathrm{MHz}$	$\pm\{(0.022 \times \mathrm{f}-8) \%$ of reading $+1 \%$ of range $\}$
	Frequency bandwith	DC to 10 MHz (typical)
	Current	
	DC	$\pm(0.02 \%$ of reading $+0.05 \%$ of range)
	$0.1 \mathrm{~Hz} \leq \mathrm{f}<10 \mathrm{~Hz}$	$\pm(0.03 \%$ of reading $+0.05 \%$ of range)
	$10 \mathrm{~Hz} \leq \mathrm{f}<45 \mathrm{~Hz}$	$\pm(0.03 \%$ of reading $+0.05 \%$ of range)
	$45 \mathrm{~Hz} \leq \mathrm{f} \leq 66 \mathrm{~Hz}$	$\pm(0.01 \%$ of reading $+0.02 \%$ of range $)$
		$\pm 0.5 \mu \mathrm{~A}^{*}$
		* Direct input only
	$66 \mathrm{~Hz}<\mathrm{f} \leq 1 \mathrm{kHz}$	$\pm(0.03 \%$ of reading $+0.04 \%$ of range)
	$1 \mathrm{kHz}<\mathrm{f} \leq 10 \mathrm{kHz}$	$\pm(0.1 \%$ of reading $+0.05 \%$ of range)
	$10 \mathrm{kHz}<\mathrm{f} \leq 50 \mathrm{kHz}$	$\pm(0.3 \%$ of reading $+0.1 \%$ of range)
	$50 \mathrm{kHz}<\mathrm{f} \leq 100 \mathrm{kHz}$	$\pm(0.6 \%$ of reading $+0.2 \%$ of range)
	$100 \mathrm{kHz}<\mathrm{f} \leq 200 \mathrm{kHz}$	$\pm\{(0.00725 \times f-0.125) \%$ of reading $+0.5 \%$ of range $\}$
	$200 \mathrm{kHz}<\mathrm{f} \leq 500 \mathrm{kHz}$	$\pm\{(0.00725 \times \mathrm{f}-0.125) \%$ of reading $+0.5 \%$ of range $\}$
	$500 \mathrm{kHz}<\mathrm{f} \leq 1 \mathrm{MHz}$	$\pm\{(0.022 \times f-8) \%$ of reading $+1 \%$ of range $\}$
	Frequency bandwidth	Direct input: DC to 5 MHz (typical)
		External current sensor input: DC to 5 MHz (typical)
	Active power (power factor 1)	
	DC	$\pm(0.02 \%$ of reading $+0.05 \%$ of range)
	$0.1 \mathrm{~Hz} \leq \mathrm{f}<10 \mathrm{~Hz}$	$\pm(0.08 \%$ of reading $+0.1 \%$ of range)
	$10 \mathrm{~Hz} \leq \mathrm{f}<30 \mathrm{~Hz}$	$\pm(0.08 \%$ of reading $+0.1 \%$ of range)
	$30 \mathrm{~Hz} \leq \mathrm{f}<45 \mathrm{~Hz}$	$\pm(0.05 \%$ of reading $+0.05 \%$ of range)
	$45 \mathrm{~Hz} \leq \mathrm{f} \leq 66 \mathrm{~Hz}$	$\pm(0.01 \%$ of reading $+0.02 \%$ of range)
	$66 \mathrm{~Hz}<\mathrm{f} \leq 1 \mathrm{kHz}$	$\pm(0.05 \%$ of reading $+0.05 \%$ of range)
	$1 \mathrm{kHz}<\mathrm{f} \leq 10 \mathrm{kHz}$	$\pm(0.15 \%$ of reading $+0.1 \%$ of range)
		Add $0.01 \times \mathrm{f} \%$ of reading (10 V range or less).
	$10 \mathrm{kHz}<\mathrm{f} \leq 50 \mathrm{kHz}$	$\pm(0.3 \%$ of reading $+0.2 \%$ of range)
	$50 \mathrm{kHz}<\mathrm{f} \leq 100 \mathrm{kHz}$	$\pm(0.7 \%$ of reading $+0.3 \%$ of range)
	$100 \mathrm{kHz}<\mathrm{f} \leq 200 \mathrm{kHz}$	$\pm\{(0.008 \times \mathrm{f}) \%$ of reading $+1 \%$ of range $\}$
	$200 \mathrm{kHz}<\mathrm{f} \leq 500 \mathrm{kHz}$	$\pm\{(0.008 \times \mathrm{f}) \%$ of reading $+1 \%$ of range $\}$
	$500 \mathrm{kHz}<\mathrm{f} \leq 1 \mathrm{MHz}$	$\pm\{(0.048 \times f-20) \%$ of reading $+1 \%$ of range $\}$

[^4]- For the direct current input range, add the following values to the accuracies listed above:

DC current accuracy: $1 \mu \mathrm{~A}$
DC power accuracy: ( $1 \mu \mathrm{~A} /$ rated value of the direct input range $) \times 100 \%$ of range

- For the accuracies of waveform data functions Upk and Ipk:

Add the following values (reference values) to the accuracies listed above.
The effective input range is within $\pm 300 \%$ ( $\pm 600 \%$ when the crest factor is set to CF6 or CF6A) of the range.
Voltage input: $\{\sqrt{ }(1.5 /$ range $)+0.5\} \%$ of range
Direct current input range
$\{V(0.01 /$ range $)+0.5\} \%$ of range $+100 \mu \mathrm{~A}(200 \mathrm{~mA}$ range or less $)$
$\{\sqrt{ }(0.1 /$ range $)+0.5\} \%$ of range $+100 \mu \mathrm{~A}(500 \mathrm{~mA}$ range or more
External current sensor input range
$\{V(0.01 /$ range $)+0.5\} \%$ of range ( 50 mV to 200 mV range)
$\{\downarrow(0.1 /$ range $)+0.5\} \%$ of range ( 500 mV to 10 V range)

- Influence of temperature changes after zero-level compensation or range change Add the following values to the accuracies listed above.
- DC voltage accuracy: $\pm 0.02 \%$ of range $/{ }^{\circ} \mathrm{C}(1.5 \mathrm{~V}$ to 10 V range $)$
$\pm 0.005 \%$ of range $/{ }^{\circ} \mathrm{C}(15 \mathrm{~V}$ to 1000 V range $)$
- Direct current input DC accuracy: $\pm 1 \mu \mathrm{~A} /{ }^{\circ} \mathrm{C}$
- External current sensor input DC accuracy: $\pm 50 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ ( 50 mV to 200 mV range)

$$
\pm 200 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}(0.5 \mathrm{~V} \text { to } 10 \mathrm{~V} \text { range })
$$

For the DC power accuracy, add the voltage influence $\times I$ and the current influence $\times U$.
U is the voltage reading $(\mathrm{V})$.
$I$ is the current reading (A).

- Influence of self-generated heat caused by current input

Add the following values to the current accuracy:
For the power accuracy, add the voltage and the current influence.

- AC input signal

Current, active power, apparent power: $0.004 \times 1^{2 \%}$ of reading

- DC input signal

Current: $0.004 \times 1^{2} \%$ of reading $+6 \times 1^{2} \mu \mathrm{~A}$
Power: $0.004 \times I^{2} \%$ of reading $+6 \times I^{2} \mu \mathrm{~A} \times \mathrm{U}$
$U$ is the voltage reading $(\mathrm{V})$.
$I$ is the current reading (A).
Even if the current input decreases, the influence from self-generated heat continues until the temperature of the shunt resistor decreases.

- Guaranteed accuracy ranges for frequency, voltage, and current

All accuracy figures for 0.1 Hz to 10 Hz are reference values.
The voltage and power accuracy figures for 30 kHz to 100 kHz when the voltage exceeds 750 V are reference values.

- Influence of data update interval

Add the following value for signal sync period average
$10 \mathrm{~ms}: 0.03 \%$ of reading
$50 \mathrm{~ms}: 0.03 \%$ of reading
$100 \mathrm{~ms}: 0.02 \%$ of reading

- Accuracy when the crest factor is set to CF6 or CF6A:

The same as the accuracy when the crest factor is CF3 after doubling the range.
$\left.\begin{array}{ll} & \text { Specifications } \\ \hline \text { Item } & \text { When } \lambda=0 \\ & \text { Apparent power reading } \times 0.02 \% \text { in the range of } 45 \mathrm{~Hz} \text { to } 66 \mathrm{~Hz} . \\ & \text { For other frequency ranges, see below. However, note that these figures are reference }(\lambda) \text { influence } \\ & \text { values. } \\ & \text { Apparent power reading } \times(0.02+0.05 \times f) \% \\ & \\ & \text { When } 0<\lambda<1 \\ & \text { (Power reading) } \times[(\text { power reading error } \%)+(\text { power range error } \%) \times(\text { power range/indicated }\end{array}\right]$

For LPFs less than or equal to 100 kHz , see "Line filter" in section 6.7.

Item	Specifications	
Frequency measurement	Frequency measurement range	
	Data update interval	Measurement range
	10 ms	$200 \mathrm{~Hz} \leq \mathrm{f} \leq 2 \mathrm{MHz}$
	50 ms	$45 \mathrm{~Hz} \leq \mathrm{f} \leq 2 \mathrm{MHz}$
	100 ms	$20 \mathrm{~Hz} \leq \mathrm{f} \leq 2 \mathrm{MHz}$
	200 ms	$10 \mathrm{~Hz} \leq \mathrm{f} \leq 2 \mathrm{MHz}$
	500 ms	$5 \mathrm{~Hz} \leq \mathrm{f} \leq 2 \mathrm{MHz}$
	1 s	$2 \mathrm{~Hz} \leq \mathrm{f} \leq 2 \mathrm{MHz}$
	2 s	$1 \mathrm{~Hz} \leq \mathrm{f} \leq 2 \mathrm{MHz}$
	5 s	$0.5 \mathrm{~Hz} \leq \mathrm{f} \leq 2 \mathrm{MHz}$
	10 s	$0.2 \mathrm{~Hz} \leq \mathrm{f} \leq 2 \mathrm{MHz}$
	20 s	$0.1 \mathrm{~Hz} \leq \mathrm{f} \leq 2 \mathrm{MHz}$
	Accuracy: $\pm 0.06 \%$ of reading $\pm 0.1 \mathrm{mHz}$	
	Conditions:	
	Input signal level:	
	Crest factor CF3: At least 30\% of the measurement range	
	Crest factor CF6/CF6A: At least 60\% of the measurement range	
	However, at least $50 \%$ of the range if the signal is less than or equal to twice the lower measurement frequency	
	Frequency filter	
	$0.1 \mathrm{~Hz} \leq \mathrm{f}<100 \mathrm{~Hz}: 100 \mathrm{~Hz}$	
	$100 \mathrm{~Hz} \leq \mathrm{f}<1 \mathrm{kHz}: 1 \mathrm{kHz}$	
	$1 \mathrm{kHz} \leq \mathrm{f}<100 \mathrm{kHz}: 100 \mathrm{kHz}$	


Item	Specifications	
Harmonic measurement	PLL source input level $50 \%$ or more of the r $100 \%$ or more of the Accuracy   Add the following accur   - When line filters are tu   Frequency $\begin{aligned} & \hline 0.1 \mathrm{~Hz} \leq \mathrm{f}<10 \mathrm{~Hz} \\ & 10 \mathrm{~Hz} \leq \mathrm{f}<45 \mathrm{~Hz} \\ & 45 \mathrm{~Hz} \leq \mathrm{f} \leq 66 \mathrm{~Hz} \\ & 66 \mathrm{~Hz}<\mathrm{f} \leq 440 \mathrm{~Hz} \\ & 440 \mathrm{~Hz}<\mathrm{f} \leq 1 \mathrm{kHz} \\ & 1 \mathrm{kHz}<\mathrm{f} \leq 10 \mathrm{kHz} \\ & 10 \mathrm{kHz}<\mathrm{f} \leq 50 \mathrm{kHz} \\ & 50 \mathrm{kHz}<\mathrm{f} \leq 100 \mathrm{kHz} \\ & 100 \mathrm{kHz}<\mathrm{f} \leq 500 \mathrm{kHz} \\ & 500 \mathrm{kHz}<\mathrm{f} \leq 1.5 \mathrm{MHz} \\ & \hline \end{aligned}$	d measurement range when the crest factor is CF3. ed measurement range when the crest factor is CF6 or CF6A.   acy values to the normal measurement accuracy values.   ed off $\begin{aligned} & \text { Voltage, current } \\ & \hline \pm(0.01 \% \text { of reading }+0.03 \% \text { of range }) \\ & \pm(0.01 \% \text { of reading }+0.03 \% \text { of range }) \\ & \pm(0.01 \% \text { of reading }+0.03 \% \text { of range }) \\ & \pm(0.01 \% \text { of reading }+0.03 \% \text { of range }) \\ & \pm(0.01 \% \text { of reading }+0.03 \% \text { of range }) \\ & \pm(0.01 \% \text { of reading }+0.03 \% \text { of range }) \\ & \pm(0.05 \% \text { of reading }+0.1 \% \text { of range }) \\ & \pm(0.1 \% \text { of reading }+0.2 \% \text { of range }) \\ & \pm(0.1 \% \text { of reading }+0.5 \% \text { of range }) \\ & \pm(0.5 \% \text { of reading }+2 \% \text { of range }) \\ & \hline \end{aligned}$
	$\begin{aligned} & \text { Frequency } \\ & \hline 0.1 \mathrm{~Hz} \leq \mathrm{f}<10 \mathrm{~Hz} \\ & 10 \mathrm{~Hz} \leq \mathrm{f}<45 \mathrm{~Hz} \\ & 45 \mathrm{~Hz} \leq \mathrm{f} \leq 66 \mathrm{~Hz} \\ & 66 \mathrm{~Hz}<\mathrm{f} \leq 440 \mathrm{~Hz} \\ & 440 \mathrm{~Hz}<\mathrm{f} \leq 1 \mathrm{kHz} \\ & 1 \mathrm{kHz}<\mathrm{f} \leq 10 \mathrm{kHz} \\ & 10 \mathrm{kHz}<\mathrm{f} \leq 50 \mathrm{kHz} \\ & 50 \mathrm{kHz}<\mathrm{f} \leq 100 \mathrm{kHz} \\ & 100 \mathrm{kHz}<\mathrm{f} \leq 500 \mathrm{kHz} \\ & 500 \mathrm{kHz}<\mathrm{f} \leq 1.5 \mathrm{MHz} \\ & \hline \end{aligned}$	Power   $\pm(0.02 \%$ of reading $+0.06 \%$ of range)   $\pm(0.02 \%$ of reading $+0.06 \%$ of range)   $\pm(0.02 \%$ of reading $+0.06 \%$ of range)   $\pm(0.02 \%$ of reading $+0.06 \%$ of range)   $\pm(0.02 \%$ of reading $+0.06 \%$ of range)   $\pm(0.02 \%$ of reading $+0.06 \%$ of range)   $\pm(0.1 \%$ of reading $+0.2 \%$ of range)   $\pm(0.2 \%$ of reading $+0.4 \%$ of range)   $\pm(0.2 \%$ of reading $+1 \%$ of range)   $\pm(1 \%$ of reading $+4 \%$ of range)

- When line filters are turned on

Add the line filter influence to the accuracy values when the line filters are turned off.

- When the crest factor is set to CF3
- When $\lambda$ (the power factor) is 1
- Power figures that exceed 10 kHz are reference values.
- For the voltage range, add 25 mV to the voltage accuracy and ( $25 \mathrm{mV} /$ current range rating $) \times$ $100 \%$ of range to the power accuracy.
- For the direct current input range, add $200 \mu \mathrm{~A}$ to the current accuracy and ( $200 \mu \mathrm{~A} /$ current range rating) $\times 100 \%$ of range to the power accuracy.
- For the external current sensor range, add 2 mV to the current accuracy and ( $2 \mathrm{mV} /$ rated value of the external current sensor range) $\times 100 \%$ of range to the power accuracy.
- When the number of FFT points is 1024 , add $\pm 0.2 \%$ to the voltage and current range errors and $\pm 0.4 \%$ to the power range error.
- Add $(\mathrm{n} / 500) \%$ of reading to the $\mathrm{n}^{\text {th }}$ component of the voltage and current, and add ( $\mathrm{n} / 250$ ) \% of reading to the $\mathrm{n}^{\text {th }}$ component of the power.
- The accuracy when the crest factor is CF6 or CF6A is the same as the accuracy when the crest factor is CF3 after doubling the measurement range.
- The guaranteed accuracy ranges for frequency, voltage, and current, are the same as the guaranteed ranges for normal measurement.
- The neighboring harmonic orders may be affected by the side lobes from the input harmonic order.

When FFT points is set to 8192
When the frequency of the PLL source is 2 Hz or greater, for $\mathrm{n}^{\text {th }}$ order component input, add $\{[n /(m+1)] / 50\} \%$ of (the $n^{\text {th }}$ order reading) to the $n+m^{\text {th }}$ order and $n-m^{\text {th }}$ order of the voltage and current, and add $\{[\mathrm{n} /(\mathrm{m}+1)] / 25\} \%$ of (the $\mathrm{n}^{\text {th }}$ order reading) to the $\mathrm{n}+\mathrm{m}^{\text {th }}$ order and $\mathrm{n}-$ $\mathrm{m}^{\text {th }}$ order of the power.

When the frequency of the PLL source is less than 2 Hz , for $\mathrm{n}^{\text {th }}$ order component input, add $\{[n /(m+1)] / 20\} \%$ of (the $n^{\text {th }}$ order reading) to the $n+m^{\text {th }}$ order and $n-m^{\text {th }}$ order of the voltage and current, and add $\{[\mathrm{n} /(\mathrm{m}+1)] / 10\} \%$ of (the $\mathrm{n}^{\text {th }}$ order reading) to the $\mathrm{n}+\mathrm{m}^{\text {th }}$ order and $\mathrm{n}-$ $\mathrm{m}^{\text {th }}$ order of the power.

Item	Specifications
	When FFT points is set to 1024   When the frequency of the PLL source is 75 Hz or greater, for $\mathrm{n}^{\text {th }}$ order component input, add $(\{n /(m+1)\} / 50) \%$ of (the $n^{\text {th }}$ order reading) to the $n+m^{\text {th }}$ order and $n-m^{\text {th }}$ order of the voltage and current, and add $(\{n /(m+1)\} / 25) \%$ of (the $\mathrm{n}^{\text {th }}$ order reading) to the $\mathrm{n}+\mathrm{m}^{\text {th }}$ order and $\mathrm{n}-$ $\mathrm{m}^{\text {th }}$ order of the power.   When the frequency of the PLL source is less than 75 Hz , for $\mathrm{n}^{\text {th }}$ order component input, add ( n / $(m+1)\} / 5) \%$ of (the $\mathrm{n}^{\text {th }}$ order reading) to the $\mathrm{n}+\mathrm{m}^{\text {th }}$ order and $\mathrm{n}-\mathrm{m}^{\text {th }}$ order of the voltage and current, and add $(2\{n /(m+1)\} / 5) \%$ of (the $n^{\text {th }}$ order reading) to the $n+m^{\text {th }}$ order and $n-m^{\text {th }}$ order of the power.
Item	Specifications
IEC Harmonic measuremen	PLL source input level   $50 \%$ or more of the rated measurement range when the crest factor is CF3.   $100 \%$ or more of the rated measurement range when the crest factor is CF6 or CF6A.   Accuracy
	Frequency Power   $45 \mathrm{~Hz} \leq \mathrm{f} \leq 66 \mathrm{~Hz}$ $\pm(0.4 \%$ of reading $+0.05 \%$ of range $)$   $66 \mathrm{~Hz}<\mathrm{f} \leq 440 \mathrm{~Hz}$ $\pm(0.4 \%$ of reading $+0.1 \%$ of range $)$   $440 \mathrm{~Hz}<\mathrm{f} \leq 1 \mathrm{kHz}$ $\pm(0.4 \%$ of reading $+0.1 \%$ of range $)$   $1 \mathrm{kHz}<\mathrm{f} \leq 2.5 \mathrm{kHz}$ $\pm(0.6 \%$ of reading $+0.1 \%$ of range $)$   $2.5 \mathrm{kHz}<\mathrm{f} \leq 3.3 \mathrm{kHz}$ $\pm(0.8 \%$ of reading $+0.1 \%$ of range $)$   $3.3 \mathrm{kHz}<\mathrm{f} \leq 10 \mathrm{kHz}$ $\pm(2 \%$ of reading $+0.1 \%$ of range $)$
	- When the 30 kHz Butterworth line filter is on   - When the crest factor is set to CF3   -When $\lambda$ (the power factor) is 1   - When group is off   - The neighboring harmonic orders may be affected by the side lobes from the input harmonic order. For $n^{\text {th }}$ order component input, add $\{[\mathrm{n} /(\mathrm{m}+1)] / 50\} \%$ of (the $\mathrm{n}^{\text {th }}$ order reading) to the $\mathrm{n}+\mathrm{m}^{\text {th }}$ order and $n-m^{\text {th }}$ order of the voltage and current, and add $\{[n /(m+1)] / 25\} \%$ of (the $n^{\text {th }}$ order reading) to the $n+m^{\text {th }}$ order and $n-m^{\text {th }}$ order of the power.   - The accuracy when the crest factor is CF6 or CF6A is the same as the accuracy when the crest factor is CF3 after doubling the measurement range.   - The guaranteed accuracy ranges for frequency, voltage, and current, are the same as the guaranteed ranges for normal measurement.   - Influence of self-generated heat caused by current input is the same as with normal measurement.   - The temperature coefficient is the same as with normal measurement.   - Influence of humidity is the same as with normal measurement.   - Accuracy at 1 year is the same as with normal measurement.   - Frequency measurements are reference values.

- When the 30 kHz Butterworth line filter is on
- When the crest factor is set to CF3
- When $\lambda$ (the power factor) is 1
- The neighboring harmonic orders may be affected by the side lobes from the input harmonic order. For $\mathrm{n}^{\text {th }}$ order component input, add $\{[\mathrm{n} /(\mathrm{m}+1)] / 50\} \%$ of (the $\mathrm{n}^{\text {th }}$ order reading) to the $\mathrm{n}+\mathrm{m}^{\text {th }}$ order and $n-m^{\text {th }}$ order of the voltage and current, and add $\{[n /(m+1)] / 25\} \%$ of (the $n^{\text {th }}$ order reading) to the $\mathrm{n}+\mathrm{m}^{\text {th }}$ order and $\mathrm{n}-\mathrm{m}^{\text {th }}$ order of the power.
- The accuracy when the crest factor is CF6 or CF6A is the same as the accuracy when the crest factor is CF3 after doubling the measurement range.
- The guaranteed accuracy ranges for frequency, voltage, and current, are the same as the teed ranges for normal measurement.

Influence of self-generated heat caused by current input is the same as with normal measurement.
terature coeficient is the same as with normal measurement.

- Accuracy at 1 year is the same as with normal measurement.
- Frequency measurements are reference values.

Item	Specifications
IEC voltage fluctuation and	Accuracy
flicker measurement	dc, dmax: $\pm 4 \%$ (at dmax $=4 \%$ )
	Pst: $\pm 5 \%$ (at Pst $=1$ to 3 ), $\pm 0.05$ (at Pst $=0.2$ to 1)
	Conditions for the accuracies above
	- Ambient temperature: 23 to $1^{\circ} \mathrm{C}$
	- Line filter: 10 Hz ON
	- Frequency filter: 1 kHz ON
	Frequency measurements are reference values.

## Dimensions

Item	Specifications
Dimensions	Approx. $145 \mathrm{~mm} \mathrm{(H)} \times 42 \mathrm{~mm} \mathrm{(W)} \times 297 \mathrm{~mm}(\mathrm{D})$            Weight The depth includes the slide cover $(293 \mathrm{~mm}$ if slide cover is excluded).   Connection

For general specifications, see section 6.13.

### 6.17 760903 Current Sensor Element Specifications

Item	Specifications
Output terminal type	Sensor power: D-sub 9-pin socket Probe power: Dedicated connector
Output voltage	Sensor power: $\pm 15 \mathrm{~V}$   Probe power: $\pm 12 \mathrm{~V}$, but output is off when Terminal is set to Sensor
Output current	Sensor power: 1.8 A   Probe power: 0.8 A , but output is off when Terminal is set to Sensor   Total output when multiple elements are used   - Sensor power: 8 A   - Probe power supply: The total absolute value of the positive and negative currents of the power supply is included in the positive sensor power supply current.
Input terminal type	Voltage   Plug-in terminal (safety terminal)   Current   - Sensor input: D-sub 9-pin socket   - Probe input: BNC connector
Input type	Voltage   Floating input through resistive voltage divider Current   - Sensor input: Input through shunt   - Probe input: Input through resistive voltage divider
D-sub 9 pin specifications	The pinout and signal names of the current sensor (CT series) compatible with the current sensor connection terminal are shown below.
	760903 CT1000A example
	Pin No. Signal $\quad$ Pin No. Signal
	1 RETURN 1 OUTPUT RETURN
	2 N.C. 2 (DON'T USE)
	3 GND (ST) 3 ( 3 GND STATUS
	4 GND 4 4 V
	5 V- 5 - 5 -15 V DC
	6 INPUT 6 OUTPUT
	7 CT-ID 7 (DON'T USE)
	8 ST 8 NORMAL OP STATUS
	$9 \mathrm{~V}+{ }^{\text {9 }}$, +15 V DC
	The connector shell of the current sensor connection terminal is connected to the WT5000 case. GND (pin 4) and GND (ST) (pin 3) of the current sensor connection terminal are connected to the WT5000 case inside the 760903.   For the detailed specifications of the current sensor (CT series), see the relevant IM.   The sensor cable (sold separately) is a straight cable.


Item	Specifications
Measurement range	```Voltage 1.5/3/6/10/15/30/60/100/150/300/600/1000 V (crest factor CF3) 0.75/1.5/3/5/7.5/15/30/50/75/150/300/500 V crest factor CF6/CF6A) Current Sensor input - Input resistance: 1\Omega 10 mA, 25 mA, 50 mA, 100 mA, 250 mA, 500 mA, 1 A (crest factor CF3) 5 mA, 12.5 mA, 25 mA, 50 mA, 125 mA, 250 mA, 500 mA (crest factor CF6/CF6A) - Input resistance: 1.5 \Omega 6.67 mA, 16.7 mA, 33.3 mA, 66.7 mA, 167 mA, 333 mA, 667 mA (crest factor CF3) 3.33 mA, 8.33 mA, 16.7 mA, 33.3 mA, 83.3 mA, 167 mA, 333 mA (crest factor CF6/CF6A) - Input resistance: 5\Omega 5mA, 10 mA, 20 mA, 50 mA, 100 mA, 200mA (crest factor CF3) 2.5 mA, 5 mA, 10 mA, 25 mA, 50 mA, 100mA (crest factor CF6/CF6A) - Input resistance: 10\Omega 5 mA, 10 mA, 25 mA, 50 mA, 100 mA (crest factor CF3) 2.5 mA, 5 mA, 12.5 mA, 25 mA, 50 mA (crest factor CF6/CF6A) Probe input 50 mV, 100 mV, 200 mV, 500 mV, 1 V, 2 V, 5 V, 10 V (crest factor CF3) 25 mV, 50 mV, 100 mV, 250 mV, 500 mV, 1 V, 2.5 V, 5 V (crest factor CF6/CF6A)```
Instrument loss	Voltage Input resistance: $10 \mathrm{M} \Omega \pm 1 \%$, input capacitance: approx. 15 pF
Input impedance	Current   Sensor input:   Input resistance: $1 \Omega \quad$ Approx. $1 \Omega+$ approx. $0.2 \mu \mathrm{H}$   Input resistance: $1.5 \Omega \quad$ Approx. $1.5 \Omega+$ approx. $0.2 \mu \mathrm{H}$   Input resistance: $5 \Omega \quad$ Approx. $5 \Omega+$ approx. $0.2 \mu \mathrm{H}$   Input resistance: $10 \Omega \quad$ Approx. $10 \Omega+$ approx. $0.2 \mu \mathrm{H}$   Probe input: Input resistance: $1 \mathrm{M} \Omega \pm 1 \%$, input capacitance: approx. 50 pF
Instantaneous maximum allowable input	Voltage   Peak value of 2.5 kV or rms value of 1.5 kV , whichever is less (within 1 s )   Current   Sensor input:   Input resistance: $1 \Omega$   Peak value of 1.8 A or rms value of 1.2 A , whichever is less.   Input resistance: $1.5 \Omega$   Peak value of 1.2 A or rms value of 0.84 A , whichever is less.   Input resistance: $5 \Omega$   Peak value of 0.36 A or rms value of 0.25 A , whichever is less. Input resistance: $10 \Omega$   Peak value of 0.18 A or rms value of 0.12 A , whichever is less. (with in 0.1 s)   Probe input:   Peak value at 10 times the range or 25 V , whichever is less (with in 0.1 s )


Item	Specifications
Continuous maximum allowable input	Voltage   Peak value of 1.6 kV or rms value of 1.5 kV , whichever is less   If the frequency of the input voltage exceeds 100 kHz ,   (1200-f) Vrms or less. $f$ is the frequency of the input voltage in units of kHz .   Current   Sensor input:   Input resistance: $1 \Omega$   Peak value of 1.5 A or rms value of 1.1 A , whichever is less.   Input resistance: $1.5 \Omega$   Peak value of 1.0 A or rms value of 0.73 A , whichever is less.   Input resistance: $5 \Omega$   Peak value of 0.3 A or rms value of 0.22 A , whichever is less.   Input resistance: $10 \Omega$   Peak value of 0.15 A or rms value of 0.11 A , whichever is less.   Probe input:   Peak value at 5 times the range or rms value of 25 V , whichever is less
Maximum rated voltage to earth (DC to $50 / 60 \mathrm{~Hz}$ )	Voltage input terminal 1000 V CAT II
Influence of voltage to earth	1000 Vrms is applied between an input terminal and WT5000 with the voltage input terminals shorted.   $50 / 60 \mathrm{~Hz}: \pm 0.01 \%$ of range or less.   Reference values up to 200 kHz :   Voltage: $\pm\{($ maximum rated range $) /($ rated range $) \times 0.001 \times f \%$ of range $\}$ or less   However, $0.01 \%$ or greater.   The maximum range rating in the equation is 1000 V .   The unit of $f$ in the equations is $k H z$.
A/D converter	Simultaneous conversion of voltage and current inputs.   Resolution: 18 bits   Sample rate: $10 \mathrm{MS} / \mathrm{s}$ max.
Measurement frequency bandwidth	DC, 0.1 Hz to 2 MHz
Lower limit of measuremen frequency	Sync source period average method   Data update interval   10 ms   50 ms   100 ms   200 ms   500 ms   1 s   2 s   5 s   10 s   20 s      Digital filter average method   FAST:   MID:   SLOW:   VSLOW:   VI
Maximum display	$140 \%$ of the rated voltage or current range   $160 \%$ only for the 1000 V range   $105 \%$ only for the maximum rated range of the current sensor input   $280 \%$ of the voltage and current range rating for CF6A   320 \% only for the 500 V range   210 \% only for the maximum sensor input range
Minimum display	Depending on the measurement range, the following are the minimum values that are displayed:   - Urms, Uac, Irms, and Iac: $0.3 \%$ ( $0.6 \%$ when the crest factor is set to 6)   - Umn, Urmn, Imn, and Irmn: 2\% (4\% when the crest factor is set to 6)   When input level is lower than above, the display shows zero if rounding to zero setting is ON, otherwise measured value will be shown. Current integration value $q$ also depends on the current value.

## Accuracy

Item	Specifications	
Accuracy (6 months)	Conditions	
	Temperature: $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$	
	Humidity: 30 to $75 \% \mathrm{RH}$	
	Input waveform: Sine wave	
	$\lambda$ (power factor): 1	
	Voltage to ground: 0 V	
	Crest factor: CF3	
	Line filter: OFF	
	Sync source period average method	
	Frequency filter: Used for signal frequencies at 1 kHz or less	
	Sync source signal level: Same as the frequency measurement conditions	
	Input range: DC 0\% to $\pm 110 \%$ of range, AC 1\% to 110\% of rangeDefined using rms values for AC	
	After the warm-up time has elapsed.	
	Wired condition after zero-level compensation or measurement range change.	
	The unit of $f$ in the accuracy equations is kHz .	
	Voltage	
	DC	$\pm$ (0.02\% of reading $+0.05 \%$ of range)
	$0.1 \mathrm{~Hz} \leq \mathrm{f}<10 \mathrm{~Hz}$	$\pm(0.03 \%$ of reading $+0.05 \%$ of range $)$
	$10 \mathrm{~Hz} \leq \mathrm{f}<45 \mathrm{~Hz}$	$\pm$ ( $0.03 \%$ of reading $+0.03 \%$ of range)
	$45 \mathrm{~Hz} \leq f \leq 66 \mathrm{~Hz}$	$\pm(0.01 \%$ of reading $+0.02 \%$ of range)
	$66 \mathrm{~Hz}<\mathrm{f} \leq 1 \mathrm{kHz}$	$\pm$ ( $0.03 \%$ of reading $+0.03 \%$ of range)
	$1 \mathrm{kHz}<\mathrm{f} \leq 10 \mathrm{kHz}$	$\pm(0.1 \%$ of reading $+0.05 \%$ of range $)$
		Add $0.015 \times \mathrm{f} \%$ of reading ( 10 V range or less).
	$10 \mathrm{kHz}<\mathrm{f} \leq 50 \mathrm{kHz}$	$\pm$ ( $0.3 \%$ of reading $+0.1 \%$ of range)
	$50 \mathrm{kHz}<\mathrm{f} \leq 100 \mathrm{kHz}$	$\pm$ ( $0.6 \%$ of reading $+0.2 \%$ of range)
	$100 \mathrm{kHz}<\mathrm{f} \leq 500 \mathrm{kHz}$	$\pm\{(0.006 \times \mathrm{f}) \%$ of reading $+0.5 \%$ of range $\}$
	500 kHz < f $\leq 1 \mathrm{MHz}$	$\pm\{(0.022 \times f-8) \%$ of reading $+1 \%$ of range $\}$
	Frequency bandwidth	DC to 10 MHz (Typical)
	Current	
	DC	$\pm$ (0.02\% of reading $+0.05 \%$ of range)
	$0.1 \mathrm{~Hz} \leq \mathrm{f}<10 \mathrm{~Hz}$	$\pm(0.03 \%$ of reading $+0.05 \%$ of range)
	$10 \mathrm{~Hz} \leq \mathrm{f}<45 \mathrm{~Hz}$	$\pm(0.03 \%$ of reading $+0.03 \%$ of range $)$
	$45 \mathrm{~Hz} \leq f \leq 66 \mathrm{~Hz}$	$\pm$ ( $0.01 \%$ of reading $+0.02 \%$ of range)
	$66 \mathrm{~Hz}<\mathrm{f} \leq 1 \mathrm{kHz}$	$\pm$ ( $0.03 \%$ of reading $+0.03 \%$ of range)
	$1 \mathrm{kHz}<\mathrm{f} \leq 10 \mathrm{kHz}$	$\pm$ ( $0.1 \%$ of reading $+0.05 \%$ of range)
	$10 \mathrm{kHz}<\mathrm{f} \leq 50 \mathrm{kHz}$	$\pm(0.3 \%$ of reading $+0.1 \%$ of range)
	$50 \mathrm{kHz}<\mathrm{f} \leq 100 \mathrm{kHz}$	$\pm$ ( $0.6 \%$ of reading $+0.2 \%$ of range)
	$100 \mathrm{kHz}<\mathrm{f} \leq 200 \mathrm{kHz}$	$\pm\{(0.00725 \times f-0.125) \%$ of reading $+0.5 \%$ of range $\}$
	200 kHz < f $\leq 500 \mathrm{kHz}$	$\pm\{(0.00725 \times f-0.125) \%$ of reading $+0.5 \%$ of range $\}$
	500 kHz < f $\leq 1 \mathrm{MHz}$	$\pm\{(0.022 \times f-8) \%$ of reading $+1 \%$ of range $\}$
	Frequency bandwidth	Sensor input: DC to 5 MHz (typical)
		Probe input: DC to 5 MHz (typical)
	Active power (power factor 1)	
	DC	$\pm(0.02 \%$ of reading $+0.05 \%$ of range)
	$0.1 \mathrm{~Hz} \leq \mathrm{f}<10 \mathrm{~Hz}$	$\pm(0.08 \%$ of reading $+0.1 \%$ of range)
	$10 \mathrm{~Hz} \leq \mathrm{f}<30 \mathrm{~Hz}$	$\pm(0.04 \%$ of reading $+0.04 \%$ of range)
	$30 \mathrm{~Hz} \leq \mathrm{f}<45 \mathrm{~Hz}$	$\pm(0.04 \%$ of reading $+0.04 \%$ of range)
	$45 \mathrm{~Hz} \leq \mathrm{f} \leq 66 \mathrm{~Hz}$	$\pm(0.01 \%$ of reading $+0.02 \%$ of range)
	$66 \mathrm{~Hz}<\mathrm{f} \leq 1 \mathrm{kHz}$	$\pm(0.04 \%$ of reading $+0.04 \%$ of range)
	$1 \mathrm{kHz}<\mathrm{f} \leq 10 \mathrm{kHz}$	$\pm(0.15 \%$ of reading $+0.1 \%$ of range)
		Add $0.01 \times \mathrm{f} \%$ of reading ( 10 V range or less).
	$10 \mathrm{kHz}<\mathrm{f} \leq 50 \mathrm{kHz}$	$\pm(0.3 \%$ of reading $+0.2 \%$ of range)
	$50 \mathrm{kHz}<\mathrm{f} \leq 100 \mathrm{kHz}$	$\pm(0.7 \%$ of reading $+0.3 \%$ of range)
	$100 \mathrm{kHz}<\mathrm{f} \leq 200 \mathrm{kHz}$	$\pm\{(0.008 \times \mathrm{f}) \%$ of reading $+1 \%$ of range $\}$
	$200 \mathrm{kHz}<\mathrm{f} \leq 500 \mathrm{kHz}$	$\pm\{(0.008 \times \mathrm{f}) \%$ of reading $+1 \%$ of range $\}$
	$500 \mathrm{kHz}<\mathrm{f} \leq 1 \mathrm{MHz}$	$\pm\{(0.048 \times \mathrm{f}-20) \%$ of reading $+1 \%$ of range $\}$

- For the current sensor input range, add the following values to the accuracies listed above:

Input resistance: $1 \Omega$
DC current accuracy: $24 \mu \mathrm{~A}$
DC power accuracy: ( $24 \mu \mathrm{~A} /$ rated value of the sensor input range $) \times 100 \%$ of range Input resistance: $1.5 \Omega$

DC current accuracy: $15 \mu \mathrm{~A}$
DC power accuracy: ( $15 \mu \mathrm{~A} /$ rated value of the sensor input range $) \times 100 \%$ of range
Current and power accuracies ( $45 \mathrm{~Hz} \leq \mathrm{f} \leq 66 \mathrm{~Hz}, 6.67 \mathrm{~mA} / 16.7 \mathrm{~mA} / 33.3 \mathrm{~mA}$ range): $0.01 \%$ of reading Input resistance: $5 \Omega$

DC current accuracy: $4 \mu \mathrm{~A}$
DC power accuracy: ( $4 \mu \mathrm{~A} /$ rated value of the sensor input range $) \times 100 \%$ of range
Current and power accuracies ( $45 \mathrm{~Hz} \leq \mathrm{f} \leq 66 \mathrm{~Hz}, 5 \mathrm{~mA} / 10 \mathrm{~mA}$ range): $0.01 \%$ of reading Input resistance: $10 \Omega$

DC current accuracy: $1 \mu \mathrm{~A}$
DC power accuracy: $(1 \mu \mathrm{~A} /$ rated value of the sensor input range $) \times 100 \%$ of range
Current and power accuracies ( $45 \mathrm{~Hz} \leq \mathrm{f} \leq 66 \mathrm{~Hz}, 5 \mathrm{~mA} / 10 \mathrm{~mA}$ range): $0.01 \%$ of reading
The rated value of the sensor input range is a range rated value selected with a Input resistance setting, with scaling set to off.

- For the probe input range, add the following values to the accuracies listed above: Current and power accuracies ( $45 \mathrm{~Hz} \leq f \leq 66 \mathrm{~Hz}, 50 \mathrm{mV}$ range): $0.01 \%$ of reading Current and power accuracies ( $45 \mathrm{~Hz} \leq f \leq 66 \mathrm{~Hz}, 100 \mathrm{mV}$ range): $0.005 \%$ of reading
- For the accuracies of waveform data functions Upk and Ipk:

Add the following values (reference values) to the accuracies listed above.
The effective input range is within $\pm 300 \%( \pm 600 \%$ when the crest factor is set to CF6 or CF6A) of the range.

Voltage input: $\{\sqrt{ }(1.5 /$ range $)+0.5\} \%$ of range
Sensor input:
Input resistance: $1 \Omega$
$\{\downarrow(0.06 /$ range $)+0.5\} \%$ of range ( 100 mA range or less)
$\{\downarrow$ ( $0.3 /$ range $)+0.5\} \%$ of range ( 250 mA range or more)
Input resistance: $1.5 \Omega$
$\{\sqrt{ }(0.06 /$ range $)+0.5\} \%$ of range ( 66.7 mA range or less)
$\{\downarrow(0.3 /$ range $)+0.5\} \%$ of range ( 167 mA range or more)
Input resistance: $5 \Omega$
$\{\downarrow(0.06 /$ range $)+0.5\} \%$ of range ( 20 mA range or less)
$\{\downarrow(0.3 /$ range $)+0.5\} \%$ of range ( 50 mA range or more)
Input resistance: $10 \Omega$
$\{V(0.06 /$ range $)+0.5\} \%$ of range ( 10 mA range or less)
$\{\downarrow(0.3 /$ range $)+0.5\} \%$ of range ( 25 mA range or more)
Probe input:
$\{V(0.01 /$ range $)+0.5\} \%$ of range ( 50 mV to 200 mV range)
$\{\sqrt{ }(0.1 /$ range $)+0.5\} \%$ of range ( 500 mV to 10 V range)

- Influence of temperature changes after zero-level compensation or range change Add the following values to the accuracies listed above.
- DC voltage accuracy: $\pm 0.02 \%$ of range $/{ }^{\circ} \mathrm{C}(1.5 \mathrm{~V}$ to 10 V range)

$$
\pm 0.005 \% \text { of range } /{ }^{\circ} \mathrm{C}(15 \mathrm{~V} \text { to } 1000 \mathrm{~V} \text { range })
$$

- Sensor input DC accuracy: Input resistance: 1
$\pm 0.06 \%$ of range $/{ }^{\circ} \mathrm{C}$ ( 10 mA to 50 mA range)
$\pm 0.02 \%$ of range $/{ }^{\circ} \mathrm{C}(100 \mathrm{~mA}$ to 1 A range)
Input resistance: $1.5 \Omega$
$\pm 0.06 \%$ of range $/{ }^{\circ} \mathrm{C}(6.67 \mathrm{~mA}$ to 33.3 mA range)
$\pm 0.02 \%$ of range $/{ }^{\circ} \mathrm{C}$ ( 66.7 mA to 667 mA range)
Input resistance: $5 \Omega$
$\pm 0.04 \%$ of range $/{ }^{\circ} \mathrm{C}$ ( 5 mA to 20 mA range)
$\pm 0.02 \%$ of range $/{ }^{\circ} \mathrm{C}$ ( 50 mA to 200 mA range)
Input resistance: $10 \Omega$
$\pm 0.03 \%$ of range $/{ }^{\circ} \mathrm{C}$ ( 5 mA to 10 mA range)
$\pm 0.02 \%$ of range $/{ }^{\circ} \mathrm{C}$ ( 20 mA to 100 mA range)
- Probe input DC accuracy: $\pm 50 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}(50 \mathrm{mV}$ to 200 mV range)

$$
\pm 200 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}(0.5 \mathrm{~V} \text { to } 10 \mathrm{~V} \text { range })
$$

For the DC power accuracy, add the voltage influence $\times I$ and the current influence $\times U$.
$U$ is the voltage reading $(V)$. $I$ is the current reading ( A ).

- Influence of self-generated heat caused by current input

Add the following values to the current and power accuracies:
Input resistance $1 \Omega$ : $\pm 0.1 \times \mathrm{I}^{2}$ [\% of reading]
Input resistance $1.5 \Omega$ : $\pm 0.15 \times 1^{2}$ [\% of reading]
Input resistance $5 \Omega$ : $\pm 0.5 \times \mathrm{I}^{2}$ [\% of reading]
Input resistance $10 \Omega$ : $\pm 1.0 \times \mathrm{I}^{2}$ [\% of reading]
I is the CT's secondary current reading (A).
Even if the current input decreases, the influence from self-generated heat continues until the temperature of the shunt resistor decreases.

- Guaranteed accuracy ranges for frequency, voltage, and current

All accuracy figures for 0.1 Hz to 10 Hz are reference values.
The voltage and power accuracy figures for 30 kHz to 100 kHz when the voltage exceeds 750 V are reference values.

- Influence of data update interval

Add the following value for signal sync period average.
$10 \mathrm{~ms}: 0.03 \%$ of reading
$50 \mathrm{~ms}: 0.03 \%$ of reading
$100 \mathrm{~ms}: 0.02 \%$ of reading

- Accuracy when the crest factor is set to CF6 or CF6A

The same as the accuracy when the crest factor is CF3 after doubling the range.

Item	Specifications
Power factor ( $\lambda$ ) influence	When $\lambda=0$   $\pm$ Apparent power reading $\times 0.02 \%$ in the range of 45 Hz to 66 Hz .   For other frequency ranges, see below. However, note that these figures are reference values. $\pm$ Apparent power reading $\times(0.02+0.05 \times \mathrm{f}) \%$
	When $0<\lambda<1$   $($ Power reading $) \times[($ power reading error $\%)+($ power range error $\%) \times($ power range/indicated apparent power value) $+\{\tan \varphi \times($ influence when $\lambda=0) \%\}]$ where $\varphi$ is the phase angle between the voltage and current.
	The unit of $f$ in the accuracy equations is kHz .
Accuracy at 1 year	1.5 times the accuracy at 6 months
Temperature coefficient	At $5^{\circ} \mathrm{C}$ to $18^{\circ} \mathrm{C}$ or $28^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$, add the following value to the voltage measurement accuracy. $\pm 0.01 \%$ of reading $/{ }^{\circ} \mathrm{C}$
	At $5^{\circ} \mathrm{C}$ to $18^{\circ} \mathrm{C}$ or $28^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$, add the following value to the current and power measurement accuracy.   When the input resistance is $10 \Omega$ or $5 \Omega$   $\pm 0.01 \%$ of reading ${ }^{\circ} \mathrm{C}$   $\pm 0.3 \mu \mathrm{~A} /{ }^{\circ} \mathrm{C}$ (for DC measurement values)   When the input resistance is $1.5 \Omega$ or $1 \Omega$   $\pm 0.01 \%$ of reading $/{ }^{\circ} \mathrm{C}$   $\pm 3 \mu \mathrm{~A} /{ }^{\circ} \mathrm{C}$ (for DC measurement values)
Influence of humidity	Add to the voltage and active power accuracies:   $\pm 0.00022 \times\|\mathrm{HUM}-50\| \times \mathrm{f} \%$ of reading: $\mathrm{f} \leq 40 \mathrm{kHz}$   $\pm 0.0087 \times\|\mathrm{HUM}-50\| \%$ of reading: $\mathrm{f}>40 \mathrm{kHz}$   Reference: Add to the power factor error.   When $\lambda=0$   Apparent power reading $\times 0.00002 \times\|\mathrm{HUM}-50\| \times \mathrm{f} \%$   When $0<\lambda<1$   $($ Power reading $) \times[($ power reading error $\%)+($ power range error $\%) \times($ power range/indicated apparent power value $)+\{\tan \varphi \times($ influence when $\lambda=0) \%\}]$
	HUM: Relative humidity [\%RH]   The unit of $f$ in the accuracy equations is kHz .
Effective input range	Udc, Idc: $0 \%$ to $\pm 130 \%$ of the measurement range (excluding the 1000 V range)*   Udc 1000 V range: $0 \%$ to $\pm 150 \%$ *   Urms, Irms: $1 \%$ to $130 \%$ of the measurement range*   Umn, Imn: $10 \%$ to $130 \%$ of the measurement range*   Urmn, Irmn: 10\% to 130\% of the measurement range*   Power   DC measurement: $0 \%$ to $\pm 150 \%$ when the voltage measurement range is $1000 \mathrm{~V} ; 0$ to $\pm 130 \%$ otherwise*   AC measurement: $1 \%$ to $130 \%^{*}$ of the voltage and current ranges; up to $\pm 130 \%$ * of the power range   * The accuracy for $110 \%$ to $130 \%$ of the measurement range (excluding the 1000 V range) is range error $\times 1.5$.   If the input voltage exceeds 600 V , add $0.02 \%$ of reading.   However, the signal level for the sync source period average method must meet the input signal level for frequency measurement.   When the crest factor is set to CF6 or CF6A, double the lower limit.
Accuracy of apparent power S	Voltage accuracy + current accuracy
Accuracy of reactive power Q	Accuracy of apparent power $+\left(\sqrt{ }\left(1.0002-\lambda^{2}\right)-\sqrt{ }\left(1-\lambda^{2}\right)\right) \times 100 \%$ of range
Accuracy of power factor $\lambda$	$\pm\left[(\lambda-\lambda / 1.0002)+\mid \cos \varphi-\cos \left\{\varphi+\sin ^{-1}((\right.\right.$ influence from the power factor when $\left.\left.\lambda=0) \% / 100)\right\} \mid\right] \pm 1$ digit   The voltage and current must be within their rated ranges.
Accuracy of phase difference Ф	$\pm\left[\left\|\varphi-\cos ^{-1}(\lambda / 1.0002)\right\|+\sin ^{-1}\{(\right.$ influence from the power factor when $\left.\lambda=0) \% / 100\}\right]$ deg $\pm 1$ digit   The voltage and current must be within their rated ranges.
Lead and lag detection	Phase difference: $\pm\left(5^{\circ}\right.$ to $\left.175^{\circ}\right)$   Frequency: 20 Hz to 10 kHz   Condition: Sine wave   At least 50\% of the measurement range (at least 100\% for CF6 and CF6A)


Item	Specifications
Line filter	Bessel, 5th order LPF, cutoff frequency fc: 1 MHz
	- When the advanced line filter setting is off   When the line filter is on, add the following to the voltage, current, and active power accuracies.   Voltage, current $\mathrm{f} \leq(\mathrm{fc} / 10): \pm(20 \times \mathrm{f} / \mathrm{fc}) \%$ of reading   Active power $\mathrm{f} \leq(\mathrm{fc} / 10): \pm(40 \times \mathrm{f} / \mathrm{fc}) \%$ of reading
	- When the advanced line filter setting is on When the anti-aliasing filter function (AAF) is on, add the following to the voltage, current, active power accuracies.   Voltage, current $\mathrm{f} \leq(\mathrm{fc} / 10)$ : $\pm(20 \times \mathrm{f} / \mathrm{fc}) \%$ of reading   Active power $\mathrm{f} \leq(\mathrm{fc} / 10)$ : $\pm(40 \times \mathrm{f} / \mathrm{fc}) \%$ of reading
	For the filter specifications for fc less than or equal to 100 kHz , see "Line filter" in section 6.7.   When the high frequency rejection function (HFR) is on, add the following to the voltage, current, active power accuracies.   However, if the AAF is set to ON simultaneously, the accuracy addition of the AAF takes precedence.
	Current   $50 \mathrm{kHz} \leq \mathrm{f} \leq 100 \mathrm{kHz}: \pm(0.006 \times \mathrm{f}-0.1) \%$ of reading   $100 \mathrm{kHz}<\mathrm{f} \leq 300 \mathrm{kHz}: \pm(0.035 \times \mathrm{f}-2.0) \%$ of reading   $300 \mathrm{kHz}<\mathrm{f} \leq 500 \mathrm{kHz}: \pm(0.040 \times \mathrm{f}+2.0) \%$ of reading   Active power (power factor 1)   $10 \mathrm{kHz} \leq \mathrm{f} \leq 50 \mathrm{kHz}: \pm(0.005 \times \mathrm{f}-0.05) \%$ of reading   $50 \mathrm{kHz} \leq \mathrm{f} \leq 100 \mathrm{kHz}: \pm(0.013 \times \mathrm{f}-0.3) \%$ of reading   $100 \mathrm{kHz}<\mathrm{f} \leq 500 \mathrm{kHz}: \pm(0.050 \times \mathrm{f}-3.0) \%$ of reading   Influence of power factor ( $\lambda$ )   $\lambda=0: \pm(0.01 \times f) \%$ of apparent power reading   However, be aware that these figures are reference values.   The unit of $f c$ and $f$ in the accuracy equations is kHz .
Frequency measurement	Frequency measurement range
	Data update interval Measurement range
	10 ms , $200 \mathrm{~Hz} \leq \mathrm{f} \leq 2 \mathrm{MHz}$
	$50 \mathrm{~ms} \quad 45 \mathrm{~Hz} \leq \mathrm{f} \leq 2 \mathrm{MHz}$
	$100 \mathrm{~ms} \quad 20 \mathrm{~Hz} \leq \mathrm{f} \leq 2 \mathrm{MHz}$
	$200 \mathrm{~ms} \quad 10 \mathrm{~Hz} \leq \mathrm{f} \leq 2 \mathrm{MHz}$
	500 ms , $5 \mathrm{~Hz} \leq \mathrm{f} \leq 2 \mathrm{MHz}$
	$1 \mathrm{~s} \quad 2 \mathrm{~Hz} \leq \mathrm{f} \leq 2 \mathrm{MHz}$
	$2 \mathrm{~s} \quad 1 \mathrm{~Hz} \leq \mathrm{f} \leq 2 \mathrm{MHz}$
	$5 \mathrm{~s} \quad 0.5 \mathrm{~Hz} \leq \mathrm{f} \leq 2 \mathrm{MHz}$
	$10 \mathrm{~s} \quad 0.2 \mathrm{~Hz} \leq \mathrm{f} \leq 2 \mathrm{MHz}$
	$20 \mathrm{~s} \quad 0.1 \mathrm{~Hz} \leq \mathrm{f} \leq 2 \mathrm{MHz}$
	Accuracy: $\pm 0.06 \%$ of reading $\pm 0.1 \mathrm{mHz}$
	Conditions:   Input signal level:   Crest factor CF3: At least 30\% of the measurement range   Crest factor CF6/CF6A: At least 60\% of the measurement range   However, at least $50 \%$ of the range if the signal is less than or equal to twice the lower measurement frequency
	$\begin{aligned} & \text { Frequency filter } \\ & 0.1 \mathrm{~Hz} \leq \mathrm{f}<100 \mathrm{~Hz}: 100 \mathrm{~Hz} \\ & 100 \mathrm{~Hz} \leq \mathrm{f}<1 \mathrm{kHz}: 1 \mathrm{kHz} \\ & 1 \mathrm{kHz} \leq \mathrm{f}<100 \mathrm{kHz}: 100 \mathrm{kHz} \end{aligned}$


Item	Specifications
Harmonic measurement	PLL source input level
	$50 \%$ or more of the rated measurement range when the crest factor is CF3.
	$100 \%$ or more of the rated measurement range when the crest factor is CF6 or CF6A.

## Accuracy

Add the following accuracy values to the normal measurement accuracy values.

- When line filters are turned off

Frequency	Voltage, current
$0.1 \mathrm{~Hz} \leq f<10 \mathrm{~Hz}$	$\pm(0.01 \%$ of reading $+0.03 \%$ of range $)$
$10 \mathrm{~Hz} \leq f \leq 45 \mathrm{~Hz}$	$\pm(0.01 \%$ of reading $+0.03 \%$ of range $)$
$45 \mathrm{~Hz} \leq f \leq 66 \mathrm{~Hz}$	$\pm(0.01 \%$ of reading $+0.03 \%$ of range $)$
$66 \mathrm{~Hz}<\mathrm{f} \leq 440 \mathrm{~Hz}$	$\pm(0.01 \%$ of reading $+0.03 \%$ of range $)$
$440 \mathrm{~Hz}<\mathrm{f} \leq 1 \mathrm{kHz}$	$\pm(0.01 \%$ of reading $+0.03 \%$ of range $)$
$1 \mathrm{kHz}<\mathrm{f} \leq 10 \mathrm{kHz}$	$\pm(0.01 \%$ of reading $+0.03 \%$ of range $)$
$10 \mathrm{kHz}<\mathrm{f} \leq 50 \mathrm{kHz}$	$\pm(0.05 \%$ of reading $+0.1 \%$ of range $)$
$50 \mathrm{kHz}<\mathrm{f} \leq 100 \mathrm{kHz}$	$\pm(0.1 \%$ of reading $+0.2 \%$ of range $)$
$100 \mathrm{kHz}<\mathrm{f} \leq 500 \mathrm{kHz}$	$\pm(0.1 \%$ of reading $+0.5 \%$ of range $)$
$500 \mathrm{kHz}<\mathrm{f} \leq 1.5 \mathrm{MHz}$	$\pm(0.5 \%$ of reading $+2 \%$ of range $)$


Frequency	Power
$0.1 \mathrm{~Hz} \leq \mathrm{f}<10 \mathrm{~Hz}$	$\pm(0.02 \%$ of reading $+0.06 \%$ of range $)$
$10 \mathrm{~Hz} \leq \mathrm{f}<45 \mathrm{~Hz}$	$\pm(0.02 \%$ of reading $+0.06 \%$ of range $)$
$45 \mathrm{~Hz} \leq \mathrm{f} \leq 66 \mathrm{~Hz}$	$\pm(0.02 \%$ of reading $+0.06 \%$ of range $)$
$66 \mathrm{~Hz}<\mathrm{f} \leq 440 \mathrm{~Hz}$	$\pm 0.02 \%$ of reading $+0.06 \%$ of range $)$
$440 \mathrm{~Hz}<\mathrm{f} \leq 1 \mathrm{kHz}$	$\pm(0.02 \%$ of reading $+0.06 \%$ of range $)$
$1 \mathrm{kHz}<\mathrm{f} \leq 10 \mathrm{kHz}$	$\pm(0.02 \%$ of reading $+0.06 \%$ of range $)$
$10 \mathrm{kHz}<\mathrm{f} \leq 50 \mathrm{kHz}$	$\pm 0.1 \%$ of reading $+0.2 \%$ of range $)$
$50 \mathrm{kHz}<\mathrm{f} \leq 100 \mathrm{kHz}$	$\pm(0.2 \%$ of reading $+0.4 \%$ of range $)$
$100 \mathrm{kHz}<\mathrm{f} \leq 500 \mathrm{kHz}$	$\pm(0.2 \%$ of reading $+1 \%$ of range $)$
$500 \mathrm{kHz}<\mathrm{f} \leq 15 \mathrm{MHz}$	$\pm(1 \%$ of reading $+4 \%$ of range $)$

- When line filters are turned on

Add the line filter influence to the accuracy values when the line filters are turned off.

- When the crest factor is set to CF3
- When $\lambda$ (the power factor) is 1
- Power figures that exceed 10 kHz are reference values.
- For the voltage range, add 25 mV to the voltage accuracy and ( $25 \mathrm{mV} /$ current range rating) $\times$ $100 \%$ of range to the power accuracy.
- For the current sensor input range, add $200 \mu \mathrm{~A}$ to the current accuracy and ( $200 \mu \mathrm{~A} /$ current range rating) $\times 100 \%$ of range to the power accuracy.
- For the probe input range, add 2 mV to the current accuracy and ( $2 \mathrm{mV} /$ rated value of the probe input range) $\times 100 \%$ of range to the power accuracy.
- When the number of FFT points is 1024 , add $\pm 0.2 \%$ to the voltage and current range errors and $\pm 0.4 \%$ to the power range error.
- Add ( $n / 500$ )\% of reading to the $n$th component of the voltage and current, and add ( $\mathrm{n} / 250$ ) \% of reading to the nth component of the power.
- The accuracy when the crest factor is CF6 or CF6A is the same as the accuracy when the crest factor is CF3 after doubling the measurement range.
- The guaranteed accuracy ranges for frequency, voltage, and current, are the same as the guaranteed ranges for normal measurement.
- The neighboring harmonic orders may be affected by the side lobes from the input harmonic order.

When FFT points is set to 8192
When the frequency of the PLL source is 2 Hz or greater, for $\mathrm{n}^{\text {th }}$ order component input, add $\{[\mathrm{n} /(\mathrm{m}+1)] / 50\} \%$ of (the $\mathrm{n}^{\text {th }}$ order reading) to the $\mathrm{n}+\mathrm{m}^{\text {th }}$ order and $\mathrm{n}-\mathrm{m}^{\text {th }}$ order of the voltage and current, and add $\{[\mathrm{n} /(\mathrm{m}+1)] / 25\} \%$ of (the $\mathrm{n}^{\text {th }}$ order reading) to the $\mathrm{n}+\mathrm{m}^{\text {th }}$ order and $\mathrm{n}-\mathrm{m}^{\text {th }}$ order of the power.

When the frequency of the PLL source is less than 2 Hz , for $\mathrm{n}^{\text {th }}$ order component input, add $\{[\mathrm{n} /(\mathrm{m}+1)] / 20\} \%$ of (the $\mathrm{n}^{\text {th }}$ order reading) to the $\mathrm{n}+\mathrm{m}^{\text {th }}$ order and $\mathrm{n}-\mathrm{m}^{\text {th }}$ order of the voltage and current, and add $\{[\mathrm{n} /(\mathrm{m}+1)] / 10\} \%$ of (the $\mathrm{n}^{\text {th }}$ order reading) to the $\mathrm{n}+\mathrm{m}^{\text {th }}$ order and $\mathrm{n}-\mathrm{m}^{\text {th }}$ order of the power.

Item	Specifications
	When FFT points is set to 1024   When the frequency of the PLL source is 75 Hz or greater, for $\mathrm{n}^{\text {th }}$ order component input, add $(\{n /(m+1)\} / 50) \%$ of (the $n^{\text {th }}$ order reading) to the $n+m^{\text {th }}$ order and $n-m^{\text {th }}$ order of the voltage and current, and add $(\{n /(m+1)\} / 25) \%$ of (the $n^{\text {th }}$ order reading) to the $n+m^{\text {th }}$ order and $n-m^{\text {th }}$ order of the power.   When the frequency of the PLL source is less than 75 Hz , for $\mathrm{n}^{\text {th }}$ order component input, add $(\{n /(m+1)\} / 5) \%$ of (the $n^{\text {th }}$ order reading) to the $n+m^{\text {th }}$ order and $n-m^{\text {th }}$ order of the voltage and current, and add $(2\{n /(m+1)\} / 5) \%$ of (the $n^{\text {th }}$ order reading) to the $n+m^{\text {th }}$ order and $n-m^{\text {th }}$ order of the power.
Notes	Limitations when used in combination with the CT1000   Use within the following ambient temperature derating.   CT ambient temperature $45^{\circ} \mathrm{C}$ or more: Primary current 900 Apk or less   CT ambient temperature $45^{\circ} \mathrm{C}$ or less: Follows the CT1000 specifications   Restrictions when used in combination with the 10 m sensor cable 761956   CT2000A primary current: 2100 Apk or less

## Dimensions

Item	Specifications
Dimensions	Approx. $145 \mathrm{~mm}(\mathrm{H}) \times 42 \mathrm{~mm}(\mathrm{~W}) \times 298 \mathrm{~mm}(\mathrm{D})$            Weight The depth includes the slide cover $(295 \mathrm{~mm}$ if slide cover is excluded).   Connection   Approx. 740 g

For general specifications, see section 6.13.

## Appendix 1 Symbols and Determination of Measurement Functions

Measurement Functions Used in Normal Measurement
(Table 1/4)


[^5](Table 2/4)

(Table 3/4)

Measurement Function	Formula
Voltage measurement range   RngU [V]	For information about the symbols in the equations, see the notes provided 2 pages later.
Current measurement range   Rngl [A]	Present current range range

(Table 4/4)

Measurement Function		Formula   For information about the symbols in the equations, see the no				provided 1 pages later.   Three-phase four-wire 3P4W
	Wiring system	Single-phase three-wire	Three-phase three-wire	Three-phase three-voltage thre	-wire with urrent method	
		1P3W	3P3W	3P3W(3V3A)	3P3W(3V3AR)	
	U $\Sigma$ [V] Other than Udc	( $\mathrm{U} 1+\mathrm{U} 2) / 2$		(U1 + U2 + U3) / 3		
	U [V] Udc			( U1 + U2 + U3) / 3	$(-\mathrm{U} 1+\mathrm{U} 2+\mathrm{U} 3) / 3$	(U1 + U2 + U3) / 3
	IE [A]	$(11+12) / 2$		$(11+12+13) / 3$		
	P $\Sigma$ [W]	$\mathbf{P} 1+\mathrm{P} 2$			-P1 + P2	P1 + P2 + P3
	S [ [VA] $\begin{gathered}\text { TYPE1, } \\ \text { TYPE2 }\end{gathered}$	S1 + S2	$\frac{\sqrt{3}}{2}(\mathrm{~S} 1+\mathrm{S} 2)$	$\frac{\sqrt{3}}{3}(\mathrm{~S} 1+\mathrm{S} 2+\mathrm{S} 3)$		S1 + S2 + S3
	TYPE3	$\sqrt{P \Sigma^{2}+Q \Sigma^{2}}$				
	Q ¢ [var] TYPE1	Q1 + Q2			-Q1 + Q2	Q1 + Q2 + Q3
		$\sqrt{S \Sigma^{2}-P \Sigma^{2}}$				
	TYPE3	Q1 + Q2			-Q1 + Q2	Q1 + Q2 + Q3
	Pc£ [W]	Pc1 + Pc2			-Pc1 + Pc2	$\mathrm{Pc} 1+\mathrm{Pc} 2+\mathrm{Pc} 3$
	WPE [Wh] WPE	WP1 + WP2			-WP1 + WP2	WP1 + WP2 + WP3
		When the watt-hour integration method for each polarity is Charge/Discharge				WP+1 + WP+2 + WP+3
		WP+1 + WP+2			-WP-1 + WP+2	
		When the watt-hour integration method for each polarity is Sold/Bought $W P+\Sigma$ is the sum of the positive active power WP $\Sigma$ values at each data update interval.				
	WP- $\Sigma$	When the watt-hour integration method for each polarity is Charge/Discharge				WP-1 + WP-2 + WP-3
		WP-1 + WP-2			-WP+1 + WP-2	
		When the watt-hour integration method for each polarity is Sold/Bought WP- $\Sigma$ is the sum of the negative active power WP $\Sigma$ values at each data update interval.				
	q $\Sigma$	q1 + q2				$q_{1}+q_{2}+q^{3}$
	$q \Sigma[A h] ~ q+\Sigma$	$q+1+q+2$				$q+1+q+2+q+3$
	$\underline{q-\Sigma}$	q-1 + q-2				$\mathrm{q}-1+\mathrm{q}-2+\mathrm{q}-3$
	WQE [varh]	$\frac{1}{N} \sum_{n=1}^{N}\|Q \Sigma(n)\| \cdot I \text { ITime }$   $Q \Sigma(n)$ is the $n^{\text {th }}$ reactive power $\Sigma$ function. $N$ is the number of data updates. The unit of ITime is hours.				
	WSE [VAh]	$\frac{1}{N} \sum_{n=1}^{N} S \Sigma(n) \cdot \text { ITime }$   $S \Sigma(n)$ is the $n^{\text {th }}$ apparent power $\Sigma$ function. $N$ is the number of data updates. The unit of ITime is hours.				
	$\lambda \Sigma$	$\frac{\mathrm{P} \mathrm{\Sigma} \Sigma}{\mathrm{~S} \Sigma}$				
	$\boldsymbol{\Phi} \Sigma\left[^{\circ}{ }^{\circ}\right.$	$\cos ^{-1}\left(\frac{P \Sigma}{S \Sigma}\right)$				

## Note

- $u(n)$ denotes instantaneous voltage.
- $i(n)$ denotes instantaneous current.
- $n$ denotes the $\mathrm{n}^{\text {th }}$ measurement period. The measurement period is determined by the sync source setting.
- AVG[] denotes the simple average of the item in brackets determined over the data measurement period. The data measurement period is determined by the sync source setting.
- P $\Sigma$ denotes the active power of wiring unit $\Sigma$. Input elements are assigned to wiring unit $\Sigma$ differently depending on the number of input elements that are installed in the instrument and the selected wiring system pattern.
- The numbers 1, 2, and 3 used in the equations for Urms $\Sigma$, Umn $\Sigma$, Urmn $\Sigma$, Udc $\Sigma$, Uac $\Sigma$, Irms $\Sigma$, Imn $\Sigma$, $\operatorname{Irmn} \Sigma, \operatorname{Idc} \Sigma \operatorname{lac} \Sigma, \mathrm{P} \Sigma, \mathrm{S} \Sigma, \mathrm{Q} \Sigma, \mathrm{Pc} \Sigma, W P \Sigma$, and $\mathrm{q} \Sigma$ indicate the case when input elements 1, 2, and 3 are set to the wiring system shown in the table.
On this instrument, $S, Q, \lambda$, and $\Phi$ are derived through the computation of the measured values of voltage, current, and active power. (However, when Type 3 is selected, Q is calculated directly from the sampled data.) Therefore, for distorted signal input, the value obtained on the instrument may differ from that obtained on other instruments that use a different method.
- For $Q$ [var], when the current leads the voltage, the $Q$ value is displayed as a negative value; when the current lags the voltage, the $Q$ value is displayed as a positive value. The value of $Q \Sigma$ may be negative, because it is calculated from the $Q$ of each element with the signs included.

Measurement Functions Used in Harmonic Measurement

Measurement Function	Formula			
	Numbers and Characters in the Parentheses			Total value (Total) (No parentheses)
	$\begin{gathered} \mathrm{dc} \\ (\text { when } k=0) \end{gathered}$	(when $k=1$ 1	$k$ (when $k=1$ to max)	
Voltage U( ) [V]	$\mathrm{U}(\mathrm{dc})=\mathrm{Ur}_{\mathbf{r}}(0)$	$U(k)=\sqrt{U_{r}(\mathbf{k})^{2}+U_{j}(k)^{2}}$		$\mathrm{U}=\sqrt{\sum_{\mathrm{k}=\mathrm{min}}^{\max } \mathrm{U}(\mathrm{k})^{2}}$
Current ( ) [A]	$\mathrm{I}(\mathrm{dc})=\mathrm{Ir}(0)$	$\mathrm{l}(\mathrm{k})=\sqrt{\operatorname{lr}(\mathrm{k})^{2}+\mathrm{l}_{\mathrm{j}}(\mathrm{k})^{2}}$		$I=\sqrt{\sum_{k=\min }^{\max } \mathrm{l}(\mathrm{k})^{2}}$
Active power P( ) [W]	$\mathrm{P}(\mathrm{dc})=\mathrm{Ur}_{\mathbf{r}}(0) \cdot \mathrm{lr}(0)$	$\mathrm{P}(\mathrm{k})=\mathrm{Ur}_{\mathbf{r}}(\mathbf{k}) \cdot \mathrm{I}_{( }(\mathbf{k})+\mathrm{U}_{\mathrm{j}}(\mathbf{k}) \cdot \mathrm{l}_{\mathrm{j}}(\mathbf{k})$		$\mathbf{P}=\sum_{\mathbf{k}=\min }^{\max } \mathbf{P}(\mathbf{k})$
Apparent power S( ) [VA] (TYPE3) ${ }^{* 1}$	$\mathrm{S}(\mathrm{dc})=\mathrm{P}(\mathrm{dc})$	$\mathrm{S}(\mathrm{k})=\sqrt{\mathrm{P}(\mathrm{k})^{2}+\mathrm{Q}(\mathrm{k})^{2}}$		$\mathrm{S}=\sqrt{\mathrm{P}^{2}+\mathrm{Q}^{2}}$
Reactive power Q( ) [var] (TYPE3) ${ }^{* 1}$	Q(dc) = 0	$\left.Q(k)=\left\{U_{r}(\mathbf{k}) \cdot \mathrm{l}_{\mathrm{j}}(\mathrm{k})-\mathrm{U}_{\mathrm{j}}(\mathrm{k}) \cdot \mathrm{I}_{(\mathrm{k}} \mathbf{k}\right)\right\}$		$Q=\sum_{k=\min }^{\max } \mathrm{Q}(\mathrm{k})$
Power factor $\boldsymbol{\lambda}$ ( )	$\lambda(\mathrm{dc})=\frac{\mathrm{P}(\mathrm{dc})}{\mathrm{S}(\mathrm{dc})}$	$\lambda(\mathrm{k})=\frac{\mathrm{P}(\mathrm{k})}{\mathrm{S}(\mathrm{k})}$		$\lambda=\frac{\mathbf{P}}{\mathbf{S}}$
Phase difference $\left.\Phi(){ }^{\circ}\right]$	-	$\Phi(\mathbf{k})=\tan ^{-1}\left\{\frac{Q(\mathbf{k})}{P(\mathbf{k})}\right\} \cdot \mathrm{pol}^{* 2}$		$\Phi=\tan ^{-1}\left(\frac{\mathrm{Q}}{\mathrm{P}}\right) \cdot \mathrm{pol}^{* 2}$
Phase difference with $\mathrm{U}(1)^{* 3}$ $\left.\Phi \mathrm{U}(){ }^{\circ}{ }^{\circ}\right]$	-	-	-	$\Phi \mathrm{U}(\mathrm{k})=$ The phase difference between $U(k)$ and $U(1)$
Phase difference with l(1) ${ }^{* 3}$ ФI( ) [ ${ }^{\circ}$ ]	-	-	-	$\Phi I(k)=$ The phase difference between $\mathrm{I}(\mathrm{k})$ and $\mathrm{I}(1)$
Impedance of the load circuit $\mathrm{Z}(\mathrm{)}[\Omega]$	$\mathrm{Z}(\mathrm{dc})=\left\|\frac{U(\mathrm{dc})}{\mathrm{I}(\mathrm{dc})}\right\|$	$Z(k)=\left\|\frac{U(k)}{I(k)}\right\|$		-
Series resistance of the load circuit $\operatorname{Rs}()$ [ $\Omega$ ]	$\mathrm{Rs}(\mathrm{dc})=\frac{\mathrm{P}(\mathrm{dc})}{1(\mathrm{dc})^{2}}$	$\mathrm{Rs}(\mathrm{k})=\frac{\mathrm{P}(\mathrm{k})}{\mathrm{I}(\mathrm{k})^{2}}$		-
Series reactance of the load circuit $\text { Xs( ) [ } \Omega \text { ] }$	Xs (dc) $=0$	$\mathrm{Xs}(\mathrm{k})=\frac{\mathrm{Q}(\mathrm{k})}{\mathrm{l}(\mathrm{k})^{2}}$		-
Parallel resistance of the load circuit $\operatorname{Rp}()[\Omega](=1 / G)$	$\mathrm{Rp}(\mathrm{dc})=\frac{\mathrm{U}(\mathrm{dc})^{2}}{\mathrm{P}(\mathrm{dc})}$	$R p(k)=\frac{U(k)^{2}}{P(k)}$		-
Parallel reactance of the load circuit $X p()[\Omega](=1 / B)$	Xp(dc) = Error	$X p(k)=\frac{U(k)^{2}}{Q(k)}$		-

(Continued on next page)
*1 For details on the types of S and Q expressions, see "Apparent Power, Reactive Power, and Corrected Power Equations (Formula)" in chapter 8, "Computation," of the Features Guide, IM WT5000-01EN.
*2 Depending on the polarity setting of the phase difference, pol will be as follows:

- When the phase difference polarity is Lead (-)/Lag (+): 1
- When the phase difference polarity is Lead(+)/Lag(-): -1
*3 The signs for lead and lag of phase differences $\Phi \mathrm{U}()$ ) and $\Phi \mathrm{I}()$ are fixed to positive (+) and negative $(-)$, respectively.


## Note

- $k$ denotes a harmonic order, $r$ denotes the real part, and $j$ denotes the imaginary part.
- $U(k), \operatorname{Ur}(k), U j(k), I(k), \operatorname{Ir}(k)$, and $\operatorname{lj}(k)$ are expressed using rms values.
- The minimum harmonic order is denoted by min. min can be set to either 0 (the dc component) or 1 (the fundamental component).
- The upper limit of harmonic analysis is denoted by max. max is either an automatically determined value or the specified maximum measured harmonic order, whichever is smaller.

(Continued on next page)
*1 The expression varies depending on the definitions in the standard. For more details, see the standard (IEC34-1: 1996).
*2 $U($ Total $)=\sqrt{\sum_{k=\min }^{\max } U(k)^{2}}, \quad I($ Total $)=\sqrt{\sum_{k=\min }^{\max } I(k)^{2}}, \quad P($ Total $)=\sum_{k=\min }^{\max } P(k)$


## Note

- $k$ denotes a harmonic order, $r$ denotes the real part, and $j$ denotes the imaginary part.
- The minimum harmonic order is denoted by min.
- The upper limit of harmonic analysis is denoted by max. max is either an automatically determined value or the specified maximum measured harmonic order, whichever is smaller.
(Table 3/6)

Measurement Function	Formula
Frequency of PLL source 1   FreqPLL1[Hz]	Frequency of the PLL source of harmonic group 1 (PLL source 1)
Frequency of PLL source 2   FreqPLL2[Hz]	Frequency of the PLL source of harmonic group 2 (PLL source 2)

(Table 4/6)

Measurement Function		Formula				
	Wiring system	Single-phase three-wire 1P3W	Three-phase three-wire 3P3W	Three-phase three-wire with three-voltage three-current method		Three-phase four-wire 3P4W
				3P3W(3V3A)	3P3W(3V3AR)	
	U $\Sigma^{1}$ [V]	( $\mathrm{U} 1+\mathrm{U} 2) / 2$		( $\mathrm{U} 1+\mathrm{U} 2+\mathrm{U} 3$ ) / 3		
	Ufnd5 ${ }^{2}$ [V]	(Ufnd1 + Ufnd2) / 2		(Ufnd1 + Ufnd2 + Ufnd3) / 3		
	[ $\Sigma^{1}$ [A]	(11 + 12) / 2		$(11+12+13) / 3$		
	Ifnd $\Sigma^{2}[\mathrm{~A}]$	(lfnd1 + Ifnd2) / 2		(Ifnd1 + fndi2 + Ifnd3) / 3		
	P ${ }^{1}$ [ ${ }^{\text {W }}$ ]	P1 + P2			-P1 + P2	P1 + P2 + P3
	Pfnd5 ${ }^{2}$ [W]	Pfnd1 + Pfnd2			-Pfnd1 + Pfnd2	Pfnd1 + Pfnd2 + Pfnd3
	S $\Sigma^{1}$ [VA] (TYPE3) ${ }^{3}$	$\sqrt{P \Sigma^{2}+Q \Sigma^{2}}$				
	Sfnd ${ }^{2}$ [VA] (TYPE3) ${ }^{3}$	$\sqrt{\text { PfndE }{ }^{2}+\text { Qfnd玉 }^{2}}$				
	Q $\Sigma^{1}$ [var] (TYPE3) ${ }^{3}$	Q1 + Q2			-Q1 + Q2	Q1 + Q2 + Q3
	Qfnd $\Sigma^{2}$ [var] (TYPE3) ${ }^{3}$	Qfnd1 + Qfnd2			-Qfnd1 + Qfnd2	Qfnd1 + Qfnd2 + Qfnd3
	$\lambda \Sigma^{1}$	$\frac{\mathrm{P} \mathrm{\Sigma}}{\mathrm{~S} \Sigma}$				
	$\lambda f n d \Sigma^{2}$	$\frac{\text { Pfnd } \Sigma}{\text { Sfnd } \Sigma}$				

1 Only the total value and the fundamental wave (1st harmonic) are computed.
2 Only the fundamental wave (1st harmonic) is computed.
3 For details on the types of S乏 and Qइ expressions, see "Apparent Power, Reactive Power, and Corrected Power Equations (Formula)" in chapter 8, "Computation," of the Features Guide, IM WT5000-01EN.
Note
The numbers 1,2 , and 3 used in the equations for $U \Sigma, I \Sigma, P \Sigma, S \Sigma$, and $Q \Sigma$, indicate the case when input elements 1,2 , and 3 are set to the wiring system shown in the table.
(Table 5/6)

Measurement Function	Formula
$\Phi U 1-\mathrm{U}\left({ }^{\circ}\right)$	Phase angle between U1(1) and the fundamental voltage of element 2, U2(1)
ФU1-U3( ${ }^{\circ}$ )	Phase angle between U1(1) and the fundamental voltage of element 3, U3(1)
$\Phi U 1-11\left({ }^{\circ}\right)$	Phase angle between U1(1) and the fundamental current of element 1, I1(1)
$\Phi U 2-12\left({ }^{\circ}\right)$	Phase angle between U2(1) and the fundamental current of element 2, I2(1)
$\Phi U 3-13\left({ }^{\circ}\right)$	Phase angle between U3(1) and the fundamental current of element 3, I3(1)

## Note

- The numbers 1,2 , and 3 used in the equations indicate the case when input elements 1,2 , and 3 are set to the wiring system shown in the table.
- The signs for phase difference lead and lag can be selected with the phase difference polarity setting.
- When the phase difference polarity is set to Lead(-)/Lag(+)

Lead: negative (-), lag: positive $(+)$ (output value: 0 to $360^{\circ}$ )

- When the phase difference polarity is set to Lead(+)/Lag(-)

Lead: negative (+), lag: positive (-) (output value: $\pm 180^{\circ}$ )

Measurement Function	Formula
EaM1U1 to EaM1U7 ( ${ }^{\circ}$ ) EaM1I1 to EaM1I7 ( ${ }^{\circ}$ )	Phase angles of the fundamental waves of U 1 to $\mathrm{I7}$ with the falling edge of the signal received through the Motor1 (MTR1) Z terminal of the motor evaluation function as the reference. $\text { EaM1U* }=\tan ^{-1} \frac{U_{r}(1)}{U_{j}(1)}-B$ $E a M 1 I^{*}=\tan ^{-1} \frac{\operatorname{Ir}(1)}{\operatorname{lj}(1)}-B$   $\mathrm{Ur}(1)$ : real part of the fundamental voltage   $\operatorname{Ir}(1)$ : real part of the fundamental current   $\mathrm{Uj}(1)$ : imaginary part of the fundamental voltage   $\mathrm{Ij}(1)$ : imaginary part of the fundamental current   B: offset   B: offset
EaM3U1 to EaM3U7 ( ${ }^{\circ}$ ) EaM3I1 to EaM3I7 ( ${ }^{\circ}$ )	Phase angles of the fundamental waves of U1 to 17 with the falling edge of the signal received through the Motor3 (MTR2) Z terminal of the motor evaluation function as the reference. $E a M 1 U^{*}=\tan ^{-1} \frac{U_{r}(1)}{U_{j}(1)}-B$ $\text { EaM1I* }=\tan ^{-1} \frac{\operatorname{Ir}(1)}{\mathrm{I}_{\mathrm{j}}(1)}-B$   $\mathrm{Ur}(1)$ : real part of the fundamental voltage   $\operatorname{lr}(1)$ : real part of the fundamental current   $\mathrm{Uj}(1)$ : imaginary part of the fundamental voltage   $\mathrm{Ij}(1)$ : imaginary part of the fundamental current   B: offset   B: offset

## Note

The electrical angle lead and lag signs are positive and negative, respectively.
The signs do not change depending on the phase difference polarity setting.
The electrical angle lead and lag signs are fixed to positive (+) and negative (-), respectively.

When delta computation is set to DELTA->STAR

Item	Symbols and Meanings	Formula
Fundamental component of delta harmonic voltage DELTAU1F   DELTAU2F   DELTAU3F   DELTAUSIGF	Fundamental voltage wave of each phase computed in a three-phase three-wire (3V3A or 3V3AR) system and the fundamental voltage wave of the wiring unit	$\begin{aligned} & \text { DELTAU1F }=\sqrt{\Delta U R r_{f n d}{ }^{2}+\Delta U R j f n d^{2}} \\ & \text { DELTAU2F }=\sqrt{\Delta U U_{r f n d}{ }^{2}+\Delta U \mathrm{Usfnd}^{2}} \\ & \text { DELTAU3F }=\sqrt{\Delta U \text { Trfnd }^{2}+\Delta U T j f d^{2}} \\ & \text { DELTAUSIGF }= \\ & \begin{aligned} & (\text { DELTAU1F + DELTAU2F } \\ & + \text { DELTAU3F) } / 3 \end{aligned} \end{aligned}$
Fundamental component of delta harmonic power DELTAP1F   DELTAP2F   DELTAP3F   DELTAPSIGF	Fundamental power wave of each phase computed in a three-phase three-wire (3V3A or 3V3AR) system and the fundamental power waveform of the wiring unit	

$\Delta$ URrfnd, $\Delta$ URjfnd, $\Delta$ USrfnd, $\Delta U S j f n d, \Delta U T r f n d$, and $\Delta U T j f n d$ in the above equations are the real part ( $r$ ) and the imaginary part (j) of the fundamental wave (first harmonic) of each phase voltage used in the equations.

Item	3V3A Wiring	3V3AR Wiring
$\Delta U R \mathrm{rfng}$	$\mathrm{U} 1 \mathrm{rfnd}-\frac{(\mathrm{U} 1 \mathrm{rfnd}+\mathrm{U} 2 \mathrm{rfnd})}{3}$	$-\mathrm{U} 1 \mathrm{rfnd}-\frac{(-\mathrm{U} 1 \mathrm{rfnd}+\mathrm{U} 2 \mathrm{rfnd})}{3}$
$\Delta U R j f n d$	$\mathrm{U} 1_{\mathrm{jfnd}}-\frac{\left(\mathrm{U} 1_{\mathrm{jfnd}}+\mathrm{U} 2_{\mathrm{jfnd}}\right)}{3}$	$-\mathrm{U} 1_{\mathrm{jfnd}}-\frac{\left(-\mathrm{U} 1_{\mathrm{jfnd}}+\mathrm{U} 2_{\mathrm{jfnd}}\right)}{3}$
$\Delta$ USrfnd	$\mathrm{U} 2 \mathrm{rfnd}-\frac{(\mathrm{U} 1 \mathrm{rfnd}+\mathrm{U} 2 \mathrm{rfnd})}{3}$	$\mathrm{U} 2 \mathrm{rfnd}-\frac{(-\mathrm{U} 1 \mathrm{rfnd}+\mathrm{U} 2 \mathrm{rfnd})}{3}$
$\Delta U s j f n d$	$\mathrm{U} 2 \mathrm{rfnd}-\frac{(\mathrm{U} 1 \mathrm{jfnd}+\mathrm{U} 2 \mathrm{jfnd})}{3}$	$\mathrm{U} 2 \mathrm{rfnd}-\frac{\left(-\mathrm{U} 1_{\mathrm{jfnd}}+\mathrm{U} 2 \mathrm{jfnd}\right)}{3}$
$\Delta U$ Trfnd	$\frac{(\mathrm{U} 1 \mathrm{rfnd}+\mathrm{U} 2 \mathrm{rfnd})}{3}$	$\frac{(-\mathrm{U} 1 \mathrm{rfnd}+\mathrm{U} 2 \mathrm{rfnd})}{3}$
$\Delta U T j$ fnd	$\frac{(\mathrm{U} 1 \mathrm{jfnd}+\mathrm{U} 2 \mathrm{jfnd})}{3}$	$\frac{(-\mathrm{U} 1 \mathrm{jfnd}+\mathrm{U} 2 \mathrm{jfnd})}{3}$

When delta computation is set to STAR->DELTA

Item	Symbols and Meanings	Formula
Fundamental component of delta harmonic voltage   DELTAU1F   DELTAU2F   DELTAU3F   DELTAUSIGF	Fundamental waveform of each line voltage computed in a three-phase four-wire system and the fundamental voltage wave of the wiring unit	$\begin{aligned} & \text { DELTAU1F }=\sqrt{(\mathrm{U} 1 \mathrm{rfnd}-\mathrm{U} 2 \mathrm{rfnd})^{2}+(\mathrm{U} 1 \mathrm{jfnd}-\mathrm{U} 2 \mathrm{jfnd})^{2}} \\ & \text { DELTAU2F }=\sqrt{(\mathrm{U} 2 \mathrm{rfnd}-\mathrm{U} 3 \mathrm{rfnd})^{2}+(\mathrm{U} 2 \mathrm{jfnd}-\mathrm{U} 3 \mathrm{jfnd})^{2}} \\ & \text { DELTAU3F }=\sqrt{(\mathrm{U} 3 \mathrm{rfnd}-\mathrm{U} 1 \mathrm{rfnd})^{2}+(\mathrm{U} 3 \mathrm{jfnd}-\mathrm{U} 1 \mathrm{jfnd})^{2}} \\ & \text { DELTAUSIGF }= \\ & \begin{aligned} & (\text { DELTAU1F + DELTAU2F } \\ & + \text { DELTAU3F) } / 3 \end{aligned} \end{aligned}$
Fundamental component of delta harmonic power DELTAP1F   DELTAP2F   DELTAP3F   DELTAPSIGF	-	-

The equations used in the delta harmonic calculation function assume the following:

- U1rfnd to U3rfnd, U1jfnd to U3jfnd, I1rfnd to I3rfnd, I1jfnd to I3jfnd represent the real parts (r) and the imaginary parts (j) of the fundamental waves (first harmonics) of the harmonic FFT computation results.
- If the wiring unit is composed of elements 1 to $3, \mathrm{U} 1 \mathrm{rfnd}, \mathrm{U} 1$ jfnd, I 1 rfnd , and I 1 jfnd are the FFT computation data of element 1; U2rfnd, U2jfnd, I2rfnd, and I2jfnd are the FFT computation data of element 2; and U3rfnd, U3jfnd, I3rfnd, and I3jfnd are the FFT computation data of element 3. If the wiring unit is composed of elements other than the above, replace the numbers $(1,2,3)$ accordingly.
- The number $(1,2,3)$ in the measurement functions of Delta harmonic computation, such as the " 1 " in DELTAU1F, is part of the measurement function symbol, and has nothing to do with the element.
Other restrictions
- Normal measurement mode is the only measurement mode that can be used for executing delta harmonic computation.
- Only the delta computation settings Delta>Star and Start>Delta can be used for executing Delta harmonic computation.
- Delta harmonic computation is output with the user-defined function.
- Delta harmonic computation is not executed on $\Sigma \mathrm{C}$.


## Measurement Functions Used in the IEC Harmonic Measurement (Option)

Measurement Function	Formula	
	When the frequency of   the measured item is 50 Hz	When the frequency of   the measured item is 60 Hz
Rms value of the harmonic   subgroup of the voltage   $U()[V]$	$\sqrt{\sum_{i=-1}^{1} U(k+i)^{2}}$	
Rms value of the harmonic   subgroup of the current   $I()[A]$	$\sqrt{\sum_{i=-1}^{1} l(k+i)^{2}}$	
Rms value of the harmonic   group of the voltage   $U()[V]$	$\sqrt{\frac{U(k-5)^{2}}{2}+\sum_{i=-4}^{4} U(k+i)^{2}+\frac{U(k+5)^{2}}{2}}$	$\sqrt{\frac{U(k-6)^{2}}{2}+\sum_{i=-5}^{5} U(k+i)^{2}+\frac{U(k+6)^{2}}{2}}$
Rms value of the harmonic   group of the current   $I()[A]$	$\sqrt{\frac{I(k-5)^{2}}{2}+\sum_{i=-4}^{4} l(k+i)^{2}+\frac{l(k+5)^{2}}{2}}$	$\sqrt{\frac{I(k-6)^{2}}{2}+\sum_{i=-5}^{5} l(k+i)^{2}+\frac{l(k+6)^{2}}{2}}$

## Note

k is the interharmonic order at 5 Hz steps.
For $50 \mathrm{~Hz}, \mathrm{k}=10,20,30 \cdots$
For 60 Hz, k = 12, 24, 36…
The displayed orders are $\frac{k}{10}$ for 50 Hz and $\frac{k}{12}$ for 60 Hz .
However, if the 1st order is displayed, the measurement functions are calculated from k , regardless of the grouping setting.

## Delta Computation Measurement Functions

Computed results are determined by substituting all of the sampled data in the table into the equations for voltage $U$ and current I.* The sync source used in delta computation is the same source as the source of the first input element (the input element with the smallest number) in the wiring unit that is subject to delta computation.

Measurement Function	Delta   Computation Type	Symbols and Meanings   The computation mode for $\Delta U 1$ to $\Delta U 3, \Delta U \Sigma$, and $\Delta \mathrm{l}$ can be set to rms, mean, dc, r-mean, or ac.		Substituted Sampled Data $u(t), i(t)$
Voltage [V]	Difference	Computed differential voltage	$\Delta \mathrm{U}$ [Udiff]	u1-u2
	3P3W $\rightarrow$ 3V3A	Unmeasured line voltage computed in a three-phase three-wire system	$\Delta \mathrm{U} 1$ [Urs]	u1-u2
	Delta $\rightarrow$ Star	Phase voltage computed in a three-phase three-wire (3V3A) system	$\Delta \mathrm{U} 1$ [Ur]	$u 1-\frac{(u 1+u 2)}{3}$
			$\Delta \mathrm{U}$ [Us]	$\mathrm{u} 2-\frac{(\mathrm{u} 1+\mathrm{u} 2)}{3}$
			$\Delta \mathrm{U} 3$ [Ut]	- $\frac{(\mathrm{u} 1+\mathrm{u} 2)}{3}$
		Phase voltage computed in a three-phase three-wire (3V3AR) system	$\Delta \mathrm{U} 1$ [Ur]	$-\mathrm{u} 1-\frac{(-\mathrm{u} 1+\mathrm{u} 2)}{3}$
			$\Delta \mathrm{U}$ [Us]	$\mathrm{u} 2-\frac{(-\mathrm{u} 1+\mathrm{u} 2)}{3}$
			$\Delta \mathrm{U} 3$ [Ut]	$-\frac{(-\mathrm{u} 1+\mathrm{u} 2)}{3}$
		Wiring unit voltage $\Delta \mathrm{U} \Sigma=\frac{(\Delta \mathrm{U} 1+\Delta \mathrm{U} 2+\Delta \mathrm{U} 3)}{3}$	$\Delta U \Sigma[U \Sigma]$	-
	Star $\rightarrow$ Delta	Line voltage calculated in a three-phase four-wire system	- U1[Urs]	u1-u2
			$\Delta \mathrm{U}$ [ [Ust]	u2-u3
			$\Delta \mathrm{U} 3$ [Utr]	u3-u1
		Wiring unit voltage $\Delta \mathrm{U} \Sigma=\frac{(\Delta \mathrm{U} 1+\Delta \mathrm{U} 2+\Delta \mathrm{U} 3)}{3}$	$\Delta U \Sigma[U \Sigma]$	-
Current [A]	Difference	Computed differential current	$\Delta I[1 d i f f]$	i1-i2
	$3 \mathrm{P} 3 \mathrm{~W} \rightarrow 3 \mathrm{~V} 3 \mathrm{~A}$	Unmeasured phase current	$\Delta I[I t]$	-i1-i2
	Delta $\rightarrow$ Star	Neutral line current	$\Delta \mathrm{l}[\mathrm{In}]$	i1 + i2 + i3
	Star $\rightarrow$ Delta	Neutral line current	$\Delta \mathrm{l}[\mathrm{In}]$	i1 + i2 + i3

(Continued on next page)
(Table 2/2)

Measurement Function	Delta   Computation Type	Symbols and Meanings   The computation mode for $\Delta \mathrm{U} 1$ to $\Delta \mathrm{U} 3, \Delta \mathrm{U}$, and $\Delta I$ can be set to rms, mean, dc, r-mean, or ac.		Substituted Sampled Data $u(t), i(t)$
Power [W]	Difference	-	-	-
	3P3W $\rightarrow 3$ V3A	-	-	-
	Delta $\rightarrow$ Star	Phase power computed in a three-phase three-wire (3V3A) system	$\Delta \mathrm{P} 1[\mathrm{Pr}]$	$\left\{u 1-\frac{(u 1+u 2)}{3}\right\} \cdot i 1$
			$\Delta \mathrm{P} 2[\mathrm{Ps}]$	$\left\{\mathrm{u} 2-\frac{(\mathrm{u} 1+\mathrm{u} 2)}{3}\right\} \cdot \mathrm{i} 2$
			$\Delta \mathrm{P} 3[\mathrm{Pt}]$	$\left\{-\frac{(\mathrm{u} 1+\mathrm{u} 2)}{3}\right\} \cdot \mathrm{i} 3$
		Phase power computed in a three-phase three-wire (3V3AR) system	$\Delta \mathrm{P} 1[\mathrm{Pr}]$	$\left\{-\mathrm{u} 1-\frac{(-\mathrm{u} 1+\mathrm{u} 2)}{3}\right\} \cdot \mathrm{i} 1$
			- P2[Ps]	$\left\{\mathrm{u} 2-\frac{(-\mathrm{u} 1+\mathrm{u} 2)}{3}\right\} \cdot \mathrm{i} 2$
			$\Delta \mathrm{P} 3[\mathrm{Pt}]$	$\left\{-\frac{(-\mathrm{u} 1+\mathrm{u} 2)}{3}\right\} \cdot \mathrm{i} 3$
		Wiring unit power $\Delta \mathrm{P} \Sigma=\Delta \mathrm{P} 1+\Delta \mathrm{P} 2+\Delta \mathrm{P} 3$	$\Delta \mathrm{P}[$ [P乏]	-
	Star $\rightarrow$ Delta	-	-	-

For the 3 P3W $\rightarrow 3$ V3A computation, it is assumed that $\mathrm{i} 1+\mathrm{i} 2+\mathrm{i} 3=0$.
For the Delta $\rightarrow$ Star computation, it is assumed that the center of the delta connection is computed as the center of the star connection.

* The equations for voltage $U$ and current I listed in "Symbols and Determination of Measurement Functions"


## Note

- u1, u2, and u3 represent the sampled voltage data of elements 1,2 , and 3 , respectively. i1, i2, and i3 represent the sampled current data of elements 1,2 , and 3 , respectively.
- The numbers $(1,2$, and 3$)$ that are attached to delta computation measurement function symbols have no relation to the element numbers.
- For details on the rms, mean, dc, rmean, and ac equations of delta computation mode, see page 1 of the appendix.
- We recommend that you set the measurement range and scaling (conversion ratios and coefficients) of the elements that are undergoing delta computation as closely as possible. Using different measurement ranges or scaling causes the measurement resolutions of the sampled data to be different. This results in errors.


## Measurement Functions Used in the Motor Evaluation Function (Option)

Measurement Function	Methods of Determination and Equation
Rotating speed	When the input signal from the revolution sensor is DC voltage (an analog signal): S(AX + B - NULL)   S: scaling factor   A: slope of the input signal   $X$ : input voltage from the revolution sensor   $B$ : offset   NULL: null value
	When the input signal from the revolution sensor is the number of pulses: $\mathrm{S}\left(\frac{\mathrm{X}}{\mathrm{~N}}-\mathrm{NULL}\right)$   S : scaling factor   X: number of input pulses from the revolution sensor per minute   N : number of pulses per revolution   NULL: null value
Torque Torque	When the input signal from the torque meter is DC voltage (an analog signal): S(AX + B - NULL)   S: scaling factor   A: slope of the input signal   X : input voltage from the torque meter   B: offset   NULL: null value
	When the input signal from the torque meter is a pulse signal: $S(A X+B-N U L L)$
	S: scaling factor   A: torque pulse coefficient   X: pulse frequency   $B$ : torque pulse offset   NULL: null value   The instrument computes the torque pulse coefficient and torque pulse offset from torque values (the unit is $N \cdot m$ ) at the upper and lower frequency limits.   Normally use a scaling factor of 1 . If you are using a unit other than $N \cdot m$, set the unit conversion ratio.
Synchronous speed SyncSp	120 • the frequency of the frequency measurement source ( Hz )
	Number of motor poles   - The unit of synchronous speed is fixed to $\mathrm{min}^{-1}$ or rpm.   - Normally use the voltage or current supplied by the motor as the frequency measurement source. If you use any other signals, the synchronous speed may not be computed correctly.
SlipSlip   $[\%]$	$\frac{\text { SyncSp }- \text { Speed }}{\text { SyncSp }} \cdot 100$
Motor Output Pm	$\frac{2 \pi \cdot \text { Speed } \cdot \text { Torque }}{60}$. Scaling coefficient   When the unit of speed is $\mathbf{~ m i n}-1$ or rpm, the unit of torque is $\mathrm{N} \cdot \mathrm{m}$, and the scaling factor is 1 , the unit of motor output Pm is $\mathbf{W}$.

Use the efficiency equation and the user-defined functions to set the motor efficiency and total efficiency.

## Note

The sign of the rotating speed is as follows:

- When the MTR configuration is single motor (revolution signal: pulse), the sign of the rotating speed is determined by the A-phase pulse applied to $\mathrm{Ch} \mathrm{B} / \mathrm{Ch} \mathrm{F} \mathrm{and} \mathrm{the} \mathrm{B-phase} \mathrm{pulse} \mathrm{applied} \mathrm{to} \mathrm{Ch} \mathrm{C} / \mathrm{Ch} \mathrm{G}$. At the rising edge of the A-phase pulse, when the B-phase pulse level is low, the speed is positive. When the pulse level is high, the speed is negative.
 Sign of the revolution signal: +


Sign of the revolution signal: -

- When the MTR configuration is single motor (revolution signal: analog), the sign of the rotating speed is determined by the signal applied to Ch C/Ch G.
- When the MTR configuration is double motor, the sign of the revolution signal is always positive.


## Measurement Functions for Auxiliary Input (Option)

Measurement Function	Methods of Determination and Equation
AUX1 to 8	When the input signal is DC voltage (an analog signal):   S(AX + B - NULL)   S: scaling factor   A: slope of the external signal   X: average value of the external signal's input voltage   B: offset   NULL: null value
	When the input signal is a pulse signal:   S(AX + B - NULL)   S: scaling factor   A: pulse coefficient   X: pulse frequency   B: offset   NULL: null value

## Measuring Range

Measurement Function	Description
RngU [V]	Voltage measurement range
Rngl [A]	Current measurement range
RngSpd [V]	Speed measurement range
RngTrq [V]	Torque measurement range
RngAux [V]	Aux measurement range

## Timestamp

Measurement Function	Description
TS Date	Date of the update interval start time YYYY/MM/DD
TS Time	Time of the update the interval start time hh:mm:ss
TS Subsec	Fractions of seconds of the update interval start time $[\mu s e c]$

## Appendix 2 Power Basics (Power, harmonics, and AC RLC circuits)

This section explains the basics of power, harmonics, and AC RLC circuits.

## Power

Electrical energy can be converted into other forms of energy and used. For example, it can be converted into the heat in an electric heater, the torque in a motor, or the light in a fluorescent or mercury lamp. In these kinds of examples, the work that electricity performs in a given period of time (or the electrical energy expended) is referred to as electric power. The unit of electric power is watts (W). 1 watt is equivalent to 1 joule of work performed in 1 second.

## DC Power

The DC power $P$ (in watts) is determined by multiplying the applied voltage $U$ (in volts) by the current I (in amps).

$$
\mathrm{P}=\mathrm{UI} \text { [W] }
$$

In the example below, the amount of electrical energy determined by the equation above is retrieved from the power supply and consumed by resistance $R$ (in ohms) every second.


## Alternating Current

Normally, the power supplied by power companies is alternating current with sinusoidal waveforms.
The magnitude of alternating current can be expressed using values such as instantaneous, maximum, rms, and mean values. Normally, it is expressed using rms values.
The instantaneous value i of a sinusoidal alternating current is expressed by Imsinwt (where Im is the amplitude of the current, $\omega$ is the angular velocity defined as $\omega=2 \pi f$, and $f$ is the frequency of the sinusoidal alternating current). The thermal action of this alternating current is proportional to $\mathrm{i}^{2}$, and varies as shown in the figure below.*

* Thermal action is the phenomenon in which electric energy is converted to heat energy when a current flows through a resistance.


The rms value (effective value) is the DC value that generates the same thermal action as the alternating current. With I as the DC value that produces the same thermal action as the alternating current:
$I=\sqrt{\text { The mean of } i^{2} \text { over one period }}=\sqrt{\frac{1}{2 \pi} \int_{0}^{2 \pi} i^{2} d \omega t}=\frac{\operatorname{lm}}{\sqrt{2}}$
Because this value corresponds to the root mean square of the instantaneous values over 1 period, the effective value is normally denoted using the abbreviation "rms."

To determine the mean value, the average is taken over 1 period of absolute values, because simply taking the average over 1 period of the sine wave results in a value of zero. With Imn as the mean value of the instantaneous current $i$ (which is equal to Imsin $\omega t$ ):
$I_{m n}=$ The mean of $|i|$ over one period $=\frac{1}{2 \pi} \int_{0}^{2 \pi}|i| d \omega t=\frac{2}{\pi} I_{m}$

These relationships also apply to sinusoidal voltages.
The maximum value, rms value, and mean value of a sinusoidal alternating current are related as shown below. The crest factor and form factor are used to define the tendency of an AC waveform.

## Crest factor $=\frac{\text { Maximum value }}{\text { Rms value }}$

Form factor $=\frac{\text { Rms value }}{\text { Mean value }}$

## Phasor Display of Alternating Current

In general, instantaneous voltage and current values are expressed using the equations listed below.
Voltage: $u=$ Umsin $\omega \mathrm{t}$
Current: $\mathrm{i}=\mathrm{Imsin}(\omega \mathrm{t}-\Phi)$
The time offset between the voltage and current is called the phase difference, and $\Phi$ is the phase angle. The time offset is mainly caused by the load that the power is supplied to. In general, the phase difference is zero when the load is purely resistive. The current lags the voltage when the load is inductive (is coiled). The current leads the voltage when the load is capacitive.

When the current lags the voltage



A phasor display is used to clearly convey the magnitude and phase relationships between the voltage and current.
In phasor display, the voltage and current are expressed using the following equations.
Voltage: Ue ${ }^{\mathrm{j}}{ }^{0}$
Current: le ${ }^{-j \phi}$
(Euler's formula $e^{j \Phi}=\cos \Phi+j \sin \Phi \quad j$ : complex number)
In this manual, phasor magnitudes $U$ and $I$ represent rms values.
A positive phase angle is represented by a counterclockwise angle with respect to the vertical axis.

When the current lags the voltage


When the current leads the voltage


## Three-Phase AC Wiring

Generally three-phase AC power lines are connected in star wiring configurations or delta wiring configurations.



## Phasor Display of Three-Phase Alternating Current

In typical three-phase AC power, the voltage of each phase is offset by $120^{\circ}$. The figure on the left below illustrates this relationship in a phasor diagram. The voltage of each phase is called the phase voltage, and the voltage between each phase is called the line voltage.


If a power supply or load is connected in a delta wiring configuration and no neutral line is present, the phase voltage cannot be measured. In this case, the line voltage is measured. Sometimes the line voltage is also measured when measuring three-phase AC power using two single-phase wattmeters (the two-wattmeter method).
If the magnitude of each phase voltage is equal and each phase is offset by $120^{\circ}$, the magnitude of the line voltage is $\sqrt{3}$ times the magnitude of the phase voltage, and the line voltage phase is offset by $30^{\circ}$ (the figure on the right above).

Below is a phasor diagram of the relationship between the phase voltages and line currents of a threephase AC voltage when the current lags the voltage by $\Phi^{\circ}$.


## AC Power

AC power cannot be determined as easily as DC power, because of the phase difference between the voltage and current caused by load.

## Instantaneous Power

If the instantaneous voltage $u=U m s i n \omega t$ and the instantaneous current $i=I m \sin (\omega t-\Phi)$, the instantaneous $A C$ power $p$ is as follows:
$p=u \times i=U_{m} \sin \omega t \times I_{m} \sin (\omega t-\Phi)=U I \cos \Phi-U I \cos (2 \omega t-\Phi)$
$U$ and I represent the rms voltage and rms current, respectively.
$p$ is the sum of the time-independent term, Ulcos $\Phi$, and the $A C$ component term of the voltage or current at twice the frequency, $-U \cos (2 \omega t-\Phi)$.

## Active Power P

The true power that a device consumes is called active power P (or effective power). It is the mean of the instantaneous power values described above over 1 period.

$$
\mathrm{P}=\mathrm{Ul} \cos \Phi[\mathrm{~W}]
$$

Active power is the power that a device consumes.

## Apparent Power S

In alternating electrical current, not all of the power calculated by the product of voltage and current, UI , is consumed. The product of U and I is called the apparent power. It is expressed as S .
S = UI [VA]

The unit of apparent power is the volt-ampere (VA). The apparent power is used to express the electrical capacity of a device that runs on AC electricity.

## Reactive Power Q

Of the apparent power, the power that is not consumed by the device and goes back and forth between the power supply and the load is called reactive power $Q$. If current I lags voltage $U$ by $\Phi$, current I can be broken down into a component in the same direction as voltage U , $\operatorname{lcos} \Phi$, and a perpendicular component, Isin $\Phi$. Active power P, which is equal to UIcos $\Phi$, is the product of voltage $U$ and the current component $I \cos \Phi$. Reactive power is the product of voltage $U$ and the current component $\operatorname{Isin} \Phi$, and its unit is the var.

$$
\mathrm{Q}=\mathrm{Ul} \sin \Phi[\mathrm{var}]
$$



## Power Factor $\lambda$

$\cos \Phi$ in the active power equation indicates the portion of the apparent power that becomes active power and is called the power factor $\lambda$.

The relationship between $S$, the apparent power, $P$, the active power, and $Q$, the reactive power is as follows:

$$
S^{2}=P^{2}+Q^{2}
$$

## Influence of Phase Difference $\Phi$

Even if the voltage and current are the same, the active power varies depending on the phase difference $\Phi$. The section above the horizontal axis in the figure below represents positive power (power supplied to the load), and the section below the horizontal axis represents negative power (power fed back from the load). The difference between the positive and negative powers is the active power consumed by the load. As the phase difference between the voltage and current increases, the negative power increases. At $\Phi=\pi / 2$, the positive and negative powers are equal, and the load consumes no power.

When the phase difference between voltage and current is 0


When the phase difference between voltage and current is $\Phi$


When phase difference between voltage and current is $\frac{\pi}{2}$


## Harmonics

Harmonics refer to all sine waves whose frequency is an integer multiple of the fundamental wave (normally a 50 Hz or 60 Hz sinusoidal power line signal) except for the fundamental wave itself. The input currents that flow through the power rectification circuits, phase control circuits, and other circuits used in various kinds of electrical equipment generate harmonic currents and voltages in power lines. When the fundamental wave and harmonic waves are combined, waveforms become distorted, and interference sometimes occurs in equipment connected to the power line.

## Terminology

The terminology related to harmonics is described below.

- Fundamental wave (fundamental component)

The sine wave with the longest period among the different sine waves contained in a periodic complex wave. Or the sine wave that has the fundamental frequency within the components of the complex wave.

- Fundamental frequency

The frequency corresponding to the longest period in a periodic complex wave. The frequency of the fundamental wave.

- Distorted wave

A wave that differs from the fundamental wave.

- Higher harmonic

A sine wave with a frequency that is an integer multiple (twice or more) of the fundamental frequency.

- Harmonic component

A waveform component with a frequency that is an integer multiple (twice or more) of the fundamental frequency.

- Harmonic distortion factor

The ratio of the rms value of the specified nth order harmonic contained in the distorted wave to the rms value of the fundamental wave (or all signals).

- Harmonic order

The integer ratio of the harmonic frequency with respect to the fundamental frequency.

- Total harmonic distortion

The ratio of the rms value of all harmonics to the rms value of the fundamental wave (or all signals).

## Interference Caused by Harmonics

Some of the effects of harmonics on electrical devices and equipment are explained in the list below.

- Synchronization capacitors and series reactors

Harmonic current reduces circuit impedance. This causes excessive current flow, which can result in vibration, humming, overheat, or burnout.

- Cable

Harmonic current flow through the neutral line of a three-phase four-wire system will cause the neutral line to overheat.

- Voltage transformers

Harmonics cause magnetostrictive noise in the iron core and increase iron and copper loss.

- Circuit breakers and fuses

Excessive harmonic current can cause erroneous operation and blow fuses.

- Communication cables

The electromagnetic induction caused by harmonics creates noise voltage.

- Control devices

Harmonic distortion of control signals can lead to erroneous operation.

- Audio visual devices

Harmonics can cause degradation of performance and service life, noise-related video flickering, and damaged parts.

## AC RLC Circuits

## Resistance

The current i when an AC voltage whose instantaneous value $u=U_{m} \sin \omega t$ is applied to load resistance $R[\Omega]$ is expressed by the equation below. Im denotes the amplitude of the current.
$i=\frac{U_{m}}{R} \sin \omega t=I_{m} \sin \omega t$

Expressed using rms values, the equation is $I=U / R$.
There is no phase difference between the current flowing through a resistive circuit and the voltage.


## Inductance

The current $i$ when an AC voltage whose instantaneous value $u=U_{m} \sin \omega t$ is applied to a coil load of inductance $L[H]$ is expressed by the equation below.
$\mathrm{i}=\frac{\mathrm{U}_{\mathrm{m}}}{\mathrm{X}_{\mathrm{L}}} \sin \left(\omega \mathrm{t}-\frac{\pi}{2}\right)=\operatorname{Im} \sin \left(\omega t-\frac{\pi}{2}\right)$
Expressed using rms values, the equation is $I=U / X_{L}$. $X_{L}$ is called inductive reactance and is defined as $X_{L}=\omega L$. The unit of inductive reactance is $\Omega$.
Inductance works to counter current changes (increase or decrease), and causes the current to lag the voltage.


## Capacitance

The current $i$ when an AC voltage whose instantaneous value $u=U_{m} \sin \omega t$ is applied to capacitance C [F] is expressed by the equation below.
$i=\frac{U_{m}}{X c} \sin \left(\omega t+\frac{\pi}{2}\right)=I m \sin \left(\omega t+\frac{\pi}{2}\right)$
Expressed using rms values, the equation is $\mathrm{I}=\mathrm{U} / \mathrm{X}_{\mathrm{C}} . \mathrm{X}_{\mathrm{C}}$ is called capacitive reactance and is defined as $X_{C}=1 / \omega C$. The unit of capacitive reactance is $\Omega$.
When the polarity of the voltage changes, the largest charging current with the same polarity as the voltage flows through the capacitor. When the voltage decreases, discharge current with the opposite polarity of the voltage flows. Thus, the current phase leads the voltage.


## Series RLC Circuits

The equations below express the voltage relationships when resistance $R_{s}[\Omega]$, inductance $L[H]$, and capacitance C [F] are connected in series.

$$
\begin{aligned}
U & =\sqrt{\left(U_{R s}\right)^{2}+\left(U_{L}-U c\right)^{2}}=\sqrt{(I R s)^{2}+(I X L-I X c)^{2}} \\
& =I \sqrt{(R s)^{2}+\left(X_{L}-X c\right)^{2}}=I \sqrt{R S^{2}+X S^{2}} \\
& =\frac{U}{\sqrt{R S^{2}+\mathrm{XS}^{2}}}, \quad \Phi=\tan ^{-1} \frac{X \mathrm{~S}}{R s}
\end{aligned}
$$



The relationship between resistance $\mathrm{R}_{\mathrm{s}}$, reactance $\mathrm{X}_{\mathrm{s}}$, and impedance Z is expressed by the equations below.
$X s=X L-X c$
$Z=\sqrt{R S^{2}+X S^{2}}$

## Parallel RLC Circuits

The equations below express the current relationships when resistance $R_{P}[\Omega]$, inductance $L[H]$, and capacitance C [F] are connected in parallel.
$\mathrm{I}=\sqrt{(\mathrm{IRP})^{2}+(\mathrm{IL}-\mathrm{Ic})^{2}}=\sqrt{\left(\frac{\mathrm{U}}{\mathrm{RP}_{\mathrm{P}}}\right)^{2}+\left(\frac{\mathrm{U}}{\mathrm{XL}_{\mathrm{L}}}-\frac{\mathrm{U}}{\mathrm{Xc}}\right)^{2}}$
$=U \sqrt{\left(\frac{1}{R_{P}}\right)^{2}+\left(\frac{1}{X_{L}}-\frac{1}{X_{C}}\right)^{2}}=U \sqrt{\left(\frac{1}{R_{P}}\right)^{2}+\left(\frac{1}{X_{P}}\right)^{2}}$
$U=\frac{I_{P} X_{P}}{\sqrt{R_{P}{ }^{2}+X_{P}{ }^{2}}}, \quad \Phi=\tan ^{-1} \frac{R_{P}}{X_{P}}$


The relationship between resistance $R_{P}$, reactance $X_{P}$, and impedance $Z$ is expressed by the equations below.
$X_{P}=\frac{X_{L} X_{c}}{X_{c}-X_{L}}$
$Z=\frac{R_{P} X_{P}}{\sqrt{R_{P}{ }^{2}+X P P^{2}}}$

## Appendix 3 How to Make Accurate Measurements

## Effects of Power Loss

By wiring a circuit to match the load, you can minimize the effects of power loss on measurement accuracy. We will discuss the wiring of the DC power supply (SOURCE) and a load resistance (LOAD) below.

## When the Measured Current Is Relatively Large

Connect the voltage measurement circuit between the current measurement circuit and the load. The current measurement circuit measures the sum of $i_{L}$ and $\mathrm{iv}^{2}$ iL is the current flowing through the load of the circuit under measurement, and iv is the current flowing through the voltage measurement circuit. Because the current flowing through the circuit under measurement is $\mathrm{i}_{\mathrm{L}}$, only $\mathrm{iv}^{\text {r reduces measurement }}$ accuracy. The input resistance of the voltage measurement circuit of the instrument is approximately $10 \mathrm{M} \Omega$. For 1000 V input iv is approximately $0.1 \mathrm{~mA}(1000 \mathrm{~V} / 10 \mathrm{M} \Omega)$. If the load current $i_{L}$ is 1 A or more (the load resistance is $200 \Omega$ or less), the effect of iv on the measurement accuracy is $0.01 \%$ or less. If the input voltage is 100 V and the current is 1 A , $\mathrm{iv}=0.01 \mathrm{~mA}(100 \mathrm{~V} / 10 \mathrm{M} \Omega)$, so the effect of iv on the measurement accuracy is $0.001 \%(0.01 \mathrm{~mA} / 1 \mathrm{~A})$.


As a reference, the relationships between the voltages and currents that produce effects of $0.01 \%$, $0.001 \%$, and $0.0001 \%$ are shown in the figure below.


## When the Measured Current Is Relatively Small

Connect the current measurement circuit between the voltage measurement circuit and the load. In this case, the voltage measurement circuit measures the sum of $e_{L}$ and $e_{I} . e_{L}$ is the load voltage, and $\mathrm{e}_{\mathrm{I}}$ is the voltage drop across the current measurement circuit. Only eı reduces measurement accuracy. The input resistance of the current measurement circuit of the instrument is approximately $0.6 \Omega$ for the 5 A input terminals and approximately $5.5 \mathrm{~m} \Omega$ for the 30 A input terminals. If the load resistance is $1 \mathrm{k} \Omega$, the effect on the measurement accuracy is approximately $0.06 \%(0.6 \Omega / 1 \mathrm{k} \Omega)$ for the 5 A input terminals and approximately $0.00055 \%(5.5 \mathrm{~m} \Omega / 1 \mathrm{k} \Omega)$ for the 30 A input terminals.


## Effects of Stray Capacitance

The effects of stray capacitance on measurement accuracy can be minimized by connecting the instrument's current input terminal to the side of the power supply (SOURCE) that is closest to its earth potential.

The internal structure of the instrument is explained below.
In the 760901 and 760902, the voltage and current measurement circuits are each enclosed in shielded cases. In the 760903, the voltage measurement circuit is enclosed in a shielded case. These shielded cases are contained within an outer case. The shielded case of the voltage measurement circuit is connected to the positive and negative voltage input terminals, and the shielded case of the current measurement circuit is connected to the positive and negative current input terminals.
Because the outer case is insulated from the shielded cases, there is stray capacitance, which is expressed as Cs. Cs is approximately 40 pF . The current generated by stray capacitance Cs causes errors.


As an example, we will consider the case when the outer case and one side of the power supply are grounded. In this case, there are two conceivable current flows, $\mathrm{i}_{\mathrm{L}}$ and $\mathrm{i}_{\mathrm{cs}}$. $\mathrm{i}_{\mathrm{L}}$ is the load current, and $\mathrm{i}_{\mathrm{cs}}$ is the current that flows through the stray capacitance. iL flows through the current measurement circuit, then through the load, and returns to the power supply (shown with a dotted line). ics flows through the current measurement circuit, the stray capacitance, and the earth ground of the outer case, and then returns to the power supply (shown with a dot-dash line).
Therefore, the current measurement circuit ends up measuring the sum of $i_{L}$ and $i_{c s}$, even if the objective is just to measure $\mathrm{i}_{\mathrm{L}}$. Only $\mathrm{i}_{\mathrm{cs}}$ reduces measurement accuracy. If the voltage applied to Cs is $V_{\text {cs }}$ (common mode voltage), ics can be found using the equation shown below. Because the phase of ics is ahead of the voltage by $90^{\circ}$, the effect of ics on the measurement accuracy increases as the power factor gets smaller.


Because the instrument measures high frequencies, the effects of ics cannot be ignored. If you connect the instrument's current input terminal to the side of the power supply (SOURCE) that is close to its earth potential, the instrument's current measurement circuit positive and negative terminals are close to the earth potential, so $\mathrm{V}_{\mathrm{cs}}$ becomes approximately zero and very little $\mathrm{i}_{\mathrm{cs}}$ flows. This reduces the effect on measurement accuracy.

## Appendix 4 Power Range

The following tables show the ranges of the active power (unit: W ) when the voltage ranges and current ranges of the elements making up a wiring unit are the same. The same ranges are set for apparent power (unit: VA) and reactive power (unit: var). Just read the unit as VA or var. The number of displayed digits (display resolution) is six for numbers up to 600000 and five digits for larger numbers.

## 760901, 760902

## When the Crest Factor Is Set to CF3

 Active Power Range of Each Element| Current Range | Voltage Range [V] |  |  |  |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| [A] | $\mathbf{1 . 5 0 0 0 0}$ | $\mathbf{3 . 0 0 0 0 0}$ | $\mathbf{6 . 0 0 0 0 0}$ | $\mathbf{1 0 . 0 0 0 0}$ | $\mathbf{1 5 . 0 0 0 0}$ | $\mathbf{3 0 . 0 0 0 0}$ |
| $\mathbf{5 . 0 0 0 0 0 m}$ | 7.5000 mW | 15.0000 mW | 30.0000 mW | 50.0000 mW | 75.000 mW | 150.000 mW |
| $\mathbf{1 0 . 0 0 0 0 m}$ | 15.0000 mW | 30.0000 mW | 60.0000 mW | 100.000 mW | 150.000 mW | 300.000 mW |
| $\mathbf{2 0 . 0 0 0 0 m}$ | 30.0000 mW | 60.0000 mW | 120.000 mW | 200.000 mW | 300.000 mW | 600.000 mW |
| $\mathbf{5 0 . 0 0 0 0 m}$ | 75.000 mW | 150.000 mW | 300.000 mW | 500.000 mW | 0.75000 W | 1.50000 W |
| $\mathbf{1 0 0 . 0 0 0}$ | 150.000 mW | 300.000 mW | 600.000 mW | 1.00000 W | 1.50000 W | 3.00000 W |
| $\mathbf{2 0 0 . 0 0 0 m}$ | 300.000 mW | 600.000 mW | 1.20000 W | 2.00000 W | 3.00000 W | 6.00000 W |
| $\mathbf{5 0 0 . 0 0 0 m}$ | 0.75000 W | 1.50000 W | 3.00000 W | 5.00000 W | 7.5000 W | 15.0000 W |
| $\mathbf{1 . 0 0 0 0 0}$ | 1.50000 W | 3.00000 W | 6.00000 W | 10.0000 W | 15.0000 W | 30.0000 W |
| $\mathbf{2 . 0 0 0 0 0}$ | 3.00000 W | 6.00000 W | 12.0000 W | 20.0000 W | 30.0000 W | 60.0000 W |
| $\mathbf{5 . 0 0 0 0 0}$ | 7.5000 W | 15.0000 W | 30.0000 W | 50.0000 W | 75.000 W | 150.000 W |
| $\mathbf{1 0 . 0 0 0 0}$ | 15.0000 W | 30.0000 W | 60.0000 W | 100.000 W | 150.000 W | 300.000 W |
| $\mathbf{2 0 . 0 0 0 0}$ | 30.0000 W | 60.0000 W | 120.000 W | 200.000 W | 300.000 W | 600.000 W |
| $\mathbf{3 0 . 0 0 0 0}$ | 45.0000 W | 90.000 W | 180.000 W | 300.000 W | 450.000 W | 0.90000 kW |


Current Range	Voltage Range [V]					
[A]	$\mathbf{6 0 . 0 0 0 0}$	$\mathbf{1 0 0 . 0 0 0}$	$\mathbf{1 5 0 . 0 0 0}$	$\mathbf{3 0 0 . 0 0 0}$	$\mathbf{6 0 0 . 0 0 0}$	$\mathbf{1 0 0 0 . 0 0}$
$\mathbf{5 . 0 0 0 0 0 m}$	300.000 mW	500.000 mW	750.00 mW	1.50000 W	3.00000 W	5.00000 W
$\mathbf{1 0 . 0 0 0 0}$	600.000 mW	1.00000 W	1.50000 W	3.00000 W	6.00000 W	10.0000 W
$\mathbf{2 0 . 0 0 0 0} \mathbf{m}$	1.20000 W	2.00000 W	3.00000 W	6.00000 W	12.0000 W	20.0000 W
$\mathbf{5 0 . 0 0 0 0}$	3.00000 W	5.00000 W	7.5000 W	15.0000 W	30.0000 W	50.0000 W
$\mathbf{1 0 0 . 0 0 0 m}$	6.00000 W	10.0000 W	15.0000 W	30.0000 W	60.0000 W	100.000 W
$\mathbf{2 0 0 . 0 0 0}$	12.0000 W	20.0000 W	30.0000 W	60.0000 W	120.000 W	200.000 W
$\mathbf{5 0 0 . 0 0 0}$	30.0000 W	50.0000 W	75.000 W	150.000 W	300.000 W	500.000 W
$\mathbf{1 . 0 0 0 0 0}$	60.0000 W	100.000 W	150.000 W	300.000 W	600.000 W	1.00000 kW
$\mathbf{2 . 0 0 0 0 0}$	120.000 W	200.000 W	300.000 W	600.000 W	1.20000 kW	2.00000 kW
$\mathbf{5 . 0 0 0 0 0}$	300.000 W	500.000 W	0.75000 kW	1.50000 kW	3.00000 kW	5.00000 kW
$\mathbf{1 0 . 0 0 0 0}$	600.000 W	1.00000 kW	1.50000 kW	3.00000 kW	6.00000 kW	10.0000 kW
$\mathbf{2 0 . 0 0 0 0}$	1.20000 kW	2.00000 kW	3.00000 kW	6.00000 kW	12.0000 kW	20.0000 kW
$\mathbf{3 0 . 0 0 0 0}$	1.80000 kW	3.00000 kW	4.50000 kW	9.0000 kW	18.0000 kW	30.0000 kW

Active Power Range of a Wiring Unit with a 1P3W, 3P3W, 3P3W (3V3A), or 3P3W (3V3AR) Wiring System

Current Range	Voltage Range [V]					
[A]	1.50000	3.00000	6.00000	10.0000	15.0000	30.0000
5.00000 m	15.0000 mW	30.0000 mW	60.0000 mW	100.0000 mW	150.000 mW	300.000 mW
10.0000 m	30.0000 mW	60.0000 mW	120.0000 mW	200.000 mW	300.000 mW	600.000 mW
20.0000 m	60.0000 mW	120.0000 mW	240.000 mW	400.000 mW	600.000 mW	1200.000 mW
50.0000 m	150.000 mW	300.000 mW	600.000 mW	1000.000 mW	1.50000 W	3.00000 W
100.000 m	300.000 mW	600.000 mW	1200.000 mW	2.00000 W	3.00000 W	6.00000 W
200.000 m	600.000 mW	1200.000 mW	2.40000 W	4.00000 W	6.00000 W	12.00000 W
500.000 m	1.50000 W	3.00000 W	6.00000 W	10.00000 W	15.0000 W	30.0000 W
1.00000	3.00000 W	6.00000 W	12.00000 W	20.0000 W	30.0000 W	60.0000 W
2.00000	6.00000 W	12.00000 W	24.0000 W	40.0000 W	60.0000 W	120.0000 W
5.00000	15.0000 W	30.0000 W	60.0000 W	100.0000 W	150.000 W	300.000 W
10.0000	30.0000 W	60.0000 W	120.0000 W	200.000 W	300.000 W	600.000 W
20.0000	60.0000 W	120.0000 W	240.000 W	400.000 W	600.000 W	1200.000 W
30.0000	90.0000 W	180.000 W	360.000 W	600.000 W	900.000 W	1.80000 kW


Current   Range	Voltage Range [V]   [A]$\quad \mathbf{6 0 . 0 0 0 0}$					
$\mathbf{5 . 0 0 0 0 0 m}$	600.000 mW	1000.000 mW	1.50000 W	3.00000 W	6.00000 W	10.00000 W
$\mathbf{1 0 . 0 0 0 0 m}$	1200.000 mW	2.00000 W	3.00000 W	6.00000 W	12.00000 W	20.0000 W
$\mathbf{2 0 . 0 0 0 0 m}$	2.40000 W	4.00000 W	6.00000 W	12.00000 W	24.0000 W	40.0000 W
$\mathbf{5 0 . 0 0 0 0 m}$	6.00000 W	10.00000 W	15.0000 W	30.0000 W	60.0000 W	100.0000 W
$\mathbf{1 0 0 . 0 0 0}$	12.00000 W	20.0000 W	30.0000 W	60.0000 W	120.0000 W	200.000 W
$\mathbf{2 0 0 . 0 0 0 m}$	24.0000 W	40.0000 W	60.0000 W	120.0000 W	240.000 W	400.000 W
$\mathbf{5 0 0 . 0 0 0}$	60.0000 W	100.0000 W	150.000 W	300.000 W	600.000 W	1000.000 W
$\mathbf{1 . 0 0 0 0 0}$	120.0000 W	200.000 W	300.000 W	600.000 W	1200.000 W	2.00000 kW
$\mathbf{2 . 0 0 0 0 0}$	240.000 W	400.000 W	600.000 W	1200.000 W	2.40000 kW	4.00000 kW
$\mathbf{5 . 0 0 0 0 0}$	600.000 W	1000.000 W	1.50000 kW	3.00000 kW	6.00000 kW	10.00000 kW
$\mathbf{1 0 . 0 0 0 0}$	1200.000 W	2.00000 kW	3.00000 kW	6.00000 kW	12.00000 kW	20.0000 kW
$\mathbf{2 0 . 0 0 0 0}$	2.40000 kW	4.00000 kW	6.00000 kW	12.00000 kW	24.0000 kW	40.0000 kW
$\mathbf{3 0 . 0 0 0 0}$	3.60000 kW	6.00000 kW	9.00000 kW	18.0000 kW	36.0000 kW	60.0000 kW

## Active Power Range of a Wiring Unit with a 3P4W Wiring System

Current	Voltage Range [V]					
[A]	1.50000	3.00000	6.00000	10.0000	15.0000	30.0000
5.00000 m	22.5000 mW	45.0000 mW	90.0000 mW	150.0000 mW	225.000 mW	450.000 mW
10.0000 m	45.0000 mW	90.0000 mW	180.0000 mW	300.000 mW	450.000 mW	900.000 mW
20.0000 m	90.0000 mW	180.0000 mW	360.000 mW	600.000 mW	900.000 mW	1800.000 mW
50.0000 m	225.000 mW	450.000 mW	900.000 mW	1500.000 mW	2.25000 W	4.50000 W
100.000 m	450.000 mW	900.000 mW	1800.000 mW	3.00000 W	4.50000 W	9.00000 W
200.000 m	900.000 mW	1800.000 mW	3.60000 W	6.00000 W	9.00000 W	18.00000 W
500.000 m	2.25000 W	4.50000 W	9.00000 W	15.00000 W	22.5000 W	45.0000 W
1.00000	4.50000 W	9.00000 W	18.00000 W	30.0000 W	45.0000 W	90.0000 W
2.00000	9.00000 W	18.00000 W	36.0000 W	60.0000 W	90.0000 W	180.0000 W
5.00000	22.5000 W	45.0000 W	90.0000 W	150.0000 W	225.000 W	450.000 W
10.0000	45.0000 W	90.0000 W	180.0000 W	300.000 W	450.000 W	900.000 W
20.0000	90.0000 W	180.0000 W	360.000 W	600.000 W	900.000 W	1800.000 W
30.0000	135.0000 W	270.000 W	540.000 W	900.000 W	1350.000 W	2.70000 kW


Current   Range	Voltage Range [V]					
[A]	$\mathbf{6 0 . 0 0 0 0}$	$\mathbf{1 0 0 . 0 0 0}$	$\mathbf{1 5 0 . 0 0 0}$	$\mathbf{3 0 0 . 0 0 0}$	$\mathbf{6 0 0 . 0 0 0}$	$\mathbf{1 0 0 0 . 0 0}$
$\mathbf{5 . 0 0 0 0 0 m}$	900.000 mW	1500.000 mW	2.25000 W	4.50000 W	9.00000 W	15.00000 W
$\mathbf{1 0 . 0 0 0 0 m}$	1800.000 mW	3.00000 W	4.50000 W	9.00000 W	18.00000 W	30.0000 W
$\mathbf{2 0 . 0 0 0 0 m}$	3.60000 W	6.00000 W	9.00000 W	18.00000 W	36.0000 W	60.0000 W
$\mathbf{5 0 . 0 0 0 0 m}$	9.00000 W	15.00000 W	22.5000 W	45.0000 W	90.0000 W	150.0000 W
$\mathbf{1 0 0 . 0 0 0}$	18.00000 W	30.0000 W	45.0000 W	90.0000 W	180.0000 W	300.000 W
$\mathbf{2 0 0 . 0 0 0}$	36.0000 W	60.0000 W	90.0000 W	180.0000 W	360.000 W	600.000 W
$\mathbf{5 0 0 . 0 0 0}$	90.0000 W	150.0000 W	225.000 W	450.000 W	900.000 W	1500.000 W
$\mathbf{1 . 0 0 0 0 0}$	180.0000 W	300.000 W	450.000 W	900.000 W	1800.000 W	3.00000 kW
$\mathbf{2 . 0 0 0 0 0}$	360.000 W	600.000 W	900.000 W	1800.000 W	3.60000 kW	6.00000 kW
$\mathbf{5 . 0 0 0 0 0}$	900.000 W	1500.000 W	2.25000 kW	4.50000 kW	9.00000 kW	15.00000 kW
$\mathbf{1 0 . 0 0 0 0}$	1800.000 W	3.00000 kW	4.50000 kW	9.00000 kW	18.00000 kW	30.0000 kW
$\mathbf{2 0 . 0 0 0 0}$	3.60000 kW	6.00000 kW	9.00000 kW	18.00000 kW	36.0000 kW	60.0000 kW
$\mathbf{3 0 . 0 0 0 0}$	5.40000 kW	9.00000 kW	13.50000 kW	27.0000 kW	54.0000 kW	90.0000 kW

## When the Crest Factor Is Set to CF6 or CF6A

## Active Power Range of Each Element

Current	Voltage Range [V]					
[A]	0.75000	1.50000	3.00000	5.00000	7.5000	15.0000
2.50000 m	1.87500 mW	3.75000 mW	7.5000 mW	12.5000 mW	18.7500 mW	37.5000 mW
5.00000 m	3.75000 mW	7.5000 mW	15.0000 mW	25.0000 mW	37.5000 mW	75.000 mW
10.0000 m	7.5000 mW	15.0000 mW	30.0000 mW	50.0000 mW	75.000 mW	150.000 mW
25.0000 m	18.7500 mW	37.5000 mW	75.000 mW	125.000 mW	187.500 mW	375.000 mW
50.0000 m	37.5000 mW	75.000 mW	150.000 mW	250.000 mW	375.000 mW	0.75000 W
100.000 m	75.000 mW	150.000 mW	300.000 mW	500.000 mW	0.75000 W	1.50000 W
250.000 m	187.500 mW	375.000 mW	0.75000 W	1.25000 W	1.87500 W	3.75000 W
500.000 m	375.000 mW	0.75000 W	1.50000 W	2.50000 W	3.75000 W	7.5000 W
1.00000	0.75000 W	1.50000 W	3.00000 W	5.00000 W	7.5000 W	15.0000 W
2.50000	1.87500 W	3.75000 W	7.5000 W	12.5000 W	18.7500 W	37.5000 W
5.00000	3.75000 W	7.5000 W	15.0000 W	25.0000 W	37.5000 W	75.000 W
10.0000	7.5000 W	15.0000 W	30.0000 W	50.0000 W	75.000 W	150.000 W
15.0000	11.2500 W	22.5000 W	45.0000 W	75.000 W	112.500 W	225.000 W


Current	Voltage Range [V]					
[A]	30.0000	50.0000	75.000	150.000	300.000	500.000
2.50000 m	75.000 mW	125.000 mW	187.500 mW	375.000 mW	0.75000 W	1.25000 W
5.00000 m	150.000 mW	250.000 mW	375.000 mW	0.75000 W	1.50000 W	2.50000 W
10.0000 m	300.000 mW	500.000 mW	0.75000 W	1.50000 W	3.00000 W	5.00000 W
25.0000 m	0.75000 W	1.25000 W	1.87500 W	3.75000 W	7.5000 W	12.5000 W
50.0000 m	1.50000 W	2.50000 W	3.75000 W	7.5000 W	15.0000 W	25.0000 W
100.000 m	3.00000 W	5.00000 W	7.5000 W	15.0000 W	30.0000 W	50.0000 W
250.000 m	7.5000 W	12.5000 W	18.7500 W	37.5000 W	75.000 W	125.000 W
500.000 m	15.0000 W	25.0000 W	37.5000 W	75.000 W	150.000 W	250.000 W
1.00000	30.0000 W	50.0000 W	75.000 W	150.000 W	300.000 W	500.000 W
2.50000	75.000 W	125.000 W	187.500 W	375.000 W	0.75000 kW	1.25000 kW
5.00000	150.000 W	250.000 W	375.000 W	0.75000 kW	1.50000 kW	2.50000 kW
10.0000	300.000 W	500.000 W	0.75000 kW	1.50000 kW	3.00000 kW	5.00000 kW
15.0000	450.000 W	0.75000 kW	1.12500 kW	2.25000 kW	4.50000 kW	7.5000 kW

Active Power Range of a Wiring Unit with a 1P3W, 3P3W, 3P3W (3V3A), or 3P3W (3V3AR) Wiring System

Current	Voltage Range [V]					
[A]	0.75000	1.50000	3.00000	5.00000	7.5000	15.0000
2.50000 m	3.75000 mW	7.50000 mW	15.0000 mW	25.0000 mW	37.5000 mW	75.0000 mW
5.00000 m	7.50000 mW	15.0000 mW	30.0000 mW	50.0000 mW	75.0000 mW	150.000 mW
10.0000 m	15.0000 mW	30.0000 mW	60.0000 mW	100.0000 mW	150.000 mW	300.000 mW
25.0000 m	37.5000 mW	75.0000 mW	150.000 mW	250.000 mW	375.000 mW	750.000 mW
50.0000 m	75.0000 mW	150.000 mW	300.000 mW	500.000 mW	750.000 mW	1.50000 W
100.000 m	150.000 mW	300.000 mW	600.000 mW	1000.000 mW	1.50000 W	3.00000 W
250.000 m	375.000 mW	750.000 mW	1.50000 W	2.50000 W	3.75000 W	7.50000 W
500.000 m	750.000 mW	1.50000 W	3.00000 W	5.00000 W	7.50000 W	15.0000 W
1.00000	1.50000 W	3.00000 W	6.00000 W	10.00000 W	15.0000 W	30.0000 W
2.50000	3.75000 W	7.50000 W	15.0000 W	25.0000 W	37.5000 W	75.0000 W
5.00000	7.50000 W	15.0000 W	30.0000 W	50.0000 W	75.0000 W	150.000 W
10.0000	15.0000 W	30.0000 W	60.0000 W	100.0000 W	150.000 W	300.000 W
15.0000	22.5000 W	45.0000 W	90.0000 W	150.000 W	225.000 W	450.000 W


Current	Voltage Range [V]					
[A]	30.0000	50.0000	75.000	150.000	300.000	500.000
2.50000 m	150.000 mW	250.000 mW	375.000 mW	750.000 mW	1.50000 W	2.50000 W
5.00000 m	300.000 mW	500.000 mW	750.000 mW	1.50000 W	3.00000 W	5.00000 W
10.0000 m	600.000 mW	1000.000 mW	1.50000 W	3.00000 W	6.00000 W	10.00000 W
25.0000 m	1.50000 W	2.50000 W	3.75000 W	7.50000 W	15.0000 W	25.0000 W
50.0000 m	3.00000 W	5.00000 W	7.50000 W	15.0000 W	30.0000 W	50.0000 W
100.000 m	6.00000 W	10.00000 W	15.0000 W	30.0000 W	60.0000 W	100.0000 W
250.000 m	15.0000 W	25.0000 W	37.5000 W	75.0000 W	150.000 W	250.000 W
500.000 m	30.0000 W	50.0000 W	75.0000 W	150.000 W	300.000 W	500.000 W
1.00000	60.0000 W	100.0000 W	150.000 W	300.000 W	600.000 W	1000.000 W
2.50000	150.000 W	250.000 W	375.000 W	750.000 W	1.50000 kW	2.50000 kW
5.00000	300.000 W	500.000 W	750.000 W	1.50000 kW	3.00000 kW	5.00000 kW
10.0000	600.000 W	1000.000 W	1.50000 kW	3.00000 kW	6.00000 kW	10.00000 kW
15.0000	900.000 W	1.50000 kW	2.25000 kW	4.50000 kW	9.00000 kW	15.0000 kW

## Active Power Range of a Wiring Unit with a 3P4W Wiring System

Current   Range	Voltage Range [V]					
[A]	$\mathbf{0 . 7 5 0 0 0}$	$\mathbf{1 . 5 0 0 0 0}$	$\mathbf{3 . 0 0 0 0 0}$	$\mathbf{5 . 0 0 0 0 0}$	$\mathbf{7 . 5 0 0 0}$	$\mathbf{1 5 . 0 0 0 0}$
$\mathbf{2 . 5 0 0 0 0 m}$	5.62500 mW	11.25000 mW	22.5000 mW	37.5000 mW	56.2500 mW	112.5000 mW
$\mathbf{5 . 0 0 0 0 0 m}$	11.25000 mW	22.5000 mW	45.0000 mW	75.0000 mW	112.5000 mW	225.000 mW
$\mathbf{1 0 . 0 0 0 0 m}$	22.5000 mW	45.0000 mW	90.0000 mW	150.0000 mW	225.000 mW	450.000 mW
$\mathbf{2 5 . 0 0 0 0 m}$	56.2500 mW	112.5000 mW	225.000 mW	375.000 mW	562.500 mW	1125.000 mW
$\mathbf{5 0 . 0 0 0 0 m}$	112.5000 mW	225.000 mW	450.000 mW	750.000 mW	1125.000 mW	2.25000 W
$\mathbf{1 0 0 . 0 0 0}$	225.000 mW	450.000 mW	900.000 mW	1500.000 mW	2.25000 W	4.50000 W
$\mathbf{2 5 0 . 0 0 0 m}$	562.500 mW	1125.000 mW	2.25000 W	3.75000 W	5.62500 W	11.25000 W
$\mathbf{5 0 0 . 0 0 0}$	1125.000 mW	2.25000 W	4.50000 W	7.50000 W	11.25000 W	22.5000 W
$\mathbf{1 . 0 0 0 0 0}$	2.25000 W	4.50000 W	9.00000 W	15.00000 W	22.5000 W	45.0000 W
$\mathbf{2 . 5 0 0 0 0}$	5.62500 W	11.25000 W	22.5000 W	37.5000 W	56.2500 W	112.5000 W
$\mathbf{5 . 0 0 0 0 0}$	11.25000 W	22.5000 W	45.0000 W	75.0000 W	112.5000 W	225.000 W
$\mathbf{1 0 . 0 0 0 0}$	22.5000 W	45.0000 W	90.0000 W	150.0000 W	225.000 W	450.000 W
$\mathbf{1 5 . 0 0 0 0}$	33.7500 W	67.500 W	135.000 W	225.000 W	337.500 W	675.000 W


Current   Range	Voltage Range [V]					
[A]	$\mathbf{3 0 . 0 0 0 0}$	$\mathbf{5 0 . 0 0 0 0}$	$\mathbf{7 5 . 0 0 0}$	$\mathbf{1 5 0 . 0 0 0}$	$\mathbf{3 0 0 . 0 0 0}$	$\mathbf{5 0 0 . 0 0 0}$
$\mathbf{2 . 5 0 0 0 0 m}$	225.000 mW	375.000 mW	562.500 mW	1125.000 mW	2.25000 W	3.75000 W
$\mathbf{5 . 0 0 0 0 0 m}$	450.000 mW	750.000 mW	1125.000 mW	2.25000 W	4.50000 W	7.50000 W
$\mathbf{1 0 . 0 0 0 0 m}$	900.000 mW	1500.000 mW	2.25000 W	4.50000 W	9.00000 W	15.00000 W
$\mathbf{2 5 . 0 0 0 0 m}$	2.25000 W	3.75000 W	5.62500 W	11.25000 W	22.5000 W	37.5000 W
$\mathbf{5 0 . 0 0 0 0 m}$	4.50000 W	7.50000 W	11.25000 W	22.5000 W	45.0000 W	75.0000 W
$\mathbf{1 0 0 . 0 0 0}$	9.00000 W	15.00000 W	22.5000 W	45.0000 W	90.0000 W	150.0000 W
$\mathbf{2 5 0 . 0 0 0 m}$	22.5000 W	37.5000 W	56.2500 W	112.5000 W	225.000 W	375.000 W
$\mathbf{5 0 0 . 0 0 0}$	45.0000 W	75.0000 W	112.5000 W	225.000 W	450.000 W	750.000 W
$\mathbf{1 . 0 0 0 0 0}$	90.0000 W	150.0000 W	225.000 W	450.000 W	900.000 W	1500.000 W
$\mathbf{2 . 5 0 0 0 0}$	225.000 W	375.000 W	562.500 W	1125.000 W	2.25000 kW	3.75000 kW
$\mathbf{5 . 0 0 0 0 0}$	450.000 W	750.000 W	1125.000 W	2.25000 kW	4.50000 kW	7.50000 kW
$\mathbf{1 0 . 0 0 0 0}$	900.000 W	1500.000 W	2.25000 kW	4.50000 kW	9.00000 kW	15.00000 kW
$\mathbf{1 5 . 0 0 0 0}$	1350.000 W	2.25000 kW	3.37500 kW	6.75000 kW	13.50000 kW	22.5000 kW

## 760903 current sensor range

## When the Crest Factor Is Set to CF3

## Active Power Range of Each Element

CT preset: CT2000A (Input resistance: $1 \Omega$, CT ratio: 2000)

Current Range [A]		Voltage Range [V]					
Setting	Setting $\mathbf{\times}$ CT ratio	$\mathbf{1 . 5 0 0 0 0}$	$\mathbf{3 . 0 0 0 0 0}$	$\mathbf{6 . 0 0 0 0 0}$	$\mathbf{1 0 . 0 0 0 0}$	$\mathbf{1 5 . 0 0 0 0}$	$\mathbf{3 0 . 0 0 0 0}$
$\mathbf{1 0 m}$	$\mathbf{2 0 . 0 0 0}$	30.0000 W	60.0000 W	120.000 W	200.000 W	300.000 W	600.000 W
$\mathbf{2 5 m}$	$\mathbf{5 0 . 0 0 0 0}$	75.000 W	150.000 W	300.000 W	500.000 W	0.75000 kW	1.50000 kW
$\mathbf{5 0 m}$	$\mathbf{1 0 0 . 0 0 0}$	150.000 W	300.000 W	600.000 W	1.00000 kW	1.50000 kW	3.00000 kW
$\mathbf{1 0 0 m}$	$\mathbf{2 0 0 . 0 0 0}$	300.000 W	600.000 W	1.20000 kW	2.00000 kW	3.00000 kW	6.00000 kW
$\mathbf{2 5 0 m}$	$\mathbf{5 0 0 . 0 0 0}$	0.75000 kW	1.50000 kW	3.00000 kW	5.00000 kW	7.5000 kW	15.0000 kW
$\mathbf{5 0 0 m}$	$\mathbf{1 . 0 0 0 0 0 k}$	1.50000 kW	3.00000 kW	6.00000 kW	10.0000 kW	15.0000 kW	30.0000 kW
$\mathbf{1}$	$\mathbf{2 . 0 0 0 0 0}$	3.00000 kW	6.00000 kW	12.0000 kW	20.0000 kW	30.0000 kW	60.0000 kW


Current Range [A]		Voltage Range [V]					
Setting	Setting $\mathbf{\times C T}$ ratio	$\mathbf{6 0 . 0 0 0 0}$	$\mathbf{1 0 0 . 0 0 0}$	$\mathbf{1 5 0 . 0 0 0}$	$\mathbf{3 0 0 . 0 0 0}$	$\mathbf{6 0 0 . 0 0 0}$	$\mathbf{1 0 0 0 . 0 0}$
$\mathbf{1 0 m}$	$\mathbf{2 0 . 0 0 0 0}$	1.20000 kW	2.00000 kW	3.00000 kW	6.00000 kW	12.0000 kW	20.0000 kW
$\mathbf{2 5 m}$	$\mathbf{5 0 . 0 0 0 0}$	3.00000 kW	5.00000 kW	7.5000 kW	15.0000 kW	30.0000 kW	50.0000 kW
$\mathbf{5 0 m}$	$\mathbf{1 0 0 . 0 0 0}$	6.00000 kW	10.0000 kW	15.0000 kW	30.0000 kW	60.0000 kW	100.000 kW
$\mathbf{1 0 0 m}$	$\mathbf{2 0 0 . 0 0 0}$	12.0000 kW	20.0000 kW	30.0000 kW	60.0000 kW	120.000 kW	200.000 kW
$\mathbf{2 5 0}$	$\mathbf{5 0 0 . 0 0 0}$	30.0000 kW	50.0000 kW	75.000 kW	150.000 kW	300.000 kW	500.000 kW
$\mathbf{5 0 0}$	$\mathbf{1 . 0 0 0 0} \mathrm{~m}$	60.0000 kW	100.000 kW	150.000 kW	300.000 kW	600.000 kW	1.00000 MW
$\mathbf{1}$	$\mathbf{2 . 0 0 0 0}$	120.000 kW	200.000 kW	300.000 kW	600.000 kW	1.20000 MW	2.00000 MW

CT preset: CT1000A (Input resistance: $1 \Omega, C T$ ratio: 1500)

Current Range [A]		Voltage Range [V]					
Setting	Setting $\mathbf{\times}$ CT ratio	$\mathbf{1 . 5 0 0 0 0}$	$\mathbf{3 . 0 0 0 0 0}$	$\mathbf{6 . 0 0 0 0 0}$	$\mathbf{1 0 . 0 0 0 0}$	$\mathbf{1 5 . 0 0 0 0}$	$\mathbf{3 0 . 0 0 0 0}$
$\mathbf{1 0 m}$	$\mathbf{1 5 . 0 0 0 0}$	22.5000 W	45.0000 W	90.000 W	150.000 W	$\mathbf{2 2 5 . 0 0 0} \mathrm{~W}$	450.000 W
$\mathbf{2 5 m}$	$\mathbf{3 7 . 5 0 0 0}$	56.2500 W	112.500 W	225.000 W	375.000 W	562.500 W	1.12500 kW
$\mathbf{5 0 m}$	$\mathbf{7 5 . 0 0 0}$	112.500 W	225.000 W	450.000 W	0.75000 kW	1.12500 kW	2.25000 kW
$\mathbf{1 0 0 m}$	$\mathbf{1 5 0 . 0 0 0}$	225.000 W	450.000 W	0.90000 kW	1.50000 kW	2.25000 kW	4.50000 kW
$\mathbf{2 5 0 m}$	$\mathbf{3 7 5 . 0 0 0}$	562.500 W	1.12500 kW	2.25000 kW	3.75000 kW	5.62500 kW	11.2500 kW
$\mathbf{5 0 0 m}$	$\mathbf{0 . 7 5 0 0 0 k}$	1.12500 kW	2.25000 kW	4.50000 kW	7.5000 kW	11.2500 kW	$\mathbf{2 2 . 5 0 0 0 \mathrm { kW }}$
$\mathbf{1}$	$\mathbf{1 . 5 0 0 0 0 k}$	2.25000 kW	4.50000 kW	9.0000 kW	15.0000 kW	22.5000 kW	45.0000 kW


Current Range [A]		Voltage Range [V]					
Setting	Setting $\mathbf{\times}$ CT ratio	$\mathbf{6 0 . 0 0 0 0}$	$\mathbf{1 0 0 . 0 0 0}$	$\mathbf{1 5 0 . 0 0 0}$	$\mathbf{3 0 0 . 0 0 0}$	$\mathbf{6 0 0 . 0 0 0}$	$\mathbf{1 0 0 0 . 0 0}$
$\mathbf{1 0 m}$	$\mathbf{1 5 . 0 0 0 0}$	0.90000 kW	1.50000 kW	2.25000 kW	4.50000 kW	9.0000 kW	15.0000 kW
$\mathbf{2 5 m}$	$\mathbf{3 7 . 5 0 0 0}$	2.25000 kW	3.75000 kW	5.62500 kW	11.2500 kW	22.5000 kW	37.5000 kW
$\mathbf{5 0 m}$	$\mathbf{7 5 . 0 0 0}$	4.50000 kW	7.5000 kW	11.2500 kW	22.5000 kW	45.0000 kW	$\mathbf{7 5 . 0 0 0 \mathrm { kW }}$
$\mathbf{1 0 0 m}$	$\mathbf{1 5 0 . 0 0 0}$	9.0000 kW	15.0000 kW	22.5000 kW	45.0000 kW	90.000 kW	150.000 kW
$\mathbf{2 5 0 m}$	$\mathbf{3 7 5 . 0 0 0}$	22.5000 kW	37.5000 kW	56.2500 kW	112.500 kW	225.000 kW	375.000 kW
$\mathbf{5 0 0 m}$	$\mathbf{0 . 7 5 0 0 0}$	45.0000 kW	75.000 kW	112.500 kW	225.000 kW	450.000 kW	0.75000 MW
$\mathbf{1}$	$\mathbf{1 . 5 0 0 0 0 k}$	90.000 kW	150.000 kW	225.000 kW	450.000 kW	0.90000 MW	1.50000 MW

CT preset: CT1000 (Input resistance: $1.5 \Omega, C T$ ratio: 1500)

Current Range [A]		Voltage Range [V]					
Setting	Setting $\mathbf{\times}$ CT ratio	$\mathbf{1 . 5 0 0 0 0}$	$\mathbf{3 . 0 0 0 0 0}$	$\mathbf{6 . 0 0 0 0 0}$	$\mathbf{1 0 . 0 0 0 0}$	$\mathbf{1 5 . 0 0 0 0}$	$\mathbf{3 0 . 0 0 0 0}$
$\mathbf{6 . 6 7 m}$	$\mathbf{1 0 . 0 0 0 0}$	15.0000 W	30.0000 W	60.0000 W	100.000 W	150.000 W	300.000 W
$\mathbf{1 6 . 7} \mathbf{m}$	$\mathbf{2 5 . 0 0 0}$	37.5000 W	75.000 W	150.000 W	250.000 W	375.000 W	0.75000 kW
$\mathbf{3 3 . 3}$	$\mathbf{5 0 . 0 0 0 0}$	75.000 W	150.000 W	300.000 W	500.000 W	0.75000 kW	1.50000 kW
$\mathbf{6 6 . 7} \mathbf{m}$	$\mathbf{1 0 0 . 0 0 0}$	150.000 W	300.000 W	600.000 W	1.00000 kW	1.50000 kW	3.00000 kW
$\mathbf{1 6 7 m}$	$\mathbf{2 5 0 . 0 0 0}$	375.000 W	0.75000 kW	1.50000 kW	2.50000 kW	3.75000 kW	7.5000 kW
$\mathbf{3 3 3 m}$	$\mathbf{5 0 0 . 0 0 0}$	0.75000 WW	1.50000 kW	3.00000 kW	5.00000 kW	7.5000 kW	15.0000 kW
$\mathbf{6 6 7 m}$	$\mathbf{1 . 0 0 0 0 0}$	1.50000 kW	3.00000 kW	6.00000 kW	10.0000 kW	15.0000 kW	30.0000 kW


Current Range [A]		Voltage Range [V]					
Setting	Setting $\mathbf{\times} \mathbf{C T}$ ratio	$\mathbf{6 0 . 0 0 0 0}$	$\mathbf{1 0 0 . 0 0 0}$	$\mathbf{1 5 0 . 0 0 0}$	$\mathbf{3 0 0 . 0 0 0}$	$\mathbf{6 0 0 . 0 0 0}$	$\mathbf{1 0 0 0 . 0 0}$
$\mathbf{6 . 6 7 m}$	$\mathbf{1 0 . 0 0 0 0}$	600.000 W	1.00000 kW	1.50000 kW	3.00000 kW	6.00000 kW	10.0000 kW
$\mathbf{1 6 . 7} \mathbf{m}$	$\mathbf{2 5 . 0 0 0}$	1.50000 kW	2.50000 kW	3.75000 kW	7.5000 kW	15.0000 kW	$\mathbf{2 5 . 0 0 0 0 \mathrm { kW }}$
$\mathbf{3 3 . 3 m}$	$\mathbf{5 0 . 0 0 0 0}$	3.00000 kW	5.00000 kW	7.5000 kW	15.0000 kW	30.0000 kW	50.0000 kW
$\mathbf{6 6 . 7} \mathbf{m}$	$\mathbf{1 0 0 . 0 0 0}$	6.00000 kW	10.0000 kW	15.0000 kW	30.0000 kW	60.0000 kW	100.000 kW
$\mathbf{1 6 7 m}$	$\mathbf{2 5 0 . 0 0 0}$	15.0000 kW	25.0000 kW	37.5000 kW	75.000 kW	150.000 kW	$\mathbf{2 5 0 . 0 0 0 \mathrm { kW }}$
$\mathbf{3 3 3 m}$	$\mathbf{5 0 0 . 0 0 0}$	30.0000 kW	50.0000 kW	75.000 kW	150.000 kW	300.000 kW	500.000 kW
$\mathbf{6 6 7 m}$	$\mathbf{1 . 0 0 0 0 0}$	60.0000 kW	100.000 kW	150.000 kW	300.000 kW	600.000 kW	1.00000 MW

CT preset: CT200 (Input resistance: $5 \Omega$, CT ratio: 1000)

Current Range [A]		Voltage Range [V]					
Setting	Setting $\mathbf{\times} \mathbf{C T}$ ratio	$\mathbf{1 . 5 0 0 0 0}$	$\mathbf{3 . 0 0 0 0 0}$	$\mathbf{6 . 0 0 0 0 0}$	$\mathbf{1 0 . 0 0 0 0}$	$\mathbf{1 5 . 0 0 0 0}$	$\mathbf{3 0 . 0 0 0 0}$
$\mathbf{5 m}$	$\mathbf{5 . 0 0 0 0}$	7.5000 W	15.0000 W	30.0000 W	50.0000 W	$\mathbf{7 5 . 0 0 0} \mathrm{~W}$	150.000 W
$\mathbf{1 0 m}$	$\mathbf{1 0 . 0 0 0 0}$	15.0000 W	30.0000 W	60.0000 W	100.000 W	150.000 W	300.000 W
$\mathbf{2 0 m}$	$\mathbf{2 0 . 0 0 0 0}$	30.0000 W	60.0000 W	120.000 W	200.000 W	300.000 W	600.000 W
$\mathbf{5 0 m}$	$\mathbf{5 0 . 0 0 0 0}$	75.000 W	150.000 W	300.000 W	500.000 W	0.75000 kW	1.50000 kW
$\mathbf{1 0 0 m}$	$\mathbf{1 0 0 . 0 0 0}$	150.000 W	300.000 W	600.000 W	1.00000 kW	1.50000 kW	3.00000 kW
$\mathbf{2 0 0 m}$	$\mathbf{2 0 0 . 0 0 0}$	300.000 W	600.000 W	1.20000 kW	2.00000 kW	3.00000 kW	6.00000 kW


Current Range [A]		Voltage Range [V]					
Setting	Setting $\mathbf{\times} \mathbf{C T}$ ratio	$\mathbf{6 0 . 0 0 0 0}$	$\mathbf{1 0 0 . 0 0 0}$	$\mathbf{1 5 0 . 0 0 0}$	$\mathbf{3 0 0 . 0 0 0}$	$\mathbf{6 0 0 . 0 0 0}$	$\mathbf{1 0 0 0 . 0 0}$
$\mathbf{5 m}$	$\mathbf{5 . 0 0 0 0 0}$	300.000 W	500.000 W	0.75000 kW	1.50000 kW	3.00000 kW	5.00000 kW
$\mathbf{1 0 m}$	$\mathbf{1 0 . 0 0 0 0}$	600.000 W	1.00000 kW	1.50000 kW	3.00000 kW	6.00000 kW	10.0000 kW
$\mathbf{2 0 m}$	$\mathbf{2 0 . 0 0 0 0}$	1.20000 kW	2.00000 kW	3.00000 kW	6.00000 kW	12.0000 kW	$\mathbf{2 0 . 0 0 0 0 \mathrm { kW }}$
$\mathbf{5 0 m}$	$\mathbf{5 0 . 0 0 0 0}$	3.00000 kW	5.00000 kW	7.5000 kW	15.0000 kW	30.0000 kW	50.0000 kW
$\mathbf{1 0 0 m}$	$\mathbf{1 0 0 . 0 0 0}$	6.00000 kW	10.0000 kW	15.0000 kW	30.0000 kW	60.0000 kW	100.000 kW
$\mathbf{2 0 0 m}$	$\mathbf{2 0 0 . 0 0 0}$	12.0000 kW	20.0000 kW	30.0000 kW	60.0000 kW	120.000 kW	$\mathbf{2 0 0 . 0 0 0 \mathrm { kW }}$

## CT preset: CT60 (Input resistance: $10 \Omega$, CT ratio: 600)

Current Range [A]		Voltage Range [V]					
Setting	Setting $\times \mathbf{C T}$ ratio	$\mathbf{1 . 5 0 0 0 0}$	$\mathbf{3 . 0 0 0 0 0}$	$\mathbf{6 . 0 0 0 0 0}$	$\mathbf{1 0 . 0 0 0 0}$	$\mathbf{1 5 . 0 0 0 0}$	$\mathbf{3 0 . 0 0 0 0}$
$\mathbf{5 m}$	$\mathbf{3 . 0 0 0 0 0}$	4.50000 W	9.0000 W	18.0000 W	30.0000 W	45.0000 W	90.000 W
$\mathbf{1 0 m}$	$\mathbf{6 . 0 0 0 0 0}$	9.0000 W	18.0000 W	36.0000 W	60.0000 W	90.000 W	180.000 W
$\mathbf{2 5 m}$	$\mathbf{1 5 . 0 0 0 0}$	22.5000 W	45.0000 W	90.000 W	150.000 W	225.000 W	450.000 W
$\mathbf{5 0 m}$	$\mathbf{3 0 . 0 0 0 0}$	45.0000 W	90.000 W	180.000 W	300.000 W	450.000 W	0.90000 kW
$\mathbf{1 0 0 m}$	$\mathbf{6 0 . 0 0 0 0}$	90.000 W	180.000 W	360.000 W	600.000 W	0.90000 kW	1.80000 kW


Current Range [A]		Voltage Range [V]					
Setting	Setting $\mathbf{\times C T}$ ratio	$\mathbf{6 0 . 0 0 0 0}$	$\mathbf{1 0 0 . 0 0 0}$	$\mathbf{1 5 0 . 0 0 0}$	$\mathbf{3 0 0 . 0 0 0}$	$\mathbf{6 0 0 . 0 0 0}$	$\mathbf{1 0 0 0 . 0 0}$
$\mathbf{5 m}$	$\mathbf{3 . 0 0 0 0 0}$	180.000 W	300.000 W	450.000 W	0.90000 kW	1.80000 kW	3.00000 kW
$\mathbf{1 0 m}$	$\mathbf{6 . 0 0 0 0 0}$	360.000 W	600.000 W	0.90000 kW	1.80000 kW	3.60000 kW	6.00000 kW
$\mathbf{2 5 m}$	$\mathbf{1 5 . 0 0 0 0}$	0.90000 kW	1.50000 kW	2.25000 kW	4.50000 kW	9.0000 kW	15.0000 kW
$\mathbf{5 0 m}$	$\mathbf{3 0 . 0 0 0 0}$	1.80000 kW	3.00000 kW	4.50000 kW	9.0000 kW	18.0000 kW	30.0000 kW
$\mathbf{1 0 0 m}$	$\mathbf{6 0 . 0 0 0 0}$	3.60000 kW	6.00000 kW	9.0000 kW	18.0000 kW	36.0000 kW	60.0000 kW

Active Power Range of a Wiring Unit with a 1P3W, 3P3W, 3P3W (3V3A), or 3P3W (3V3AR) Wiring System

CT preset: CT2000A (Input resistance: 1 』, CT ratio: 2000)

Current Range [A]		Voltage Range [V]					
Setting	Setting $\mathbf{\times} \mathbf{C T}$ ratio	$\mathbf{1 . 5 0 0 0 0}$	$\mathbf{3 . 0 0 0 0 0}$	$\mathbf{6 . 0 0 0 0 0}$	$\mathbf{1 0 . 0 0 0 0}$	$\mathbf{1 5 . 0 0 0 0}$	$\mathbf{3 0 . 0 0 0 0}$
$\mathbf{1 0 m}$	$\mathbf{2 0 . 0 0 0}$	60.0000 W	120.0000 W	240.000 W	400.000 W	600.000 W	1200.000 W
$\mathbf{2 5 m}$	$\mathbf{5 0 . 0 0 0 0}$	150.000 W	300.000 W	600.000 W	1000.000 W	1.50000 kW	3.00000 kW
$\mathbf{5 0 m}$	$\mathbf{1 0 0 . 0 0 0}$	300.000 W	600.000 W	1200.000 W	2.00000 kW	3.00000 kW	6.00000 kW
$\mathbf{1 0 0 m}$	$\mathbf{2 0 0 . 0 0 0}$	600.000 W	1200.000 W	2.40000 kW	4.00000 kW	6.00000 kW	12.00000 kW
$\mathbf{2 5 0 m}$	$\mathbf{5 0 0 . 0 0 0}$	1.50000 kW	3.00000 kW	6.00000 kW	10.00000 kW	15.0000 kW	30.0000 kW
$\mathbf{5 0 0 m}$	$\mathbf{1 . 0 0 0 0 0 k}$	3.00000 kW	6.00000 kW	12.00000 kW	20.0000 kW	30.0000 kW	60.0000 kW
$\mathbf{1}$	$\mathbf{2 . 0 0 0 0 0}$	6.00000 kW	12.00000 kW	24.0000 kW	40.0000 kW	60.0000 kW	120.0000 kW


Current Range [A]		Voltage Range [V]					
Setting	Setting $\mathbf{\times} \mathbf{C T}$ ratio	$\mathbf{6 0 . 0 0 0 0}$	$\mathbf{1 0 0 . 0 0 0}$	$\mathbf{1 5 0 . 0 0 0}$	$\mathbf{3 0 0 . 0 0 0}$	$\mathbf{6 0 0 . 0 0 0}$	$\mathbf{1 0 0 0 . 0 0}$
$\mathbf{1 0 m}$	$\mathbf{2 0 . 0 0 0}$	2.40000 kW	4.00000 kW	6.00000 kW	12.00000 kW	$\mathbf{2 4 . 0 0 0 0 \mathrm { kW }}$	40.0000 kW
$\mathbf{2 5 m}$	$\mathbf{5 0 . 0 0 0 0}$	6.00000 kW	10.00000 kW	15.0000 kW	30.0000 kW	60.0000 kW	100.0000 kW
$\mathbf{5 0 m}$	$\mathbf{1 0 0 . 0 0 0}$	12.00000 kW	20.0000 kW	30.0000 kW	60.0000 kW	120.0000 kW	$\mathbf{2 0 0 . 0 0 0 \mathrm { kW }}$
$\mathbf{1 0 0 m}$	$\mathbf{2 0 0 . 0 0 0}$	24.0000 kW	40.0000 kW	60.0000 kW	120.0000 kW	240.000 kW	400.000 kW
$\mathbf{2 5 0 m}$	$\mathbf{5 0 0 . 0 0 0}$	60.0000 kW	100.0000 kW	150.000 kW	300.000 kW	600.000 kW	1000.000 kW
$\mathbf{5 0 0 m}$	$\mathbf{1 . 0 0 0 0 0 k}$	120.0000 kW	200.000 kW	300.000 kW	600.000 kW	1200.000 kW	2.00000 MW
$\mathbf{1}$	$\mathbf{2 . 0 0 0 0 0}$	240.000 kW	400.000 kW	600.000 kW	1200.000 kW	2.40000 MW	4.00000 MW

## CT preset: CT1000A (Input resistance: 1 』, CT ratio: 1500)

Current Range [A]		Voltage Range [V]					
Setting	Setting $\times \mathbf{C T}$ ratio	$\mathbf{1 . 5 0 0 0 0}$	$\mathbf{3 . 0 0 0 0 0}$	$\mathbf{6 . 0 0 0 0 0}$	$\mathbf{1 0 . 0 0 0 0}$	$\mathbf{1 5 . 0 0 0 0}$	$\mathbf{3 0 . 0 0 0 0}$
$\mathbf{1 0 m}$	$\mathbf{1 5 . 0 0 0 0}$	45.0000 W	90.0000 W	180.000 W	300.000 W	450.000 W	900.000 W
$\mathbf{2 5 m}$	$\mathbf{3 7 . 5 0 0 0}$	112.5000 W	225.000 W	450.000 W	750.000 W	1125.000 W	2.25000 kW
$\mathbf{5 0 m}$	$\mathbf{7 5 . 0 0 0}$	225.000 W	450.000 W	900.000 W	1.50000 kW	2.25000 kW	4.50000 kW
$\mathbf{1 0 0 m}$	$\mathbf{1 5 0 . 0 0 0}$	450.000 W	900.000 W	1.80000 kW	3.00000 kW	4.50000 kW	9.00000 kW
$\mathbf{2 5 0 m}$	$\mathbf{3 7 5 . 0 0 0}$	1125.000 W	2.25000 kW	4.50000 kW	7.50000 kW	11.25000 kW	22.5000 kW
$\mathbf{5 0 0 m}$	$\mathbf{0 . 7 5 0 0 0 k}$	2.25000 kW	4.50000 kW	9.00000 kW	15.0000 kW	22.5000 kW	45.0000 kW
$\mathbf{1}$	$\mathbf{1 . 5 0 0 0 0 k}$	4.50000 kW	9.00000 kW	18.0000 kW	30.0000 kW	45.0000 kW	90.0000 kW


Current Range [A]		Voltage Range [V]					
Setting	Setting $\mathbf{\times} \mathbf{C T}$ ratio	$\mathbf{6 0 . 0 0 0 0}$	$\mathbf{1 0 0 . 0 0 0}$	$\mathbf{1 5 0 . 0 0 0}$	$\mathbf{3 0 0 . 0 0 0}$	$\mathbf{6 0 0 . 0 0 0}$	$\mathbf{1 0 0 0 . 0 0}$
$\mathbf{1 0 m}$	$\mathbf{1 5 . 0 0 0}$	1.80000 kW	3.00000 kW	4.50000 kW	9.00000 kW	18.0000 kW	30.0000 kW
$\mathbf{2 5 m}$	$\mathbf{3 7 . 5 0 0}$	4.50000 kW	7.50000 kW	11.25000 kW	22.5000 kW	45.0000 kW	75.0000 kW
$\mathbf{5 0 m}$	$\mathbf{7 5 . 0 0 0}$	9.00000 kW	15.0000 kW	22.5000 kW	45.0000 kW	90.0000 kW	150.000 kW
$\mathbf{1 0 0 m}$	$\mathbf{1 5 0 . 0 0 0}$	18.0000 kW	30.0000 kW	45.0000 kW	90.0000 kW	180.000 kW	300.000 kW
$\mathbf{2 5 0 m}$	$\mathbf{3 7 5 . 0 0 0}$	45.0000 kW	75.0000 kW	112.5000 kW	225.000 kW	450.000 kW	750.000 kW
$\mathbf{5 0 0 m}$	$\mathbf{0 . 7 5 0 0 0}$	90.0000 kW	150.000 kW	225.000 kW	450.000 kW	900.000 kW	1.50000 MW
$\mathbf{1}$	$\mathbf{1 . 5 0 0 0 0 k}$	180.000 kW	300.000 kW	450.000 kW	900.000 kW	1.80000 MW	3.00000 MW

CT preset: CT1000 (Input resistance: $1.5 \Omega, C T$ ratio: 1500)

Current Range [A]		Voltage Range [V]					
Setting	Setting $\mathbf{\times}$ CT ratio	$\mathbf{1 . 5 0 0 0 0}$	$\mathbf{3 . 0 0 0 0 0}$	$\mathbf{6 . 0 0 0 0 0}$	$\mathbf{1 0 . 0 0 0 0}$	$\mathbf{1 5 . 0 0 0 0}$	$\mathbf{3 0 . 0 0 0 0}$
$\mathbf{6 . 6 7 m}$	$\mathbf{1 0 . 0 0 0 0}$	30.0000 W	60.0000 W	120.0000 W	200.000 W	300.000 W	600.000 W
$\mathbf{1 6 . 7} \mathbf{m}$	$\mathbf{2 5 . 0 0 0 0}$	75.0000 W	150.000 W	300.000 W	500.000 W	750.000 W	1.50000 kW
$\mathbf{3 3 . 3} \mathbf{m}$	$\mathbf{5 0 . 0 0 0 0}$	150.000 W	300.000 W	600.000 W	1000.000 W	1.50000 kW	3.00000 kW
$\mathbf{6 6 . 7} \mathbf{m}$	$\mathbf{1 0 0 . 0 0 0}$	300.000 W	600.000 W	1200.000 W	2.00000 kW	3.00000 kW	6.00000 kW
$\mathbf{1 6 7 m}$	$\mathbf{2 5 0 . 0 0 0}$	750.000 W	1.50000 kW	3.00000 kW	5.00000 kW	7.50000 kW	15.0000 kW
$\mathbf{3 3 3 m}$	$\mathbf{5 0 0 . 0 0 0}$	1.50000 kW	3.00000 kW	6.00000 kW	10.00000 kW	15.0000 kW	30.0000 kW
$\mathbf{6 6 7 m}$	$\mathbf{1 . 0 0 0 0 0}$	3.00000 kW	6.00000 kW	12.00000 kW	20.0000 kW	30.0000 kW	60.0000 kW


Current Range [A]		Voltage Range [V]					
Setting	Setting $\mathbf{\times} \mathbf{C T}$ ratio	$\mathbf{6 0 . 0 0 0 0}$	$\mathbf{1 0 0 . 0 0 0}$	$\mathbf{1 5 0 . 0 0 0}$	$\mathbf{3 0 0 . 0 0 0}$	$\mathbf{6 0 0 . 0 0 0}$	$\mathbf{1 0 0 0 . 0 0}$
$\mathbf{6 . 6 7 m}$	$\mathbf{1 0 . 0 0 0 0}$	1200.000 W	2.00000 kW	3.00000 kW	6.00000 kW	12.00000 kW	20.0000 kW
$\mathbf{1 6 . 7} \mathbf{m}$	$\mathbf{2 5 . 0 0 0}$	3.00000 kW	5.00000 kW	7.50000 kW	15.0000 kW	30.0000 kW	50.0000 kW
$\mathbf{3 3 . 3 m}$	$\mathbf{5 0 . 0 0 0 0}$	6.00000 kW	10.00000 kW	15.0000 kW	30.0000 kW	60.0000 kW	100.0000 kW
$\mathbf{6 6 . 7} \mathbf{m}$	$\mathbf{1 0 0 . 0 0 0}$	12.00000 kW	20.0000 kW	30.0000 kW	60.0000 kW	60.0000 kW	200.000 kW
$\mathbf{1 6 7 m}$	$\mathbf{2 5 0 . 0 0 0}$	30.0000 kW	50.0000 kW	75.0000 kW	150.000 kW	300.000 kW	500.000 kW
$\mathbf{3 3 3 m}$	$\mathbf{5 0 0 . 0 0 0}$	60.0000 kW	100.0000 kW	150.000 kW	300.000 kW	600.000 kW	1000.000 kW
$\mathbf{6 6 7 m}$	$\mathbf{1 . 0 0 0 0 0}$	120.0000 kW	200.000 kW	300.000 kW	600.000 kW	1200.000 kW	2.00000 MW

CT preset: CT200 (Input resistance: $5 \Omega$, CT ratio: 1000)

Current Range [A]		Voltage Range [V]					
Setting	Setting $\mathbf{\times}$ CT ratio	$\mathbf{1 . 5 0 0 0 0}$	$\mathbf{3 . 0 0 0 0 0}$	$\mathbf{6 . 0 0 0 0 0}$	$\mathbf{1 0 . 0 0 0 0}$	$\mathbf{1 5 . 0 0 0 0}$	$\mathbf{3 0 . 0 0 0 0}$
$\mathbf{5 m}$	$\mathbf{5 . 0 0 0 0 0}$	15.0000 W	30.0000 W	60.0000 W	100.0000 W	150.000 W	300.000 W
$\mathbf{1 0 m}$	$\mathbf{1 0 . 0 0 0 0}$	30.0000 W	60.0000 W	120.0000 W	200.000 W	300.000 W	600.000 W
$\mathbf{2 0 m}$	$\mathbf{2 0 . 0 0 0}$	60.0000 W	120.0000 W	240.000 W	400.000 W	600.000 W	1200.000 W
$\mathbf{5 0 m}$	$\mathbf{5 0 . 0 0 0 0}$	150.000 W	300.000 W	600.000 W	1000.000 W	1.50000 kW	3.00000 kW
$\mathbf{1 0 0 m}$	$\mathbf{1 0 0 . 0 0 0}$	300.000 W	600.000 W	1200.000 W	2.00000 kW	3.00000 kW	6.00000 kW
$\mathbf{2 0 0 m}$	$\mathbf{2 0 0 . 0 0 0}$	600.000 W	1200.000 W	2.40000 kW	4.00000 kW	6.00000 kW	12.00000 kW


Current Range [A]		Voltage Range [V]					
Setting	Setting $\mathbf{\times} \mathbf{C T}$ ratio	$\mathbf{6 0 . 0 0 0 0}$	$\mathbf{1 0 0 . 0 0 0}$	$\mathbf{1 5 0 . 0 0 0}$	$\mathbf{3 0 0 . 0 0 0}$	$\mathbf{6 0 0 . 0 0 0}$	$\mathbf{1 0 0 0 . 0 0}$
$\mathbf{5 m}$	$\mathbf{5 . 0 0 0 0 0}$	600.000 W	1000.000 W	1.50000 kW	3.00000 kW	6.00000 kW	10.00000 kW
$\mathbf{1 0 m}$	$\mathbf{1 0 . 0 0 0 0}$	1200.000 W	2.00000 kW	3.00000 kW	6.00000 kW	12.00000 kW	20.0000 kW
$\mathbf{2 0 m}$	$\mathbf{2 0 . 0 0 0 0}$	2.40000 kW	4.00000 kW	6.00000 kW	12.00000 kW	24.0000 kW	40.0000 kW
$\mathbf{5 0 m}$	$\mathbf{5 0 . 0 0 0 0}$	6.00000 kW	10.00000 kW	15.0000 kW	30.0000 kW	60.0000 kW	100.0000 kW
$\mathbf{1 0 0 m}$	$\mathbf{1 0 0 . 0 0 0}$	12.00000 kW	20.0000 kW	30.0000 kW	60.0000 kW	120.0000 kW	200.000 kW
$\mathbf{2 0 0 m}$	$\mathbf{2 0 0 . 0 0 0}$	24.0000 kW	40.0000 kW	60.0000 kW	120.0000 kW	240.000 kW	400.000 kW

## CT preset: CT60 (Input resistance: $10 \Omega$, CT ratio: 600)

Current Range [A]		Voltage Range [V]					
Setting	Setting $\times \mathbf{C T}$ ratio	$\mathbf{1 . 5 0 0 0 0}$	$\mathbf{3 . 0 0 0 0 0}$	$\mathbf{6 . 0 0 0 0 0}$	$\mathbf{1 0 . 0 0 0 0}$	$\mathbf{1 5 . 0 0 0 0}$	$\mathbf{3 0 . 0 0 0 0}$
$\mathbf{5 m}$	$\mathbf{3 . 0 0 0 0 0}$	9.00000 W	18.0000 W	36.0000 W	60.0000 W	90.0000 W	180.000 W
$\mathbf{1 0 m}$	$\mathbf{6 . 0 0 0 0 0}$	18.0000 W	36.0000 W	72.0000 W	120.0000 W	180.000 W	360.000 W
$\mathbf{2 5 m}$	$\mathbf{1 5 . 0 0 0 0}$	45.0000 W	90.0000 W	180.000 W	300.000 W	450.000 W	900.000 W
$\mathbf{5 0 m}$	$\mathbf{3 0 . 0 0 0 0}$	90.0000 W	180.000 W	360.000 W	600.000 W	900.000 W	1.80000 kW
$\mathbf{1 0 0 m}$	$\mathbf{6 0 . 0 0 0 0}$	180.000 W	360.000 W	720.000 W	1200.000 W	1.80000 kW	3.60000 kW


Current Range [A]		Voltage Range [V]					
Setting	Setting $\mathbf{\times C T}$ ratio	$\mathbf{6 0 . 0 0 0 0}$	$\mathbf{1 0 0 . 0 0 0}$	$\mathbf{1 5 0 . 0 0 0}$	$\mathbf{3 0 0 . 0 0 0}$	$\mathbf{6 0 0 . 0 0 0}$	$\mathbf{1 0 0 0 . 0 0}$
$\mathbf{5 m}$	$\mathbf{3 . 0 0 0 0 0}$	360.000 W	600.000 W	900.000 W	1.80000 kW	3.60000 kW	6.00000 kW
$\mathbf{1 0 m}$	$\mathbf{6 . 0 0 0 0 0}$	720.000 W	1200.000 W	1.80000 kW	3.60000 kW	7.20000 kW	12.00000 kW
$\mathbf{2 5 m}$	$\mathbf{1 5 . 0 0 0 0}$	1.80000 kW	3.00000 kW	4.50000 kW	9.00000 kW	18.0000 kW	30.0000 kW
$\mathbf{5 0 m}$	$\mathbf{3 0 . 0 0 0 0}$	3.60000 kW	6.00000 kW	9.00000 kW	18.0000 kW	36.0000 kW	60.0000 kW
$\mathbf{1 0 0 m}$	$\mathbf{6 0 . 0 0 0 0}$	7.20000 kW	12.00000 kW	18.0000 kW	36.0000 kW	72.0000 kW	90.0000 kW

Active Power Range of a Wiring Unit with a 3P4W Wiring System CT preset: CT2000A (Input resistance: 1 』, CT ratio: 2000)

Current Range [A]		Voltage Range [V]					
Setting	Setting $\mathbf{\times}$ CT ratio	$\mathbf{1 . 5 0 0 0 0}$	$\mathbf{3 . 0 0 0 0 0}$	$\mathbf{6 . 0 0 0 0 0}$	$\mathbf{1 0 . 0 0 0 0}$	$\mathbf{1 5 . 0 0 0 0}$	$\mathbf{3 0 . 0 0 0 0}$
$\mathbf{1 0 m}$	$\mathbf{2 0 . 0 0 0}$	90.0000 W	180.0000 W	360.000 W	600.000 W	900.000 W	1800.000 W
$\mathbf{2 5 m}$	$\mathbf{5 0 . 0 0 0}$	225.000 W	450.000 W	900.000 W	1500.000 W	2.25000 kW	4.50000 kW
$\mathbf{5 0 m}$	$\mathbf{1 0 0 . 0 0 0}$	450.000 W	900.000 W	1800.000 W	3.00000 kW	4.50000 kW	9.00000 kW
$\mathbf{1 0 0 m}$	$\mathbf{2 0 0 . 0 0 0}$	900.000 W	1800.000 W	3.60000 kW	6.00000 kW	9.00000 kW	18.00000 kW
$\mathbf{2 5 0 m}$	$\mathbf{5 0 0 . 0 0 0}$	2.25000 kW	4.50000 kW	9.00000 kW	15.00000 kW	22.5000 kW	45.0000 kW
$\mathbf{5 0 0 m}$	$\mathbf{1 . 0 0 0 0 0}$	4.50000 kW	9.00000 kW	18.00000 kW	30.0000 kW	45.0000 kW	90.0000 kW
$\mathbf{1}$	$\mathbf{2 . 0 0 0 0 0}$	9.00000 kW	18.00000 kW	36.0000 kW	60.0000 kW	90.0000 kW	$\mathbf{1 8 0 . 0 0 0 0 \mathrm { kW }}$


Current Range [A]		Voltage Range [V]					
Setting	Setting $\mathbf{\times} \mathbf{C T}$ ratio	$\mathbf{6 0 . 0 0 0 0}$	$\mathbf{1 0 0 . 0 0 0}$	$\mathbf{1 5 0 . 0 0 0}$	$\mathbf{3 0 0 . 0 0 0}$	$\mathbf{6 0 0 . 0 0 0}$	$\mathbf{1 0 0 0 . 0 0}$
$\mathbf{1 0 m}$	$\mathbf{2 0 . 0 0 0}$	3.60000 kW	6.00000 kW	9.00000 kW	18.00000 kW	36.0000 kW	60.0000 kW
$\mathbf{2 5 m}$	$\mathbf{5 0 . 0 0 0 0}$	9.00000 kW	15.00000 kW	22.5000 kW	45.0000 kW	90.0000 kW	150.0000 kW
$\mathbf{5 0 m}$	$\mathbf{1 0 0 . 0 0 0}$	18.00000 kW	30.0000 kW	45.0000 kW	90.0000 kW	180.0000 kW	300.000 kW
$\mathbf{1 0 0 m}$	$\mathbf{2 0 0 . 0 0 0}$	36.0000 kW	60.0000 kW	90.0000 kW	180.0000 kW	360.000 kW	600.000 kW
$\mathbf{2 5 0 m}$	$\mathbf{5 0 0 . 0 0 0}$	90.0000 kW	150.0000 kW	225.000 kW	450.000 kW	900.000 kW	1500.000 kW
$\mathbf{5 0 0 m}$	$\mathbf{1 . 0 0 0 0 0 k}$	180.0000 kW	300.000 kW	450.000 kW	900.000 kW	1800.000 kW	3.00000 MW
$\mathbf{1}$	$\mathbf{2 . 0 0 0 0 0}$	360.000 kW	600.000 kW	900.000 kW	1800.000 kW	3.60000 MW	6.00000 MW

## CT preset: CT1000A (Input resistance: $1 \Omega$, CT ratio: 1500)

Current Range [A]		Voltage Range [V]					
Setting	Setting $\mathbf{\times}$ CT ratio	$\mathbf{1 . 5 0 0 0 0}$	$\mathbf{3 . 0 0 0 0 0}$	$\mathbf{6 . 0 0 0 0 0}$	$\mathbf{1 0 . 0 0 0 0}$	$\mathbf{1 5 . 0 0 0 0}$	$\mathbf{3 0 . 0 0 0 0}$
$\mathbf{1 0 m}$	$\mathbf{1 5 . 0 0 0 0}$	67.5000 W	135.0000 W	270.000 W	450.000 W	675.000 W	1350.000 W
$\mathbf{2 5 m}$	$\mathbf{3 7 . 5 0 0 0}$	168.7500 W	337.500 W	675.000 W	1125.000 W	1687.500 W	3.37500 kW
$\mathbf{5 0 m}$	$\mathbf{7 5 . 0 0 0}$	337.500 W	675.000 W	1350.000 W	2.25000 kW	3.37500 kW	6.75000 kW
$\mathbf{1 0 0 m}$	$\mathbf{1 5 0 . 0 0 0}$	675.000 W	1350.000 W	2.70000 kW	4.50000 kW	6.75000 kW	13.50000 kW
$\mathbf{2 5 0 m}$	$\mathbf{3 7 5 . 0 0 0}$	1687.500 W	3.37500 kW	6.75000 kW	11.25000 kW	16.87500 kW	33.7500 kW
$\mathbf{5 0 0 m}$	$\mathbf{0 . 7 5 0 0 0 k}$	3.37500 kW	6.75000 kW	13.50000 kW	22.5000 kW	33.7500 kW	67.5000 kW
$\mathbf{1}$	$\mathbf{1 . 5 0 0 0 0 k}$	6.75000 kW	13.50000 kW	27.0000 kW	45.0000 kW	67.5000 kW	135.0000 kW


Current Range [A]		Voltage Range [V]					
Setting	Setting $\mathbf{\times} \mathbf{C T}$ ratio	$\mathbf{6 0 . 0 0 0 0}$	$\mathbf{1 0 0 . 0 0 0}$	$\mathbf{1 5 0 . 0 0 0}$	$\mathbf{3 0 0 . 0 0 0}$	$\mathbf{6 0 0 . 0 0 0}$	$\mathbf{1 0 0 0 . 0 0}$
$\mathbf{1 0 m}$	$\mathbf{1 5 . 0 0 0}$	2.70000 kW	4.50000 kW	6.75000 kW	13.50000 kW	27.0000 kW	45.0000 kW
$\mathbf{2 5 m}$	$\mathbf{3 7 . 5 0 0 0}$	6.75000 kW	11.25000 kW	16.87500 kW	33.7500 kW	67.5000 kW	112.5000 kW
$\mathbf{5 0 m}$	$\mathbf{7 5 . 0 0 0}$	13.50000 kW	22.5000 kW	33.7500 kW	67.5000 kW	135.0000 kW	$\mathbf{2 2 5 . 0 0 0 \mathrm { kW }}$
$\mathbf{1 0 0 m}$	$\mathbf{1 5 0 . 0 0 0}$	27.0000 kW	45.0000 kW	67.5000 kW	135.0000 kW	270.000 kW	450.000 kW
$\mathbf{2 5 0 m}$	$\mathbf{3 7 5 . 0 0 0}$	67.5000 kW	112.5000 kW	168.7500 kW	337.500 kW	675.000 kW	1125.000 kW
$\mathbf{5 0 0 m}$	$\mathbf{0 . 7 5 0 0 0 k}$	135.0000 kW	225.000 kW	337.500 kW	675.000 kW	1350.000 kW	2.25000 MW
$\mathbf{1}$	$\mathbf{1 . 5 0 0 0 0}$	270.000 kW	450.000 kW	675.000 kW	1350.000 kW	2.70000 MW	4.50000 MW

CT preset: CT1000 (Input resistance: $1.5 \Omega, C T$ ratio: 1500)

Current Range [A]		Voltage Range [V]					
Setting	Setting $\mathbf{\times}$ CT ratio	$\mathbf{1 . 5 0 0 0 0}$	$\mathbf{3 . 0 0 0 0 0}$	$\mathbf{6 . 0 0 0 0 0}$	$\mathbf{1 0 . 0 0 0 0}$	$\mathbf{1 5 . 0 0 0 0}$	$\mathbf{3 0 . 0 0 0 0}$
$\mathbf{6 . 6 7 m}$	$\mathbf{1 0 . 0 0 0 0}$	45.0000 W	90.0000 W	180.0000 W	300.000 W	450.000 W	900.000 W
$\mathbf{1 6 . 7} \mathbf{m}$	$\mathbf{2 5 . 0 0 0 0}$	112.5000 W	225.000 W	450.000 W	750.000 W	1125.000 W	2.25000 kW
$\mathbf{3 3 . 3} \mathbf{m}$	$\mathbf{5 0 . 0 0 0 0}$	225.000 W	450.000 W	900.000 W	1500.000 W	2.25000 kW	4.50000 kW
$\mathbf{6 6 . 7} \mathbf{m}$	$\mathbf{1 0 0 . 0 0 0}$	450.000 W	900.000 W	1800.000 W	3.00000 kW	4.50000 kW	9.00000 kW
$\mathbf{1 6 7 m}$	$\mathbf{2 5 0 . 0 0 0}$	1125.000 W	2.25000 kW	4.50000 kW	7.50000 kW	11.25000 kW	22.5000 kW
$\mathbf{3 3 3 m}$	$\mathbf{5 0 0 . 0 0 0}$	2.25000 kW	4.50000 kW	9.00000 kW	15.00000 kW	22.5000 kW	45.0000 kW
$\mathbf{6 6 7 m}$	$\mathbf{1 . 0 0 0 0 0}$	4.50000 kW	9.00000 kW	18.00000 kW	30.0000 kW	45.0000 kW	90.0000 kW


Current Range [A]		Voltage Range [V]					
Setting	Setting $\mathbf{\times} \mathbf{C T}$ ratio	$\mathbf{6 0 . 0 0 0 0}$	$\mathbf{1 0 0 . 0 0 0}$	$\mathbf{1 5 0 . 0 0 0}$	$\mathbf{3 0 0 . 0 0 0}$	$\mathbf{6 0 0 . 0 0 0}$	$\mathbf{1 0 0 0 . 0 0}$
$\mathbf{6 . 6 7 m}$	$\mathbf{1 0 . 0 0 0 0}$	1800.000 W	3.00000 kW	4.50000 kW	9.00000 kW	18.00000 kW	30.0000 kW
$\mathbf{1 6 . 7} \mathbf{m}$	$\mathbf{2 5 . 0 0 0}$	4.50000 kW	7.50000 kW	11.25000 kW	22.5000 kW	45.0000 kW	75.0000 kW
$\mathbf{3 3 . 3} \mathbf{m}$	$\mathbf{5 0 . 0 0 0 0}$	9.00000 kW	15.00000 kW	22.5000 kW	45.0000 kW	90.0000 kW	150.0000 kW
$\mathbf{6 6 . 7} \mathbf{m}$	$\mathbf{1 0 0 . 0 0 0}$	18.00000 kW	30.0000 kW	45.0000 kW	90.0000 kW	180.0000 kW	300.000 kW
$\mathbf{1 6 7 m}$	$\mathbf{2 5 0 . 0 0 0}$	45.0000 kW	75.0000 kW	112.5000 kW	225.000 kW	450.000 kW	750.000 kW
$\mathbf{3 3 3 m}$	$\mathbf{5 0 0 . 0 0 0}$	90.0000 kW	150.0000 kW	225.000 kW	450.000 kW	900.000 kW	1500.000 kW
$\mathbf{6 6 7 m}$	$\mathbf{1 . 0 0 0 0 0}$	180.0000 kW	300.000 kW	450.000 kW	900.000 kW	1800.000 kW	3.00000 MW

CT preset: CT200 (Input resistance: $5 \Omega$, CT ratio: 1000)

Current Range [A]		Voltage Range [V]					
Setting	Setting $\mathbf{\times}$ CT ratio	$\mathbf{1 . 5 0 0 0 0}$	$\mathbf{3 . 0 0 0 0 0}$	$\mathbf{6 . 0 0 0 0 0}$	$\mathbf{1 0 . 0 0 0 0}$	$\mathbf{1 5 . 0 0 0 0}$	$\mathbf{3 0 . 0 0 0 0}$
$\mathbf{5 m}$	$\mathbf{5 . 0 0 0 0}$	22.5000 W	45.0000 W	90.0000 W	150.0000 W	225.000 W	450.000 W
$\mathbf{1 0 m}$	$\mathbf{1 0 . 0 0 0 0}$	45.0000 W	90.0000 W	180.0000 W	300.000 W	450.000 W	900.000 W
$\mathbf{2 0 m}$	$\mathbf{2 0 . 0 0 0 0}$	90.0000 W	180.0000 W	360.000 W	600.000 W	900.000 W	1800.000 W
$\mathbf{5 0 m}$	$\mathbf{5 0 . 0 0 0 0}$	225.000 W	450.000 W	900.000 W	1500.000 W	2.25000 kW	4.50000 kW
$\mathbf{1 0 0 m}$	$\mathbf{1 0 0 . 0 0 0}$	450.000 W	900.000 W	1800.000 W	3.00000 kW	4.50000 kW	9.00000 kW
$\mathbf{2 0 0 m}$	$\mathbf{2 0 0 . 0 0 0}$	900.000 W	1800.000 W	3.60000 kW	6.00000 kW	9.00000 kW	18.00000 kW


Current Range [A]		Voltage Range [V]					
Setting	Setting $\mathbf{\times} \mathbf{C T}$ ratio	$\mathbf{6 0 . 0 0 0 0}$	$\mathbf{1 0 0 . 0 0 0}$	$\mathbf{1 5 0 . 0 0 0}$	$\mathbf{3 0 0 . 0 0 0}$	$\mathbf{6 0 0 . 0 0 0}$	$\mathbf{1 0 0 0 . 0 0}$
$\mathbf{5 m}$	$\mathbf{5 . 0 0 0 0 0}$	900.000 W	1500.000 W	2.25000 kW	4.50000 kW	9.00000 kW	15.00000 kW
$\mathbf{1 0 m}$	$\mathbf{1 0 . 0 0 0 0}$	1800.000 W	3.00000 kW	4.50000 kW	9.00000 kW	18.00000 kW	30.0000 kW
$\mathbf{2 0 m}$	$\mathbf{2 0 . 0 0 0 0}$	3.60000 kW	6.00000 kW	9.00000 kW	18.00000 kW	36.0000 kW	60.0000 kW
$\mathbf{5 0 m}$	$\mathbf{5 0 . 0 0 0 0}$	9.00000 kW	15.00000 kW	22.5000 kW	45.0000 kW	90.0000 kW	150.0000 kW
$\mathbf{1 0 0 m}$	$\mathbf{1 0 0 . 0 0 0}$	18.00000 kW	30.0000 kW	45.0000 kW	90.0000 kW	180.0000 kW	300.000 kW
$\mathbf{2 0 0 m}$	$\mathbf{2 0 0 . 0 0 0}$	36.0000 kW	60.0000 kW	90.0000 kW	180.0000 kW	360.000 kW	600.000 kW

## CT preset: CT60 (Input resistance: $10 \Omega$, CT ratio: 600)

Current Range [A]		Voltage Range [V]					
Setting	Setting $\times \mathbf{C T}$ ratio	$\mathbf{1 . 5 0 0 0 0}$	$\mathbf{3 . 0 0 0 0 0}$	$\mathbf{6 . 0 0 0 0 0}$	$\mathbf{1 0 . 0 0 0 0}$	$\mathbf{1 5 . 0 0 0 0}$	$\mathbf{3 0 . 0 0 0 0}$
$\mathbf{5 m}$	$\mathbf{3 . 0 0 0 0 0}$	13.50000 W	27.0000 W	54.0000 W	90.0000 W	135.0000 W	$\mathbf{2 7 0 . 0 0 0} \mathrm{~W}$
$\mathbf{1 0 m}$	$\mathbf{6 . 0 0 0 0 0}$	27.0000 W	54.0000 W	108.0000 W	180.0000 W	270.000 W	540.000 W
$\mathbf{2 5 m}$	$\mathbf{1 5 . 0 0 0 0}$	67.5000 W	135.0000 W	270.000 W	450.000 W	675.000 W	1350.000 W
$\mathbf{5 0 m}$	$\mathbf{3 0 . 0 0 0 0}$	135.0000 W	270.000 W	540.000 W	900.000 W	1350.000 W	2.70000 kW
$\mathbf{1 0 0 m}$	$\mathbf{6 0 . 0 0 0 0}$	270.000 W	540.000 W	1080.000 W	1800.000 W	2.70000 kW	5.40000 kW


Current Range [A]		Voltage Range [V]					
Setting	Setting $\times \mathbf{C T}$ ratio	$\mathbf{6 0 . 0 0 0 0}$	$\mathbf{1 0 0 . 0 0 0}$	$\mathbf{1 5 0 . 0 0 0}$	$\mathbf{3 0 0 . 0 0 0}$	$\mathbf{6 0 0 . 0 0 0}$	$\mathbf{1 0 0 0 . 0 0}$
$\mathbf{5 m}$	$\mathbf{3 . 0 0 0 0 0}$	540.000 W	900.000 W	1350.000 W	2.70000 kW	5.40000 kW	9.00000 kW
$\mathbf{1 0 m}$	$\mathbf{6 . 0 0 0 0 0}$	1080.000 W	1800.000 W	2.70000 kW	5.40000 kW	10.80000 kW	18.00000 kW
$\mathbf{2 5 m}$	$\mathbf{1 5 . 0 0 0 0}$	2.70000 kW	4.50000 kW	6.75000 kW	13.50000 kW	27.0000 kW	45.0000 kW
$\mathbf{5 0 m}$	$\mathbf{3 0 . 0 0 0 0}$	5.40000 kW	9.00000 kW	13.50000 kW	27.0000 kW	54.0000 kW	90.0000 kW
$\mathbf{1 0 0 m}$	$\mathbf{6 0 . 0 0 0 0}$	10.80000 kW	18.00000 kW	27.0000 kW	54.0000 kW	108.0000 kW	180.0000 kW

## When the Crest Factor Is Set to CF6 or CF6A

Active Power Range of Each Element
CT preset: CT2000A (Input resistance: $1 \Omega$, CT ratio: 2000)

Current Range [A]		Voltage Range [V]					
Setting	Setting $\mathbf{\times} \mathbf{C T}$ ratio	$\mathbf{0 . 7 5 0 0 0}$	$\mathbf{1 . 5 0 0 0 0}$	$\mathbf{3 . 0 0 0 0 0}$	$\mathbf{5 . 0 0 0 0 0}$	$\mathbf{7 . 5 0 0 0}$	$\mathbf{1 5 . 0 0 0 0}$
$\mathbf{5 m}$	$\mathbf{1 0 . 0 0 0}$	7.5000 W	15.0000 W	30.0000 W	50.0000 W	$\mathbf{7 5 . 0 0 0} \mathrm{~W}$	150.000 W
$\mathbf{1 2 . 5}$	$\mathbf{2 5 . 0 0 0 0}$	18.7500 W	37.5000 W	75.000 W	125.000 W	187.500 W	375.000 W
$\mathbf{2 5 m}$	$\mathbf{5 0 . 0 0 0 0}$	37.5000 W	75.000 W	150.000 W	250.000 W	375.000 W	0.75000 kW
$\mathbf{5 0 m}$	$\mathbf{1 0 0 . 0 0 0}$	75.000 W	150.000 W	300.000 W	500.000 W	0.75000 kW	1.50000 kW
$\mathbf{1 2 5 m}$	$\mathbf{2 5 0 . 0 0 0}$	187.500 W	375.000 W	0.75000 kW	1.25000 kW	1.87500 kW	3.75000 kW
$\mathbf{2 5 0 m}$	$\mathbf{5 0 0 . 0 0 0}$	375.000 W	0.75000 kW	1.50000 kW	2.50000 kW	3.75000 kW	7.5000 kW
$\mathbf{5 0 0 m}$	$\mathbf{1 . 0 0 0 0} \mathrm{k}$	0.75000 kW	1.50000 kW	3.00000 kW	5.00000 kW	7.5000 kW	15.0000 kW


Current Range [A]		Voltage Range [V]					
Setting	Setting $\mathbf{\times} \mathbf{C T}$ ratio	$\mathbf{3 0 . 0 0 0 0}$	$\mathbf{5 0 . 0 0 0 0}$	$\mathbf{7 5 . 0 0 0}$	$\mathbf{1 5 0 . 0 0 0}$	$\mathbf{3 0 0 . 0 0 0}$	$\mathbf{5 0 0 . 0 0 0}$
$\mathbf{5 m}$	$\mathbf{1 0 . 0 0 0}$	300.000 W	500.000 W	0.75000 kW	1.50000 kW	3.00000 kW	5.00000 kW
$\mathbf{1 2 . 5 m}$	$\mathbf{2 5 . 0 0 0}$	0.75000 kW	1.25000 kW	1.87500 kW	3.75000 kW	7.5000 kW	12.5000 kW
$\mathbf{2 5 m}$	$\mathbf{5 0 . 0 0 0}$	1.50000 kW	2.50000 kW	3.75000 kW	7.5000 kW	15.0000 kW	$\mathbf{2 5 . 0 0 0 0 \mathrm { kW }}$
$\mathbf{5 0 m}$	$\mathbf{1 0 0 . 0 0 0}$	3.00000 kW	5.00000 kW	7.5000 kW	15.0000 kW	30.0000 kW	50.0000 kW
$\mathbf{1 2 5 m}$	$\mathbf{2 5 0 . 0 0 0}$	7.5000 kW	12.5000 kW	18.7500 kW	37.5000 kW	75.000 kW	125.000 kW
$\mathbf{2 5 0 m}$	$\mathbf{5 0 0 . 0 0 0}$	15.0000 kW	25.0000 kW	37.5000 kW	75.000 kW	150.000 kW	$\mathbf{2 5 0 . 0 0 0 \mathrm { kW }}$
$\mathbf{5 0 0 m}$	$\mathbf{1 . 0 0 0 0 0}$	30.0000 kW	50.0000 kW	75.000 kW	150.000 kW	300.000 kW	500.000 kW

CT preset: CT1000A (Input resistance: $1 \Omega$, CT ratio: 1500)

Current Range [A]		Voltage Range [V]					
Setting	Setting $\mathbf{\times} \mathbf{C T}$ ratio	$\mathbf{0 . 7 5 0 0 0}$	$\mathbf{1 . 5 0 0 0 0}$	$\mathbf{3 . 0 0 0 0 0}$	$\mathbf{5 . 0 0 0 0 0}$	$\mathbf{7 . 5 0 0 0}$	$\mathbf{1 5 . 0 0 0 0}$
$\mathbf{5 m}$	$\mathbf{7 . 5 0 0 0}$	5.62500 W	11.2500 W	22.5000 W	37.5000 W	56.2500 W	112.500 W
$\mathbf{1 2 . 5 m}$	$\mathbf{1 8 . 7 5 0 0}$	14.0625 W	28.1250 W	56.2500 W	93.750 W	140.625 W	281.250 W
$\mathbf{2 5 m}$	$\mathbf{3 7 . 5 0 0 0}$	28.1250 W	56.2500 W	112.500 W	187.500 W	281.250 W	562.500 W
$\mathbf{5 0 m}$	$\mathbf{7 5 . 0 0 0}$	56.2500 W	112.500 W	225.000 W	375.000 W	562.500 W	1.12500 WW
$\mathbf{1 2 5 m}$	$\mathbf{1 8 7 . 5 0 0}$	140.625 W	281.250 W	562.500 W	0.93750 kW	1.40625 kW	2.81250 kW
$\mathbf{2 5 0 m}$	$\mathbf{3 7 5 . 0 0 0}$	281.250 W	562.500 W	1.12500 kW	1.87500 kW	2.81250 kW	5.62500 kW
$\mathbf{5 0 0 m}$	$\mathbf{0 . 7 5 0 0 0}$	562.500 W	1.12500 kW	2.25000 kW	3.75000 kW	5.62500 kW	11.2500 kW


Current Range [A]		Voltage Range [V]					
Setting	Setting $\mathbf{\times} \mathbf{C T}$ ratio	$\mathbf{3 0 . 0 0 0 0}$	$\mathbf{5 0 . 0 0 0 0}$	$\mathbf{7 5 . 0 0 0}$	$\mathbf{1 5 0 . 0 0 0}$	$\mathbf{3 0 0 . 0 0 0}$	$\mathbf{5 0 0 . 0 0 0}$
$\mathbf{5 m}$	$\mathbf{7 . 5 0 0 0}$	225.000 W	375.000 W	562.500 W	1.12500 kW	2.25000 kW	3.75000 kW
$\mathbf{1 2 . 5 m}$	$\mathbf{1 8 . 7 5 0 0}$	562.500 W	0.93750 kW	1.40625 kW	2.81250 kW	5.62500 kW	9.3750 kW
$\mathbf{2 5 m}$	$\mathbf{3 7 . 5 0 0 0}$	1.12500 kW	1.87500 kW	2.81250 kW	5.62500 kW	11.2500 kW	18.7500 kW
$\mathbf{5 0 m}$	$\mathbf{7 5 . 0 0 0}$	2.25000 kW	3.75000 kW	5.62500 kW	11.2500 kW	22.5000 kW	37.5000 kW
$\mathbf{1 2 5 m}$	$\mathbf{1 8 7 . 5 0 0}$	5.62500 kW	9.3750 kW	14.0625 kW	28.1250 kW	56.2500 kW	93.750 kW
$\mathbf{2 5 0 m}$	$\mathbf{3 7 5 . 0 0 0}$	11.2500 kW	18.7500 kW	28.1250 kW	56.2500 kW	112.500 kW	187.500 kW
$\mathbf{5 0 0 m}$	$\mathbf{0 . 7 5 0 0 0}$	22.5000 kW	37.5000 kW	56.2500 kW	112.500 kW	225.000 kW	375.000 kW

CT preset: CT1000 (Input resistance: $1.5 \Omega$, CT ratio: 1500)

Current Range [A]		Voltage Range [V]					
Setting	Setting $\mathbf{\times}$ CT ratio	$\mathbf{0 . 7 5 0 0 0}$	$\mathbf{1 . 5 0 0 0 0}$	$\mathbf{3 . 0 0 0 0 0}$	$\mathbf{5 . 0 0 0 0 0}$	$\mathbf{7 . 5 0 0 0}$	$\mathbf{1 5 . 0 0 0 0}$
$\mathbf{3 . 3 3 m}$	$\mathbf{5 . 0 0 0 0 0}$	3.75000 W	7.5000 W	15.0000 W	25.0000 W	37.5000 W	$\mathbf{7 5 . 0 0 0} \mathrm{~W}$
$\mathbf{8 . 3 3 m}$	$\mathbf{1 2 . 5 0 0 0}$	9.3750 W	18.7500 W	37.5000 W	62.500 W	93.750 W	187.500 W
$\mathbf{1 6 . 7 m}$	$\mathbf{2 5 . 0 0 0 0}$	18.7500 W	37.5000 W	75.000 W	125.000 W	187.500 W	375.000 W
$\mathbf{3 3 . 3} \mathbf{m}$	$\mathbf{5 0 . 0 0 0 0}$	37.5000 W	75.000 W	150.000 W	250.000 W	375.000 W	0.75000 kW
$\mathbf{8 3 . 3 m}$	$\mathbf{1 2 5 . 0 0 0}$	93.750 W	187.500 W	375.000 W	0.62500 kW	0.93750 kW	1.87500 kW
$\mathbf{1 6 7 m}$	$\mathbf{2 5 0 . 0 0 0}$	187.500 W	375.000 W	0.75000 kW	1.25000 kW	1.87500 kW	3.75000 kW
$\mathbf{3 3 3 m}$	$\mathbf{5 0 0 . 0 0 0}$	375.000 W	0.75000 kW	1.50000 kW	2.50000 kW	3.75000 kW	7.5000 kW


Current Range [A]		Voltage Range [V]					
Setting	Setting $\mathbf{\times}$ CT ratio	$\mathbf{3 0 . 0 0 0 0}$	$\mathbf{5 0 . 0 0 0 0}$	$\mathbf{7 5 . 0 0 0}$	$\mathbf{1 5 0 . 0 0 0}$	$\mathbf{3 0 0 . 0 0 0}$	$\mathbf{5 0 0 . 0 0 0}$
$\mathbf{3 . 3 3 m}$	$\mathbf{5 . 0 0 0 0 0}$	150.000 W	250.000 W	375.000 W	0.75000 kW	1.50000 kW	2.50000 kW
$\mathbf{8 . 3 3 m}$	$\mathbf{1 2 . 5 0 0 0}$	375.000 W	0.62500 kW	0.93750 kW	1.87500 kW	3.75000 kW	6.2500 kW
$\mathbf{1 6 . 7 m}$	$\mathbf{2 5 . 0 0 0 0}$	0.75000 kW	1.25000 kW	1.87500 kW	3.75000 kW	7.5000 kW	12.5000 kW
$\mathbf{3 3 . 3} \mathbf{m}$	$\mathbf{5 0 . 0 0 0 0}$	1.50000 kW	2.50000 kW	3.75000 kW	7.5000 kW	15.0000 kW	25.0000 kW
$\mathbf{8 3 . 3 m}$	$\mathbf{1 2 5 . 0 0 0}$	3.75000 kW	6.2500 kW	9.3750 kW	18.7500 kW	37.5000 kW	62.500 kW
$\mathbf{1 6 7 m}$	$\mathbf{2 5 0 . 0 0 0}$	7.5000 kW	12.5000 kW	18.7500 kW	37.5000 kW	75.000 kW	125.000 kW
$\mathbf{3 3 3 m}$	$\mathbf{5 0 0 . 0 0 0}$	15.0000 kW	25.0000 kW	37.5000 kW	75.000 kW	150.000 kW	$\mathbf{2 5 0 . 0 0 0 \mathrm { kW }}$

CT preset: CT200 (Input resistance: $5 \Omega$, CT ratio: 1000)

Current Range [A]		Voltage Range [V]					
Setting	Setting $\mathbf{\times}$ CT ratio	$\mathbf{0 . 7 5 0 0 0}$	$\mathbf{1 . 5 0 0 0 0}$	$\mathbf{3 . 0 0 0 0 0}$	$\mathbf{5 . 0 0 0 0 0}$	$\mathbf{7 . 5 0 0 0}$	$\mathbf{1 5 . 0 0 0 0}$
$\mathbf{2 . 5 m}$	$\mathbf{2 . 5 0 0 0 0}$	1.87500 W	3.75000 W	7.5000 W	12.5000 W	18.7500 W	37.5000 W
$\mathbf{5 m}$	$\mathbf{5 . 0 0 0 0 0}$	3.75000 W	7.5000 W	15.0000 W	25.0000 W	37.5000 W	75.000 W
$\mathbf{1 0 m}$	$\mathbf{1 0 . 0 0 0 0}$	7.5000 W	15.0000 W	30.0000 W	50.0000 W	75.000 W	150.000 W
$\mathbf{2 5 m}$	$\mathbf{2 5 . 0 0 0 0}$	18.7500 W	37.5000 W	75.000 W	125.000 W	187.500 W	375.000 W
$\mathbf{5 0 m}$	$\mathbf{5 0 . 0 0 0 0}$	37.5000 W	75.000 W	150.000 W	250.000 W	375.000 W	0.75000 kW
$\mathbf{1 0 0 m}$	$\mathbf{1 0 0 . 0 0 0}$	75.000 W	150.000 W	300.000 W	500.000 W	0.75000 kW	1.50000 kW


Current Range [A]		Voltage Range [V]					
Setting	Setting $\mathbf{\times} \mathbf{C T}$ ratio	$\mathbf{3 0 . 0 0 0 0}$	$\mathbf{5 0 . 0 0 0 0}$	$\mathbf{7 5 . 0 0 0}$	$\mathbf{1 5 0 . 0 0 0}$	$\mathbf{3 0 0 . 0 0 0}$	$\mathbf{5 0 0 . 0 0 0}$
$\mathbf{2 . 5 m}$	$\mathbf{2 . 5 0 0 0 0}$	75.000 W	125.000 W	187.500 W	375.000 W	0.75000 kW	1.25000 kW
$\mathbf{5 m}$	$\mathbf{5 . 0 0 0 0 0}$	150.000 W	250.000 W	375.000 W	0.75000 kW	1.50000 kW	2.50000 kW
$\mathbf{1 0 m}$	$\mathbf{1 0 . 0 0 0 0}$	300.000 W	500.000 W	0.75000 kW	1.50000 kW	3.00000 kW	5.00000 kW
$\mathbf{2 5 m}$	$\mathbf{2 5 . 0 0 0 0}$	0.75000 kW	1.25000 kW	1.87500 kW	3.75000 kW	7.5000 kW	12.5000 kW
$\mathbf{5 0 m}$	$\mathbf{5 0 . 0 0 0 0}$	1.50000 kW	2.50000 kW	3.75000 kW	7.5000 kW	15.0000 kW	25.0000 kW
$\mathbf{1 0 0 m}$	$\mathbf{1 0 0 . 0 0 0}$	3.00000 kW	5.00000 kW	7.5000 kW	15.0000 kW	30.0000 kW	50.0000 kW

## CT preset: CT60 (Input resistance: $10 \Omega$, CT ratio: 600)

Current Range [A]		Voltage Range [V]					
Setting	Setting $\boldsymbol{\times} \mathbf{C T}$ ratio	$\mathbf{0 . 7 5 0 0 0}$	$\mathbf{1 . 5 0 0 0 0}$	$\mathbf{3 . 0 0 0 0 0}$	$\mathbf{5 . 0 0 0 0 0}$	$\mathbf{7 . 5 0 0 0}$	$\mathbf{1 5 . 0 0 0 0}$
$\mathbf{2 . 5 m}$	$\mathbf{1 . 5 0 0 0 0}$	1.12500 W	2.25000 W	4.50000 W	7.5000 W	11.2500 W	$\mathbf{2 2 . 5 0 0 0} \mathrm{~W}$
$\mathbf{5 m}$	$\mathbf{3 . 0 0 0 0 0}$	2.25000 W	4.50000 W	9.0000 W	15.0000 W	22.5000 W	45.0000 W
$\mathbf{1 2 . 5 m}$	$\mathbf{7 . 5 0 0 0}$	5.62500 W	11.2500 W	22.5000 W	37.5000 W	56.2500 W	112.500 W
$\mathbf{2 5 m}$	$\mathbf{1 5 . 0 0 0 0}$	11.2500 W	22.5000 W	45.0000 W	75.000 W	112.500 W	225.000 W
$\mathbf{5 0 m}$	$\mathbf{3 0 . 0 0 0 0}$	22.5000 W	45.0000 W	90.000 W	150.000 W	$\mathbf{2 2 5 . 0 0 0} \mathrm{~W}$	450.000 W


Current Range [A]		Voltage Range [V]					
Setting	Setting $\mathbf{\times}$ CT ratio	$\mathbf{3 0 . 0 0 0 0}$	$\mathbf{5 0 . 0 0 0 0}$	$\mathbf{7 5 . 0 0 0}$	$\mathbf{1 5 0 . 0 0 0}$	$\mathbf{3 0 0 . 0 0 0}$	$\mathbf{5 0 0 . 0 0 0}$
$\mathbf{2 . 5 m}$	$\mathbf{1 . 5 0 0 0 0}$	45.0000 W	75.000 W	112.500 W	225.000 W	450.000 W	0.75000 kW
$\mathbf{5 m}$	$\mathbf{3 . 0 0 0 0}$	90.000 W	150.000 W	225.000 W	450.000 W	0.90000 kW	1.50000 kW
$\mathbf{1 2 . 5 m}$	$\mathbf{7 . 5 0 0 0}$	225.000 W	375.000 W	562.500 W	1.12500 kW	2.25000 kW	3.75000 kW
$\mathbf{2 5 m}$	$\mathbf{1 5 . 0 0 0 0}$	450.000 W	0.75000 kW	1.12500 kW	2.25000 kW	4.50000 kW	7.5000 kW
$\mathbf{5 0 m}$	$\mathbf{3 0 . 0 0 0 0}$	0.90000 kW	1.50000 kW	2.25000 kW	4.50000 kW	9.0000 kW	15.0000 kW

Active Power Range of a Wiring Unit with a 1P3W, 3P3W, 3P3W (3V3A), or 3P3W (3V3AR) Wiring System

CT preset: CT2000A (Input resistance: 1 』, CT ratio: 2000)

Current Range [A]		Voltage Range [V]					
Setting	Setting $\mathbf{\times} \mathbf{C T}$ ratio	$\mathbf{0 . 7 5 0 0 0}$	$\mathbf{1 . 5 0 0 0 0}$	$\mathbf{3 . 0 0 0 0 0}$	$\mathbf{5 . 0 0 0 0 0}$	$\mathbf{7 . 5 0 0 0}$	$\mathbf{1 5 . 0 0 0 0}$
$\mathbf{5 m}$	$\mathbf{1 0 . 0 0 0}$	15.0000 W	30.0000 W	60.0000 W	100.0000 W	150.000 W	300.000 W
$\mathbf{1 2 . 5}$	$\mathbf{2 5 . 0 0 0 0}$	37.5000 W	75.0000 W	150.000 W	250.000 W	375.000 W	750.000 W
$\mathbf{2 5 m}$	$\mathbf{5 0 . 0 0 0}$	75.0000 W	150.000 W	300.000 W	500.000 W	750.000 W	1.50000 kW
$\mathbf{5 0 m}$	$\mathbf{1 0 0 . 0 0 0}$	150.000 W	300.000 W	600.000 W	1000.000 W	1.50000 kW	3.00000 kW
$\mathbf{1 2 5 m}$	$\mathbf{2 5 0 . 0 0 0}$	375.000 W	750.000 W	1.50000 kW	2.50000 kW	3.75000 kW	7.50000 kW
$\mathbf{2 5 0}$	$\mathbf{5 0 0 . 0 0 0}$	750.000 W	1.50000 kW	3.00000 kW	5.00000 kW	7.50000 kW	15.0000 kW
$\mathbf{5 0 0 m}$	$\mathbf{1 . 0 0 0 0} \mathrm{k}$	1.50000 kW	3.00000 kW	6.00000 kW	10.00000 kW	15.0000 kW	30.0000 kW


Current Range [A]		Voltage Range [V]					
Setting	Setting $\mathbf{\times} \mathbf{C T}$ ratio	$\mathbf{3 0 . 0 0 0 0}$	$\mathbf{5 0 . 0 0 0 0}$	$\mathbf{7 5 . 0 0 0}$	$\mathbf{1 5 0 . 0 0 0}$	$\mathbf{3 0 0 . 0 0 0}$	$\mathbf{5 0 0 . 0 0 0}$
$\mathbf{5 m}$	$\mathbf{1 0 . 0 0 0}$	600.000 W	1000.000 W	1.50000 kW	3.00000 kW	6.00000 kW	10.00000 kW
$\mathbf{1 2 . 5 m}$	$\mathbf{2 5 . 0 0 0}$	1.50000 kW	2.50000 kW	3.75000 kW	7.50000 kW	15.0000 kW	$\mathbf{2 5 . 0 0 0 0 \mathrm { kW }}$
$\mathbf{2 5 m}$	$\mathbf{5 0 . 0 0 0 0}$	3.00000 kW	5.00000 kW	7.50000 kW	15.0000 kW	30.0000 kW	50.0000 kW
$\mathbf{5 0 m}$	$\mathbf{1 0 0 . 0 0 0}$	6.00000 kW	10.00000 kW	15.0000 kW	30.0000 kW	60.0000 kW	100.0000 kW
$\mathbf{1 2 5 m}$	$\mathbf{2 5 0 . 0 0 0}$	15.0000 kW	25.0000 kW	37.5000 kW	75.0000 kW	150.000 kW	$\mathbf{2 5 0 . 0 0 0 \mathrm { kW }}$
$\mathbf{2 5 0 m}$	$\mathbf{5 0 0 . 0 0 0}$	30.0000 kW	50.0000 kW	75.0000 kW	150.000 kW	300.000 kW	500.000 kW
$\mathbf{5 0 0 m}$	$\mathbf{1 . 0 0 0 0 0}$	60.0000 kW	100.0000 kW	150.000 kW	300.000 kW	600.000 kW	$\mathbf{1 0 0 0 . 0 0 0 \mathrm { kW }}$

CT preset: CT1000A (Input resistance: $1 \Omega$, CT ratio: 1500)

Current Range [A]		Voltage Range [V]					
Setting	Setting $\mathbf{\times} \mathbf{C T}$ ratio	$\mathbf{0 . 7 5 0 0 0}$	$\mathbf{1 . 5 0 0 0 0}$	$\mathbf{3 . 0 0 0 0 0}$	$\mathbf{5 . 0 0 0 0 0}$	$\mathbf{7 . 5 0 0 0}$	$\mathbf{1 5 . 0 0 0 0}$
$\mathbf{5 m}$	$\mathbf{7 . 5 0 0 0}$	11.25000 W	22.5000 W	45.0000 W	75.0000 W	112.5000 W	$\mathbf{2 2 5 . 0 0 0} \mathrm{~W}$
$\mathbf{1 2 . 5 m}$	$\mathbf{1 8 . 7 5 0 0}$	28.1250 W	56.2500 W	112.5000 W	187.500 W	281.250 W	562.500 W
$\mathbf{2 5 m}$	$\mathbf{3 7 . 5 0 0 0}$	56.2500 W	112.5000 W	225.000 W	375.000 W	562.500 W	1125.000 W
$\mathbf{5 0 m}$	$\mathbf{7 5 . 0 0 0}$	112.5000 W	225.000 W	450.000 W	750.000 W	1125.000 W	2.25000 kW
$\mathbf{1 2 5 m}$	$\mathbf{1 8 7 . 5 0 0}$	281.250 W	562.500 W	1125.000 W	1.87500 kW	2.81250 kW	5.62500 kW
$\mathbf{2 5 0 m}$	$\mathbf{3 7 5 . 0 0 0}$	562.500 W	1125.000 W	2.25000 kW	3.75000 kW	5.62500 kW	11.25000 kW
$\mathbf{5 0 0 m}$	$\mathbf{0 . 7 5 0 0 0 k}$	1125.000 W	2.25000 kW	4.50000 kW	7.50000 kW	11.25000 kW	$\mathbf{2 2 . 5 0 0 0 \mathrm { WW }}$


Current Range [A]		Voltage Range [V]					
Setting	Setting $\mathbf{\times} \mathbf{C T}$ ratio	$\mathbf{3 0 . 0 0 0 0}$	$\mathbf{5 0 . 0 0 0 0}$	$\mathbf{7 5 . 0 0 0}$	$\mathbf{1 5 0 . 0 0 0}$	$\mathbf{3 0 0 . 0 0 0}$	$\mathbf{5 0 0 . 0 0 0}$
$\mathbf{5 m}$	$\mathbf{7 . 5 0 0 0}$	450.000 W	750.000 W	1125.000 W	2.25000 kW	4.50000 kW	7.50000 kW
$\mathbf{1 2 . 5 m}$	$\mathbf{1 8 . 7 5 0 0}$	1125.000 W	1.87500 kW	2.81250 kW	5.62500 kW	11.25000 kW	18.7500 kW
$\mathbf{2 5 m}$	$\mathbf{3 7 . 5 0 0 0}$	2.25000 kW	3.75000 kW	5.62500 kW	11.25000 kW	22.5000 kW	37.5000 kW
$\mathbf{5 0 m}$	$\mathbf{7 5 . 0 0 0}$	4.50000 kW	7.50000 kW	11.25000 kW	22.5000 kW	45.0000 kW	75.0000 kW
$\mathbf{1 2 5 m}$	$\mathbf{1 8 7 . 5 0 0}$	11.25000 kW	18.7500 kW	28.1250 kW	56.2500 kW	112.5000 kW	187.500 kW
$\mathbf{2 5 0 m}$	$\mathbf{3 7 5 . 0 0 0}$	22.5000 kW	37.5000 kW	56.2500 kW	112.5000 kW	225.000 kW	375.000 kW
$\mathbf{5 0 0 m}$	$\mathbf{0 . 7 5 0 0 0}$	45.0000 kW	75.0000 kW	112.5000 kW	225.000 kW	450.000 kW	750.000 kW

CT preset: CT1000 (Input resistance: $1.5 \Omega, C T$ ratio: 1500)

Current Range [A]		Voltage Range [V]					
Setting	Setting $\mathbf{\times}$ CT ratio	$\mathbf{0 . 7 5 0 0 0}$	$\mathbf{1 . 5 0 0 0 0}$	$\mathbf{3 . 0 0 0 0 0}$	$\mathbf{5 . 0 0 0 0 0}$	$\mathbf{7 . 5 0 0 0}$	$\mathbf{1 5 . 0 0 0 0}$
$\mathbf{3 . 3 3 m}$	$\mathbf{5 . 0 0 0 0 0}$	7.50000 W	15.0000 W	30.0000 W	50.0000 W	75.0000 W	150.000 W
$\mathbf{8 . 3 3 m}$	$\mathbf{1 2 . 5 0 0 0}$	18.7500 W	37.5000 W	75.0000 W	125.000 W	187.500 W	375.000 W
$\mathbf{1 6 . 7 m}$	$\mathbf{2 5 . 0 0 0 0}$	37.5000 W	75.0000 W	150.000 W	250.000 W	375.000 W	750.000 W
$\mathbf{3 3 . 3} \mathbf{m}$	$\mathbf{5 0 . 0 0 0 0}$	75.0000 W	150.000 W	300.000 W	500.000 W	750.000 W	1.50000 kW
$\mathbf{8 3 . 3 m}$	$\mathbf{1 2 5 . 0 0 0}$	187.500 W	375.000 W	750.000 W	1.25000 kW	1.87500 kW	3.75000 kW
$\mathbf{1 6 7 m}$	$\mathbf{2 5 0 . 0 0 0}$	375.000 W	750.000 W	1.50000 kW	2.50000 kW	3.75000 kW	7.50000 kW
$\mathbf{3 3 3 m}$	$\mathbf{5 0 0 . 0 0 0}$	750.000 W	1.50000 kW	3.00000 kW	5.00000 kW	7.50000 kW	15.0000 kW


Current Range [A]		Voltage Range [V]					
Setting	Setting $\mathbf{\times}$ CT ratio	$\mathbf{3 0 . 0 0 0 0}$	$\mathbf{5 0 . 0 0 0 0}$	$\mathbf{7 5 . 0 0 0}$	$\mathbf{1 5 0 . 0 0 0}$	$\mathbf{3 0 0 . 0 0 0}$	$\mathbf{5 0 0 . 0 0 0}$
$\mathbf{3 . 3 3 m}$	$\mathbf{5 . 0 0 0 0 0}$	300.000 W	500.000 W	750.000 W	1.50000 kW	3.00000 kW	5.00000 kW
$\mathbf{8 . 3 3 m}$	$\mathbf{1 2 . 5 0 0 0}$	750.000 W	1.25000 kW	1.87500 kW	3.75000 kW	7.50000 kW	12.5000 kW
$\mathbf{1 6 . 7 m}$	$\mathbf{2 5 . 0 0 0 0}$	1.50000 kW	2.50000 kW	3.75000 kW	7.50000 kW	15.0000 kW	$\mathbf{2 5 . 0 0 0 0 \mathrm { kW }}$
$\mathbf{3 3 . 3} \mathbf{m}$	$\mathbf{5 0 . 0 0 0 0}$	3.00000 kW	5.00000 kW	7.50000 kW	15.0000 kW	30.0000 kW	50.0000 kW
$\mathbf{8 3 . 3 m}$	$\mathbf{1 2 5 . 0 0 0}$	7.50000 kW	12.5000 kW	18.7500 kW	37.5000 kW	75.0000 kW	125.000 kW
$\mathbf{1 6 7 m}$	$\mathbf{2 5 0 . 0 0 0}$	15.0000 kW	25.0000 kW	37.5000 kW	75.0000 kW	150.000 kW	$\mathbf{2 5 0 . 0 0 0 \mathrm { kW }}$
$\mathbf{3 3 3 m}$	$\mathbf{5 0 0 . 0 0 0}$	30.0000 kW	50.0000 kW	75.0000 kW	150.000 kW	300.000 kW	500.000 kW

CT preset: CT200 (Input resistance: $5 \Omega$, CT ratio: 1000)

Current Range [A]		Voltage Range [V]					
Setting	Setting $\mathbf{\times}$ CT ratio	$\mathbf{0 . 7 5 0 0 0}$	$\mathbf{1 . 5 0 0 0 0}$	$\mathbf{3 . 0 0 0 0 0}$	$\mathbf{5 . 0 0 0 0 0}$	$\mathbf{7 . 5 0 0 0}$	$\mathbf{1 5 . 0 0 0 0}$
$\mathbf{2 . 5 m}$	$\mathbf{2 . 5 0 0 0 0}$	3.75000 W	7.50000 W	15.0000 W	25.0000 W	37.5000 W	$\mathbf{7 5 . 0 0 0 0} \mathrm{~W}$
$\mathbf{5 m}$	$\mathbf{5 . 0 0 0 0 0}$	7.50000 W	15.0000 W	30.0000 W	50.0000 W	75.0000 W	150.000 W
$\mathbf{1 0 m}$	$\mathbf{1 0 . 0 0 0 0}$	15.0000 W	30.0000 W	60.0000 W	100.0000 W	150.000 W	300.000 W
$\mathbf{2 5 m}$	$\mathbf{2 5 . 0 0 0 0}$	37.5000 W	75.0000 W	150.000 W	250.000 W	375.000 W	750.000 W
$\mathbf{5 0 m}$	$\mathbf{5 0 . 0 0 0}$	75.0000 W	150.000 W	300.000 W	500.000 W	750.000 W	1.50000 kW
$\mathbf{1 0 0 m}$	$\mathbf{1 0 0 . 0 0 0}$	150.000 W	300.000 W	600.000 W	1000.000 W	1.50000 kW	3.00000 kW


Current Range [A]		Voltage Range [V]					
Setting	Setting $\mathbf{\times} \mathbf{C T}$ ratio	$\mathbf{3 0 . 0 0 0 0}$	$\mathbf{5 0 . 0 0 0 0}$	$\mathbf{7 5 . 0 0 0}$	$\mathbf{1 5 0 . 0 0 0}$	$\mathbf{3 0 0 . 0 0 0}$	$\mathbf{5 0 0 . 0 0 0}$
$\mathbf{2 . 5 m}$	$\mathbf{2 . 5 0 0 0 0}$	150.000 W	250.000 W	375.000 W	750.000 W	1.50000 kW	2.50000 kW
$\mathbf{5 m}$	$\mathbf{5 . 0 0 0 0 0}$	300.000 W	500.000 W	750.000 W	1.50000 kW	3.00000 kW	5.00000 kW
$\mathbf{1 0 m}$	$\mathbf{1 0 . 0 0 0 0}$	600.000 W	1000.000 W	1.50000 kW	3.00000 kW	6.00000 kW	10.00000 kW
$\mathbf{2 5 m}$	$\mathbf{2 5 . 0 0 0 0}$	1.50000 kW	2.50000 kW	3.75000 kW	7.50000 kW	15.0000 kW	25.0000 kW
$\mathbf{5 0 m}$	$\mathbf{5 0 . 0 0 0 0}$	3.00000 kW	5.00000 kW	7.50000 kW	15.0000 kW	30.0000 kW	50.0000 kW
$\mathbf{1 0 0 m}$	$\mathbf{1 0 0 . 0 0 0}$	6.00000 kW	10.00000 kW	15.0000 kW	30.0000 kW	60.0000 kW	100.0000 kW

## CT preset: CT60 (Input resistance: $10 \Omega$, CT ratio: 600)

Current Range [A]		Voltage Range [V]					
Setting	Setting $\boldsymbol{\times} \mathbf{C T}$ ratio	$\mathbf{0 . 7 5 0 0 0}$	$\mathbf{1 . 5 0 0 0 0}$	$\mathbf{3 . 0 0 0 0 0}$	$\mathbf{5 . 0 0 0 0 0}$	$\mathbf{7 . 5 0 0 0}$	$\mathbf{1 5 . 0 0 0 0}$
$\mathbf{2 . 5 m}$	$\mathbf{1 . 5 0 0 0 0}$	2.25000 W	4.50000 W	9.00000 W	15.0000 W	$\mathbf{2 2 . 5 0 0 0} \mathrm{~W}$	45.0000 W
$\mathbf{5 m}$	$\mathbf{3 . 0 0 0 0 0}$	4.50000 W	9.00000 W	18.0000 W	30.0000 W	45.0000 W	90.0000 W
$\mathbf{1 2 . 5 m}$	$\mathbf{7 . 5 0 0 0}$	11.25000 W	22.5000 W	45.0000 W	75.0000 W	112.5000 W	$\mathbf{2 2 5 . 0 0 0} \mathrm{~W}$
$\mathbf{2 5 m}$	$\mathbf{1 5 . 0 0 0 0}$	22.5000 W	45.0000 W	90.0000 W	150.000 W	225.000 W	450.000 W
$\mathbf{5 0 m}$	$\mathbf{3 0 . 0 0 0 0}$	45.0000 W	90.0000 W	180.000 W	300.000 W	450.000 W	900.000 W


Current Range [A]		Voltage Range [V]					
Setting	Setting $\times \mathbf{C T}$ ratio	$\mathbf{3 0 . 0 0 0 0}$	$\mathbf{5 0 . 0 0 0 0}$	$\mathbf{7 5 . 0 0 0}$	$\mathbf{1 5 0 . 0 0 0}$	$\mathbf{3 0 0 . 0 0 0}$	$\mathbf{5 0 0 . 0 0 0}$
$\mathbf{2 . 5 m}$	$\mathbf{1 . 5 0 0 0 0}$	90.0000 W	150.000 W	225.000 W	450.000 W	900.000 W	1.50000 kW
$\mathbf{5 m}$	$\mathbf{3 . 0 0 0 0 0}$	180.000 W	300.000 W	450.000 W	900.000 W	1.80000 kW	3.00000 kW
$\mathbf{1 2 . 5 m}$	$\mathbf{7 . 5 0 0 0}$	450.000 W	750.000 W	1125.000 W	2.25000 kW	4.50000 kW	7.50000 kW
$\mathbf{2 5 m}$	$\mathbf{1 5 . 0 0 0 0}$	900.000 W	1.50000 kW	2.25000 kW	4.50000 kW	9.00000 kW	15.0000 kW
$\mathbf{5 0 m}$	$\mathbf{3 0 . 0 0 0 0}$	1.80000 kW	3.00000 kW	4.50000 kW	9.00000 kW	18.0000 kW	30.0000 kW

Active Power Range of a Wiring Unit with a 3P4W Wiring System CT preset: CT2000A (Input resistance: 1 』, CT ratio: 2000)

Current Range [A]		Voltage Range [V]					
Setting	Setting $\mathbf{\times} \mathbf{C T}$ ratio	$\mathbf{0 . 7 5 0 0 0}$	$\mathbf{1 . 5 0 0 0 0}$	$\mathbf{3 . 0 0 0 0 0}$	$\mathbf{5 . 0 0 0 0 0}$	$\mathbf{7 . 5 0 0 0}$	$\mathbf{1 5 . 0 0 0 0}$
$\mathbf{5 m}$	$\mathbf{1 0 . 0 0 0}$	22.5000 W	45.0000 W	90.0000 W	150.0000 W	225.000 W	450.000 W
$\mathbf{1 2 . 5}$	$\mathbf{2 5 . 0 0 0 0}$	56.2500 W	112.5000 W	225.000 W	375.000 W	562.500 W	1125.000 W
$\mathbf{2 5 m}$	$\mathbf{5 0 . 0 0 0}$	112.5000 W	225.000 W	450.000 W	750.000 W	1125.000 W	2.25000 kW
$\mathbf{5 0 m}$	$\mathbf{1 0 0 . 0 0 0}$	225.000 W	450.000 W	900.000 W	1500.000 W	2.25000 kW	4.50000 kW
$\mathbf{1 2 5 m}$	$\mathbf{2 5 0 . 0 0 0}$	562.500 W	1125.000 W	2.25000 kW	3.75000 kW	5.62500 kW	11.25000 kW
$\mathbf{2 5 0 m}$	$\mathbf{5 0 0 . 0 0 0}$	1125.000 W	2.25000 kW	4.50000 kW	7.50000 kW	11.25000 kW	22.5000 kW
$\mathbf{5 0 0 m}$	$\mathbf{1 . 0 0 0 0 0}$	2.25000 kW	4.50000 kW	9.00000 kW	15.00000 kW	22.5000 kW	45.0000 kW


Current Range [A]		Voltage Range [V]					
Setting	Setting $\mathbf{\times} \mathbf{C T}$ ratio	$\mathbf{3 0 . 0 0 0 0}$	$\mathbf{5 0 . 0 0 0 0}$	$\mathbf{7 5 . 0 0 0}$	$\mathbf{1 5 0 . 0 0 0}$	$\mathbf{3 0 0 . 0 0 0}$	$\mathbf{5 0 0 . 0 0 0}$
$\mathbf{5 m}$	$\mathbf{1 0 . 0 0 0}$	900.000 W	1500.000 W	2.25000 kW	4.50000 kW	9.00000 kW	15.00000 kW
$\mathbf{1 2 . 5 m}$	$\mathbf{2 5 . 0 0 0}$	2.25000 kW	3.75000 kW	5.62500 kW	11.25000 kW	22.5000 kW	37.5000 kW
$\mathbf{2 5 m}$	$\mathbf{5 0 . 0 0 0 0}$	4.50000 kW	7.50000 kW	11.25000 kW	22.5000 kW	45.0000 kW	75.0000 kW
$\mathbf{5 0 m}$	$\mathbf{1 0 0 . 0 0 0}$	9.00000 kW	15.00000 kW	22.5000 kW	45.0000 kW	90.0000 kW	150.0000 kW
$\mathbf{1 2 5 m}$	$\mathbf{2 5 0 . 0 0 0}$	22.5000 kW	37.5000 kW	56.2500 kW	112.5000 kW	225.000 kW	375.000 kW
$\mathbf{2 5 0 m}$	$\mathbf{5 0 0 . 0 0 0}$	45.0000 kW	75.0000 kW	112.5000 kW	225.000 kW	450.000 kW	750.000 kW
$\mathbf{5 0 0 m}$	$\mathbf{1 . 0 0 0 0 0}$	90.0000 kW	150.0000 kW	225.000 kW	450.000 kW	900.000 kW	1500.000 kW

CT preset: CT1000A (Input resistance: $1 \Omega$, CT ratio: 1500)

Current Range [A]		Voltage Range [V]					
Setting	Setting $\mathbf{\times} \mathbf{C T}$ ratio	$\mathbf{0 . 7 5 0 0 0}$	$\mathbf{1 . 5 0 0 0 0}$	$\mathbf{3 . 0 0 0 0 0}$	$\mathbf{5 . 0 0 0 0 0}$	$\mathbf{7 . 5 0 0 0}$	$\mathbf{1 5 . 0 0 0 0}$
$\mathbf{5 m}$	$\mathbf{7 . 5 0 0 0}$	16.87500 W	33.7500 W	67.5000 W	112.5000 W	168.7500 W	337.500 W
$\mathbf{1 2 . 5 m}$	$\mathbf{1 8 . 7 5 0 0}$	42.1875 W	84.3750 W	168.7500 W	281.250 W	421.875 W	843.750 W
$\mathbf{2 5 m}$	$\mathbf{3 7 . 5 0 0 0}$	84.3750 W	168.7500 W	337.500 W	562.500 W	843.750 W	1687.500 W
$\mathbf{5 0 m}$	$\mathbf{7 5 . 0 0 0}$	168.7500 W	337.500 W	675.000 W	1125.000 W	1687.500 W	3.37500 kW
$\mathbf{1 2 5 m}$	$\mathbf{1 8 7 . 5 0 0}$	421.875 W	843.750 W	1687.500 W	2.81250 kW	4.21875 kW	8.43750 kW
$\mathbf{2 5 0 m}$	$\mathbf{3 7 5 . 0 0 0}$	843.750 W	1687.500 W	3.37500 kW	5.62500 kW	8.43750 kW	16.87500 kW
$\mathbf{5 0 0 m}$	$\mathbf{0 . 7 5 0 0 0 k}$	1687.500 W	3.37500 kW	6.75000 kW	11.25000 kW	16.87500 kW	33.7500 kW


Current Range [A]			Voltage Range [V]				
Setting	Setting $\mathbf{\times}$ CT ratio	$\mathbf{3 0 . 0 0 0 0}$	$\mathbf{5 0 . 0 0 0 0}$	$\mathbf{7 5 . 0 0 0}$	$\mathbf{1 5 0 . 0 0 0}$	$\mathbf{3 0 0 . 0 0 0}$	$\mathbf{5 0 0 . 0 0 0}$
$\mathbf{5 m}$	$\mathbf{7 . 5 0 0 0}$	675.000 W	1125.000 W	1687.500 W	3.37500 kW	6.75000 kW	11.25000 kW
$\mathbf{1 2 . 5 m}$	$\mathbf{1 8 . 7 5 0 0}$	1687.500 W	2.81250 kW	4.21875 kW	8.43750 kW	16.87500 kW	$\mathbf{2 8 . 1 2 5 0 \mathrm { kW }}$
$\mathbf{2 5 m}$	$\mathbf{3 7 . 5 0 0 0}$	3.37500 kW	5.62500 kW	8.43750 kW	16.87500 kW	33.7500 kW	56.2500 kW
$\mathbf{5 0 m}$	$\mathbf{7 5 . 0 0 0}$	6.75000 kW	11.25000 kW	16.87500 kW	33.7500 kW	67.5000 kW	112.5000 kW
$\mathbf{1 2 5 m}$	$\mathbf{1 8 7 . 5 0 0}$	16.87500 kW	28.1250 kW	42.1875 kW	84.3750 kW	168.7500 kW	281.250 kW
$\mathbf{2 5 0 m}$	$\mathbf{3 7 5 . 0 0 0}$	33.7500 kW	56.2500 kW	84.3750 kW	168.7500 kW	337.500 kW	562.500 kW
$\mathbf{5 0 0 m}$	$\mathbf{0 . 7 5 0 0 0}$	67.5000 kW	112.5000 kW	168.7500 kW	337.500 kW	675.000 kW	1125.000 kW

CT preset: CT1000 (Input resistance: $1.5 \Omega$, CT ratio: 1500)

Current Range [A]		Voltage Range [V]					
Setting	Setting $\mathbf{\times}$ CT ratio	$\mathbf{0 . 7 5 0 0 0}$	$\mathbf{1 . 5 0 0 0 0}$	$\mathbf{3 . 0 0 0 0 0}$	$\mathbf{5 . 0 0 0 0 0}$	$\mathbf{7 . 5 0 0 0}$	$\mathbf{1 5 . 0 0 0 0}$
$\mathbf{3 . 3 3 m}$	$\mathbf{5 . 0 0 0 0 0}$	11.25000 W	22.5000 W	45.0000 W	75.0000 W	112.5000 W	$\mathbf{2 2 5 . 0 0 0} \mathrm{~W}$
$\mathbf{8 . 3 3 m}$	$\mathbf{1 2 . 5 0 0 0}$	28.1250 W	56.2500 W	112.5000 W	187.500 W	281.250 W	562.500 W
$\mathbf{1 6 . 7 m}$	$\mathbf{2 5 . 0 0 0 0}$	56.2500 W	112.5000 W	225.000 W	375.000 W	562.500 W	1125.000 W
$\mathbf{3 3 . 3} \mathbf{m}$	$\mathbf{5 0 . 0 0 0 0}$	112.5000 W	225.000 W	450.000 W	750.000 W	1125.000 W	2.25000 kW
$\mathbf{8 3 . 3 m}$	$\mathbf{1 2 5 . 0 0 0}$	281.250 W	562.500 W	1125.000 W	1.87500 kW	2.81250 kW	5.62500 kW
$\mathbf{1 6 7 m}$	$\mathbf{2 5 0 . 0 0 0}$	562.500 W	1125.000 W	2.25000 kW	3.75000 kW	5.62500 kW	11.25000 kW
$\mathbf{3 3 3 m}$	$\mathbf{5 0 0 . 0 0 0}$	1125.000 W	2.25000 kW	4.50000 kW	7.50000 kW	11.25000 kW	$\mathbf{2 2 . 5 0 0 0 \mathrm { kW }}$


Current Range [A]		Voltage Range [V]					
Setting	Setting $\mathbf{\times}$ CT ratio	$\mathbf{3 0 . 0 0 0 0}$	$\mathbf{5 0 . 0 0 0 0}$	$\mathbf{7 5 . 0 0 0}$	$\mathbf{1 5 0 . 0 0 0}$	$\mathbf{3 0 0 . 0 0 0}$	$\mathbf{5 0 0 . 0 0 0}$
$\mathbf{3 . 3 3 m}$	$\mathbf{5 . 0 0 0 0 0}$	450.000 W	750.000 W	1125.000 W	2.25000 kW	4.50000 kW	7.50000 kW
$\mathbf{8 . 3 3 m}$	$\mathbf{1 2 . 5 0 0 0}$	1125.000 W	1.87500 kW	2.81250 kW	5.62500 kW	11.25000 kW	18.7500 kW
$\mathbf{1 6 . 7 m}$	$\mathbf{2 5 . 0 0 0 0}$	2.25000 kW	3.75000 kW	5.62500 kW	11.25000 kW	22.5000 kW	37.5000 kW
$\mathbf{3 3 . 3} \mathbf{m}$	$\mathbf{5 0 . 0 0 0 0}$	4.50000 kW	7.50000 kW	11.25000 kW	22.5000 kW	45.0000 kW	75.0000 kW
$\mathbf{8 3 . 3 m}$	$\mathbf{1 2 5 . 0 0 0}$	11.25000 kW	18.7500 kW	28.1250 kW	56.2500 kW	112.5000 kW	187.500 kW
$\mathbf{1 6 7 m}$	$\mathbf{2 5 0 . 0 0 0}$	22.5000 kW	37.5000 kW	56.2500 kW	112.5000 kW	225.000 kW	375.000 kW
$\mathbf{3 3 3 m}$	$\mathbf{5 0 0 . 0 0 0}$	45.0000 kW	75.0000 kW	112.5000 kW	225.000 kW	450.000 kW	750.000 kW

CT preset: CT200 (Input resistance: $5 \Omega$, CT ratio: 1000)

Current Range [A]		Voltage Range [V]					
Setting	Setting $\mathbf{\times} \mathbf{C T}$ ratio	$\mathbf{0 . 7 5 0 0 0}$	$\mathbf{1 . 5 0 0 0 0}$	$\mathbf{3 . 0 0 0 0 0}$	$\mathbf{5 . 0 0 0 0 0}$	$\mathbf{7 . 5 0 0 0}$	$\mathbf{1 5 . 0 0 0 0}$
$\mathbf{2 . 5 m}$	$\mathbf{2 . 5 0 0 0 0}$	5.62500 W	11.25000 W	22.5000 W	37.5000 W	56.2500 W	112.5000 W
$\mathbf{5 m}$	$\mathbf{5 . 0 0 0 0 0}$	11.25000 W	22.5000 W	45.0000 W	75.0000 W	112.5000 W	$\mathbf{2 2 5 . 0 0 0} \mathrm{~W}$
$\mathbf{1 0 m}$	$\mathbf{1 0 . 0 0 0 0}$	22.5000 W	45.0000 W	90.0000 W	150.0000 W	225.000 W	450.000 W
$\mathbf{2 5 m}$	$\mathbf{2 5 . 0 0 0 0}$	56.2500 W	112.5000 W	225.000 W	375.000 W	562.500 W	1125.000 W
$\mathbf{5 0 m}$	$\mathbf{5 0 . 0 0 0 0}$	112.5000 W	225.000 W	450.000 W	750.000 W	1125.000 W	2.25000 kW
$\mathbf{1 0 0 m}$	$\mathbf{1 0 0 . 0 0 0}$	225.000 W	450.000 W	900.000 W	1500.000 W	2.25000 kW	4.50000 kW


Current Range [A]		Voltage Range [V]					
Setting	Setting $\mathbf{\times} \mathbf{C T}$ ratio	$\mathbf{3 0 . 0 0 0 0}$	$\mathbf{5 0 . 0 0 0 0}$	$\mathbf{7 5 . 0 0 0}$	$\mathbf{1 5 0 . 0 0 0}$	$\mathbf{3 0 0 . 0 0 0}$	$\mathbf{5 0 0 . 0 0 0}$
$\mathbf{2 . 5 m}$	$\mathbf{2 . 5 0 0 0}$	225.000 W	375.000 W	562.500 W	1125.000 W	2.25000 kW	3.75000 kW
$\mathbf{5 m}$	$\mathbf{5 . 0 0 0 0 0}$	450.000 W	750.000 W	1125.000 W	2.25000 kW	4.50000 kW	7.50000 kW
$\mathbf{1 0 m}$	$\mathbf{1 0 . 0 0 0 0}$	900.000 W	1500.000 W	2.25000 kW	4.50000 kW	9.00000 kW	15.00000 kW
$\mathbf{2 5 m}$	$\mathbf{2 5 . 0 0 0 0}$	2.25000 kW	3.75000 kW	5.62500 kW	11.25000 kW	22.5000 kW	37.5000 kW
$\mathbf{5 0 m}$	$\mathbf{5 0 . 0 0 0 0}$	4.50000 kW	7.50000 kW	11.25000 kW	22.5000 kW	45.0000 kW	75.0000 kW
$\mathbf{1 0 0 m}$	$\mathbf{1 0 0 . 0 0 0}$	9.00000 kW	15.00000 kW	22.5000 kW	45.0000 kW	90.0000 kW	150.0000 kW

## CT preset: CT60 (Input resistance: $10 \Omega$, CT ratio: 600)

Current Range [A]		Voltage Range [V]					
Setting	Setting $\mathbf{\times} \mathbf{C T}$ ratio	$\mathbf{0 . 7 5 0 0 0}$	$\mathbf{1 . 5 0 0 0 0}$	$\mathbf{3 . 0 0 0 0 0}$	$\mathbf{5 . 0 0 0 0 0}$	$\mathbf{7 . 5 0 0 0}$	$\mathbf{1 5 . 0 0 0 0}$
$\mathbf{2 . 5 m}$	$\mathbf{1 . 5 0 0 0 0}$	3.37500 W	6.75000 W	13.50000 W	22.5000 W	33.7500 W	67.5000 W
$\mathbf{5 m}$	$\mathbf{3 . 0 0 0 0 0}$	6.75000 W	13.50000 W	27.0000 W	45.0000 W	67.5000 W	135.0000 W
$\mathbf{1 2 . 5 m}$	$\mathbf{7 . 5 0 0 0}$	16.87500 W	33.7500 W	67.5000 W	112.5000 W	168.7500 W	337.500 W
$\mathbf{2 5 m}$	$\mathbf{1 5 . 0 0 0 0}$	33.7500 W	67.5000 W	135.0000 W	225.000 W	337.500 W	675.000 W
$\mathbf{5 0 m}$	$\mathbf{3 0 . 0 0 0 0}$	67.5000 W	135.0000 W	270.000 W	450.000 W	675.000 W	1350.000 W


Current Range [A]		Voltage Range [V]					
Setting	Setting $\times \mathbf{C T}$ ratio	$\mathbf{3 0 . 0 0 0 0}$	$\mathbf{5 0 . 0 0 0 0}$	$\mathbf{7 5 . 0 0 0}$	$\mathbf{1 5 0 . 0 0 0}$	$\mathbf{3 0 0 . 0 0 0}$	$\mathbf{5 0 0 . 0 0 0}$
$\mathbf{2 . 5 m}$	$\mathbf{1 . 5 0 0 0 0}$	135.0000 W	225.000 W	337.500 W	675.000 W	1350.000 W	2.25000 kW
$\mathbf{5 m}$	$\mathbf{3 . 0 0 0 0 0}$	270.000 W	450.000 W	675.000 W	1350.000 W	2.70000 kW	4.50000 kW
$\mathbf{1 2 . 5 m}$	$\mathbf{7 . 5 0 0 0}$	675.000 W	1125.000 W	1687.500 W	3.37500 kW	6.75000 kW	11.25000 kW
$\mathbf{2 5 m}$	$\mathbf{1 5 . 0 0 0 0}$	1350.000 W	2.25000 kW	3.37500 kW	6.75000 kW	13.50000 kW	22.5000 kW
$\mathbf{5 0 m}$	$\mathbf{3 0 . 0 0 0 0}$	2.70000 kW	4.50000 kW	6.75000 kW	13.50000 kW	27.0000 kW	45.0000 kW

## Appendix 5 Setting the Measurement Period

To make correct measurements on the instrument, you must set its measurement period properly.

There are two cases for setting the measurement period depending on the computing method (Measurement Method).

- When Measurement Method is set to Sync Source Period Average

Setting the measurement period is necessary

- When Measurement Method is set to Digital Filter Average

Setting the measurement period is not necessary.

These two cases are detailed below.

## When Measurement Method Is Set to Sync Source Period Average

The instrument detects the period of the input signal selected using the measurement period setting. The measurement period is an integer multiple of this detected period. The instrument determines the measured values by averaging the data sampled in the measurement period. The input signal used to determine the measurement period is called the sync source.
The measurement period is automatically determined inside the instrument when you specify the sync source.

This computing method is called the sync source period average method. This method is effective for cases when the data update interval is short or for efficiently measuring low frequency signals.

You can select the sync source signal from the options listed below.
U1, I1, U2, I2, U3, I3, U4, I4, U5, I5, U6, I6, U7, I7, Ext CIk (external clock), Z Phase 1 (Ch D), Z Phase 3 (Ch H), None

* The available options vary depending on the installed elements.

For example, if the sync source for input element 1 is set to I1, an integer multiple of the period of II becomes the measurement period. By averaging the sampled data in this measurement period, the instrument computes the measured values for input element 1, such as U1, I1, and P1.

## Deciding Whether to Use Voltage or Current Input as the Sync Source

Select input signals with stable input levels and frequencies (with little distortion) as sync sources. Correct measured values can only be obtained if the period of the sync source signal is detected accurately. On the instrument, display the frequency of the input signal that you have selected as the sync source, and confirm that the frequency is being measured correctly. The most suitable sync source is the input signal that is the most stable and that provides accurate measured results.
For example, if a switching power supply is being measured and the voltage waveform distortion is smaller than the current waveform distortion, set the sync source to the voltage signal.


As another example, if an inverter is being measured and the current waveform distortion is smaller than the voltage waveform distortion, set the sync source to the current signal.


## Period Detection

- The rising (or falling) cross point is the time when the sync source passes through the specified level (the center of the amplitude) on a rising (or falling) slope. The measurement period on the instrument is between the first rising (or falling) cross point and the last rising (or falling) cross point in the data update interval.
- The instrument determines whether to define the measurement period using the rising or falling cross point automatically by choosing the method that will result in the longest measurement period.



## When the Period of the Sync Source Cannot Be Detected

If the total number of rising and falling zero crossings on the input signal that has been set as the sync source is less than two within the data update interval, the period cannot be detected. Also, the period cannot be detected if the AC amplitude is small. For information on the detection levels of the frequency measurement circuit, see "Conditions" under "Frequency Measurement Function" in section 6.7, "Features." In this situation, the entire data update interval is used to average the sampled data.


Because of the reasons described above, the measured voltage and current values may be unstable. If this happens, lower the data update interval so that more periods of the input signal fit within the data update interval.

## When the Waveform of the Sync Source Is Distorted

Change the sync source to a signal that allows for more stable detection of the period (switch from voltage to current or from current to voltage). Also, turn on the frequency filter.
The instrument reduces the effects of noise by using hysteresis when it detects cross points. If the synchronization source is distorted or harmonics and noise are superposed on the signal to a level exceeding this hysteresis, harmonic components will cause cross point detection to occur frequently, and the cross point of the fundamental frequency will not be detected stably. Consequently, the measured voltage and current may be unstable. When high frequency components are superposed on the current waveform such as in the aforementioned inverter example, turn the frequency filter on to stably detect cross points. Use of the filter is appropriate if it makes the measured frequency accurate and more stable. In this way, the frequency filter also functions as a filter for detecting the cross points of the sync source.


## When Measuring a Signal That Has No Cross Points Because of a DC Offset Superposed on the AC Signal

The measured values may be unstable if the period of the AC signal cannot be detected accurately. Change the sync source to a signal that allows for more stable detection of the period (switch from voltage to current or from current to voltage).
The AC coupling (high-pass filter) of the frequency detection circuit is turned on and off using Sync Source/Freq Measurement under Input (Advanced/Options). If you turn on the AC coupling (highpass filter), even with AC signals in which there are no cross points because of an offset, the period can be detected if the AC amplitude is greater than or equal to the detection level of the frequency measurement circuit (see "Conditions" under "Frequency Measurement Function" in section 6.7, "Features").
With this feature, the measurement period is set to an integer multiple of the period of the AC signal.


## When Measuring a DC Signal

When there are ripples in the DC signal, if the level of the ripples is greater than or equal to the detection level of the frequency measurement circuit (see the conditions listed under "Accuracy" under "Frequency Measurement" in section 6.7, "Features") and the period can be detected accurately and stably, a more accurate DC measurement is possible. If a large AC signal is superposed on a DC signal, you can achieve a more stable measurement by detecting the AC signal period and averaging it.
In addition, if a small fluctuating pulse noise riding on the DC signal crosses the specified level, that point is detected as a cross point. As a result, sampled data is averaged over an unintended period, and measured values such as voltage and current may be unstable. You can prevent these kinds of erroneous detections by setting the sync source to None.
All of the sampled data in the data update interval is used to determine measured values.


Set the sync source according to the signal under measurement and the measurement objective.

## Setting the Synchronization Period When Measuring a ThreePhase Device

If a three-phase device is measured with input elements 1 and 2 using a three-phase three-wire system, set the sync source of input elements 1 and 2 to the same signal. For example, set the sync source of input elements 1 and 2 to U1 or I1. The measurement periods of input elements 1 and 2 will match, and it will be possible to measure the $\Sigma$ voltage, $\Sigma$ current, and $\Sigma$ power of a three-phase device more accurately.
Likewise, if a three-phase device is measured with input elements 1,2 , and 3 using a three-phase four-wire system, set the sync source of input elements 1,2 , and 3 to the same signal.
To facilitate this sort of configuration, the synchronization source setting on the instrument is linked to the $\Sigma$ wiring unit of the wiring system (when independent input element configuration is turned off). If independent input element configuration is turned on, the synchronization source of each input element in the $\Sigma$ wiring unit can be set independently.


Synchronization Source Setup Example	
Input element 1	U1 (or I1)
Input element 2	
Input element 3	

## Setting the Synchronization Period When Measuring the Efficiency of a Power Transformer

(1) Power Transformer with Single-Phase Input and Single-Phase Output

If you are using input elements 1 and 2 to measure a device that converts single-phase AC power to single-phase DC power, set the sync source of input elements 1 and 2 to the voltage (or current) on the AC power end. In the example shown in the figure below, set the sync source of input elements 1 and 2 to U1 (or I1).
The measurement periods of input element 1 (input end) and input element 2 (output end) will match, and it will be possible to measure the power conversion efficiency at the input and output ends of the power transformer more accurately.


Synchronization Source Setup Example	
Input element 1	U1 (or 11)
Input element 2	

Likewise, if you are using input elements 1 (DC end) and 2 (AC end) to measure a device that converts single-phase DC power to single-phase AC power, set the sync source of input elements 1 and 2 to the voltage (or current) on the AC power end (input element 2). In the example shown in the figure below, set the sync source of input elements 1 and 2 to U 2 (or I2).


## (2) Power Transformer with Single-Phase DC Input and Three-Phase AC Output

If you are using the connections shown on the next page to measure a device that converts single-phase DC power to three-phase AC power, set the sync source of all input elements to the same signal: the voltage or current of element 2 or 3 on the AC power end.
In this example, set the sync source of input elements 1,2 , and 3 to U 2 (or $\mathrm{I} 2, \mathrm{U} 3$, or I3). The measurement periods of the input signal and all output signals will match, and it will be possible to measure the power conversion efficiency of the power transformer more accurately.

- Single-phase DC power: Connect to input element 1.
- Three-phase AC power: Connect to input elements 2 and 3 using a three-phase three-wire system.
AC power U2 and I2
DC power U1 and I1 AC power U3 and I3


Synchronization Source Setup Example	
Input element 1	U2 (or I2, U3, or I3)
Input element 2	
Input element 3	

(3)Power Transformer with Single-Phase AC Input and Three-Phase AC Output

If you are using the connections shown in the figure below to measure a device that converts single-phase AC power to three-phase AC power, set the sync source of input elements on the input end to the same signal and do the same for input elements on the output end.
In this example, set the sync source of input element 1 to U1 (or I1), and set the sync source of input elements 2 and 3 to U 2 (or I2, U3, or I3).
In this case, AC signals of different frequencies are measured. If the sync source of all input elements is set to the same signal, the measurement period of either the input signal or the output signal will not be an integer multiple of the signal.

- Single-phase AC power: Connect to input element 1.
- Three-phase AC power: Connect to input elements 2 and 3 using a three-phase three-wire system.

AC power U2 and I2
AC power U1 and I1


Synchronization Source Setup Example	
Input element 1	U1 (or I1)
Input element 2	U2 (or I2, U3, or I3)
Input element 3	

## Note

- The measurement period for determining the numeric data of the peak voltage or peak current is the entire span of the data update interval, regardless of the measurement period settings discussed above. Therefore, the measurement period for the measurement functions that are determined using the maximum voltage or current value ( $\mathrm{U}+\mathrm{pk}, \mathrm{U}-\mathrm{pk}, \mathrm{I}+\mathrm{pk}, \mathrm{I}-\mathrm{pk}, \mathrm{CfU}$, and Cfl ) is also the entire span of the data update interval.
- For details on the measurement period for measurement functions related to harmonic measurement, see "Measurement Period (Sync Source)" in chapter 3, "Input Settings (Basic Measurement Conditions)," of the Features Guide, IM WT5000-01EN.


## When Measurement Method Is Set to Digital Filter Average

Measured values are determined by applying a digital filter on all sampled data and computing the averages, regardless of the data update interval. This computing method is called the digital filter method. With this method, the measurement period is not affected by the input signal period or the sync source settings. As such, there is no need to detect the input signal period. In addition, the measurement period is always the same on all input elements. If aligning the measurement period between the input and output is difficult as shown in the earlier example in "(3) Power Transformer with Single-Phase AC Input and Three-Phase AC Output," we recommend using this method. This method, in principle, is free of period detection errors and the like and provides highly stable measurements.

## App

## Appendix 6 User-Defined Function Operands

The following is a list of operands that can be used in user-defined functions.
Measurement Functions Used in Normal Measurement

Measurement Function	User-Defined Function		Parameter in ()	
			Element	Wiring Unit
		Example	E1 to E7	SA to SC
Urms	URMS( )	URMS(E1)	Yes	Yes
Umn	UMN( )	UMN(E1)	Yes	Yes
Udc	UDC( )	UDC(E1)	Yes	Yes
Urmn	URMN( )	URMN(E1)	Yes	Yes
Uac	UAC( )	UAC(E1)	Yes	Yes
Ufnd	UFND( )	UFND(E1)	Yes	Yes
Irms	IRMS( )	IRMS(E1)	Yes	Yes
Imn	$\operatorname{IMN}()$	IMN(E1)	Yes	Yes
Idc	IDC( )	IDC(E1)	Yes	Yes
Irmn	IRMN( )	IRMN(E1)	Yes	Yes
lac	IAC( )	IAC(E1)	Yes	Yes
Ifnd	IFND( )	IFND(E1)	Yes	Yes
P	P()	$\mathrm{P}(\mathrm{E} 1)$	Yes	Yes
S	S( )	S(E1)	Yes	Yes
Q	Q( )	Q(E1)	Yes	Yes
$\lambda$	LAMBDA( )	LAMBDA(E1)	Yes	Yes
$\Phi$	PHI( )	PHI(E1)	Yes	Yes
Pfnd	PFND( )	PFND(E1)	Yes	Yes
Sfnd	SFND( )	SFND(E1)	Yes	Yes
Qfnd	QFND( )	QFND(E1)	Yes	Yes
$\lambda \mathrm{fnd}$	LAMBDAFND( )	LAMBDAFND(E1)	Yes	Yes
Фfnd	PHIFND( )	PHIFND(E1)	Yes	No
fU	FU( )	FU(E1)	Yes	No
fl	FI( )	Fl(E1)	Yes	No
f2U	F2U( )	F2U(E1)	Yes	No
f21	F21( )	F21(E1)	Yes	No
U+pk	UPPK( )	UPPK(E1)	Yes	No
U-pk	UMPK( )	UMPK(E1)	Yes	No
l+pk	IPPK( )	IPPK(E1)	Yes	No
l-pk	IMPK( )	IMPK(E1)	Yes	No
P+pk	PPPK( )	PPPK(E1)	Yes	No
P-pk	PMPK( )	PMPK(E1)	Yes	No
CfU	CFU( )	CFU(E1)	Yes	No
Cfl	CFI( )	CFI(E1)	Yes	No
Pc	PC( )	PC(E1)	Yes	Yes

Integrated Power (Watt hour)

Measurement Function	User-Defined Function		Parameter in ()	
			Element	Wiring Unit
		Example	E1 to E7	SA to SC
Wp	WH( )	WH(E1)	Yes	Yes
Wp+	WHP( )	WHP(E1)	Yes	Yes
Wp-	WHM( )	WHM(E1)	Yes	Yes
q	AH( )	AH(E1)	Yes	Yes
q+	AHP( )	AHP(E1)	Yes	Yes
q-	AHM( )	AHM(E1)	Yes	Yes
WS	SH( )	SH(E1)	Yes	Yes
WQ	QH( )	QH(E1)	Yes	Yes
ITime	ITIME( )	ITIME(E1)	Yes	No

## Efficiency

Measurement Function	User-Defined Function		Parameter in ( )
		Example	
П1	ETA1( )	ETA1( )	None or space*
n2	ETA2( )	ETA2( )	None or space*
n3	ETA3( )	ETA3( )	None or space*
¢4	ETA4( )	ETA4( )	None or space*

* You cannot omit the parentheses.


## User-Defined Function

Measurement Function	User-Defined Function		Parameter in ( )
		Example	
F1	F1( )	F1( )	None or space*
F2	F2( )	F2( )	None or space*
F3	F3( )	F3( )	None or space*
F4	F4( )	F4( )	None or space*
F5	F5( )	F5( )	None or space*
F6	F6( )	F6( )	None or space*
F7	F7( )	F7( )	None or space*
F8	F8( )	F8( )	None or space*
F9	F9( )	F9( )	None or space*
F10	F10( )	F10( )	None or space*
F11	F11( )	F11()	None or space*
F12	F12( )	F12( )	None or space*
F13	F13( )	F13( )	None or space*
F14	F14()	F14( )	None or space*
F15	F15( )	F15( )	None or space*
F16	F16( )	F16( )	None or space*
F17	F17( )	F17( )	None or space*
F18	F18( )	F18( )	None or space*
F19	F19()	F19()	None or space*
F20	F20( )	F20( )	None or space*

* You cannot omit the parentheses.

User-defined equations cannot use other user-defined equations with larger numbers as operands.

## MAX Hold

Measurement Function	User-Defined Function		Parameter in ( )	
			Element	Wiring Unit
		Example	E1 to E7	SA to SC
Rms voltage	MAXURMS( )	MAXURMS(E1)	Yes	Yes
Voltage mean	MAXUMN( )	MAXUMN(E1)	Yes	Yes
Voltage simple average	MAXUDC( )	MAXUDC(E1)	Yes	Yes
Voltage rectified mean value	MAXURMN( )	MAXURMN(E1 )	Yes	Yes
Voltage AC component	MAXUAC( )	MAXUAC(E1)	Yes	Yes
Rms current	MAXIRMS( )	MAXIRMS(E1)	Yes	Yes
Current mean	MAXIMN( )	MAXIMN(E1)	Yes	Yes
Current simple average	MAXIDC( )	MAXIDC(E1)	Yes	Yes
Current rectified mean value	MAXIRMN( )	MAXIRMN(E1)	Yes	Yes
Current AC component	MAXIAC( )	MAXIAC(E1)	Yes	Yes
Active power	MAXP( )	MAXP(E1)	Yes	Yes
Apparent power	MAXS( )	MAXS(E1)	Yes	Yes
Reactive power	MAXQ( )	MAXQ(E1)	Yes	Yes
Positive peak voltage	MAXUPPK( )	MAXUPPK(E1)	Yes	No
Negative peak voltage	MINUMPK( )	MINUMPK(E1)	Yes	No
Positive peak current	MAXIPPK( )	MAXIPPK(E1)	Yes	No
Negative peak current	MINIMPK( )	MINIMPK(E1)	Yes	No
Positive peak power	MAXPPPK( )	MAXPPPK(E1)	Yes	No
Negative peak power	MINPMPK( )	MINPMPK(E1)	Yes	No

## Motor Evaluation Option

Measurement Function	User-Defined Function		Parameter in ( )
	Example		Motor
		M1 to M4	
Speed	SPEED( )	SPEED(M1)	Yes
Torque	TORQUE( )	TORQUE(M1)	Yes
Pm	PM( )	PM(M1)	Yes
Slip	SLIP( )	SLIP(M1)	Yes
SyncSp	SYNC( )	SYNC(M1)	Yes

## Auxiliary Input Option

| Measurement Function | User-Defined Function <br>  <br>  |  | Example |
| :--- | :--- | :--- | :--- | Parameter in ( )

* You cannot omit the parentheses.

Delta Computation

Measurement Function	User-Defined Function		Parameter in ()	
			Element	Wiring Unit
		Example	E1 to E7	SA to SC
-U1()	DELTAU1()	DELTAU1(SA)	No	Yes
-U2()	DELTAU2()	DELTAU2(SA)	No	Yes
-U3()	DELTAU3()	DELTAU3(SA)	No	Yes
$\triangle \mathrm{U}$ ()	DELTAUSIG( )	DELTAUSIG(SA)	No	Yes
$\Delta \mathrm{l}$ ( )	DELTAI( )	DELTAI(SA)	No	Yes
$\triangle \mathrm{P} 1$ ()	DELTAP1()	DELTAP1(SA)	No	Yes
$\triangle \mathrm{P} 2$ ()	DELTAP2()	DELTAP2(SA)	No	Yes
$\triangle \mathrm{P} 3$ ( )	DELTAP3()	DELTAP3(SA)	No	Yes
$\triangle \mathrm{P}$ ( )	DELTAPSIG( )	DELTAPSIG(SA)	No	Yes
$\Delta \mathrm{U} 1 \mathrm{rms}$ ()	DELTAU1RMS()	DELTAU1RMS(SA)	No	Yes
$\Delta \mathrm{U} 2 \mathrm{rms}($ )	DELTAU2RMS()	DELTAU2RMS(SA)	No	Yes
$\Delta \mathrm{U} 3 \mathrm{rms}$ ()	DELTAU3RMS()	DELTAU3RMS(SA)	No	Yes
$\Delta \mathrm{U}$ [rms( )	DELTAUSIGRMS()	DELTAUSIGRMS(SA)	No	Yes
$\Delta \mathrm{U} 1 \mathrm{mean}$ ()	DELTAU1MN()	DELTAU1MN(SA)	No	Yes
-U2mean()	DELTAU2MN()	DELTAU2MN(SA)	No	Yes
-U3mean()	DELTAU3MN()	DELTAU3MN(SA)	No	Yes
UUEmean( )	DELTAUSIGMN()	DELTAUSIGMN(SA)	No	Yes
-U1rmean()	DELTAU1RMN( )	DELTAU1RMN(SA)	No	Yes
UU2rmean( )	DELTAU2RMN( )	DELTAU2RMN(SA)	No	Yes
$\Delta$ U3rmean( )	DELTAU3RMN()	DELTAU3RMN(SA)	No	Yes
$\Delta$ UErmean()	DELTAUSIGRMN()	DELTAUSIGRMN(SA)	No	Yes
$\Delta \mathrm{U} 1 \mathrm{dc}$ ( )	DELTAU1DC( )	DELTAU1DC(SA)	No	Yes
$\Delta \mathrm{U} 2 \mathrm{dc}($ )	DELTAU2DC()	DELTAU2DC(SA)	No	Yes
$\triangle$ U3dc ( )	DELTAU3DC()	DELTAU3DC(SA)	No	Yes
$\Delta \mathrm{U}$ ¢dc ( )	DELTAUSIGDC( )	DELTAUSIGDC(SA)	No	Yes
$\Delta \mathrm{U} 1 \mathrm{ac}($ )	DELTAU1AC( )	DELTAU1AC(SA)	No	Yes
$\triangle \mathrm{U} 2 \mathrm{ac}($ )	DELTAU2AC( )	DELTAU2AC(SA)	No	Yes
$\triangle \mathrm{U} 3 \mathrm{ac}()$	DELTAU3AC( )	DELTAU3AC(SA)	No	Yes
$\triangle \mathrm{U}$ Eac( )	DELTAUSIGAC( )	DELTAUSIGAC(SA)	No	Yes
$\Delta \mathrm{lrms}$ ( )	DELTAIrms()	DELTAIRMS(SA)	No	Yes
$\Delta$ Imean()	DELTAIMN( )	DELTAIMN(SA)	No	Yes
$\Delta$ Irmean( )	DELTAIRMN()	DELTAIRMN(SA)	No	Yes
$\Delta \mathrm{ldc}()$	DELTAIDC( )	DELTAIDC(SA)	No	Yes
$\Delta \mathrm{lac}()$	DELTAIAC( )	DELTAIAC(SA)	No	Yes

## Delta Harmonic Computation

Measurement Function	User-Defined Function		Parameter in ( )	
		Example	Element	Wiring Unit
Delta harmonic voltage 1   fundamental wave	DELTAU1F( )	DELTAU1F(SA)	No	Yes
Delta harmonic voltage 2   fundamental wave	DELTAU2F( )	DELTAU2F(SA)	No	Yes
Delta harmonic voltage 3   fundamental wave	DELTAU3F( )	DELTAU3F(SA)	No	Yes
Delta harmonic voltage $\Sigma$   fundamental wave	DELTAUSIGF( )	DELTAUSIGF(SA)	No	Yes
Delta harmonic power 1   fundamental wave	DELTAP1F( )	DELTAP1F(SA)	No	Yes
Delta harmonic power 2   fundamental wave	DELTAP2F( )	DELTAP2F(SA)	No	Yes
Delta harmonic power 3   fundamental wave	DELTAP3F( )	DELTAP3F(SA)	No	Yes
Delta harmonic power $\Sigma$   fundamental wave	DELTAPSIGF( )	DELTAPSIGF(SA)	No	Yes

Delta harmonic computation can be used for $\Sigma A$ and $\Sigma B$ (NAN is output constantly for $\Sigma C$ ).

Harmonic Measurement:


* Available on models with the motor evaluation function (option)


## Measuring Range

Measurement Function	User-Defined Function		Parameter in ( )
		Example	
RngU	RNGU( )	RNGU(E1)	E1 to E7 (element)
Rngl	RNGI( )	RNGI(E1)	E1 to E7 (element)
RngSpd ${ }^{1}$	RNGSPD( )	RNGSPD(M1)	M1 to M4 (motor)
RngTrq ${ }^{1}$	RNGTRQ( )	RNGTRQ(M1)	M1 to M4 (motor)
RngAux ${ }^{1}$	RNGAUX1( )   ~RNGAUX8( )	RNGAUX1( )   ~RNGAUX8( )	None or space ${ }^{2}$

1 Available on models with the motor evaluation function (option)
2 You cannot omit the parentheses.

## Appendix 7 USB Keyboard Key Assignments

104 Keyboard (US)

Key	When the Ctrl Key Is Held Down on the USB Keyboard	When the Soft Keyboard Is Displayed on the instrument		Other
			+Shift on the USB Keyboard	
a	SETUP LOAD menu	a	A	
b	STORE REC	b	B	
c	Execute CAL	c	C	
d	Execute HOLD	d	D	
e	STORE END	e	E	
$f$	DATA SAVE menu	$f$	F	
g	INTEGRATION menu	g	G	
h	SETUP SAVE menu	h	H	
i		i	1	
j	Execute NULL	j	J	
k	STORE PAUSE	k	K	
1	NUMERIC UPPER	1	L	
m	NUMERIC LOWER	m	M	
n	NUMERIC FULL	n	N	
-	CUSTOM	0	0	
p	INTEGRATION STOP	p	P	
q	INTEGRATION START	q	Q	
r	INTEGRATION RESET	r	R	
s	SETUP menu	s	S	
t	STORE menu	t	T	
u	GRAPH UPPER	u	U	
v	GRAPH LOWER	v	v	
w	GRAPH FULL	w	w	
x	TOUCH LOCK	x	X	
y	KEY LOCK	y	Y	
z	Execute SINGLE	z	z	
1		1	!	
2		2	@	
3		3	\#	
4		4	\$	
5		5	\%	
6		6	$\wedge$	
7		7	\&	
8		8	*	
9		9	1	
0		0	)	
Enter	Execute SET	Enter	Same as left	Execute SET
Esc	Execute ESC	Escape	Same as left	Execute ESC
Back Space		Back Space	Same as left	
Tab				
Space Bar		Space	Same as left	
-		-	to	
-		-	$=$	
=		=	+	
[		[	\{	
1		]	\}	
1		1	1	
;		;	:	
'		,	"	
,		,	<	
.	UTILITY menu	.	>	
1	Execute Help	1	?	
Caps Lock				

## Appendix 7 USB Keyboard Key Assignments

Key	When the Ctrl Key Is Held Down on the USB Keyboard	When the Soft Keyboard Is Displayed on the instrument		Other
			+Shift on the USB Keyboard	
F1	Execute VOLTAGE RANGE UP			ELEMENTS 1
F2	Execute VOLTAGE RANGE DOWN	Move cursor to the left	Same as left	ELEMENTS 2
F3		Move cursor to the right	Same as left	ELEMENTS 3
F4	Execute VOLTAGE RANGE AUTO	Back Space	Same as left	ELEMENTS 4
F5	Execute CURRENT RANGE UP	All Clear	Same as left	ELEMENTS 5
F6	Execute CURRENT RANGE DOWN	Enter	Same as left	ELEMENTS 6
F7		History	Same as left	ELEMENTS 7
F8	Execute CURRENT RANGE AUTO			OPTIONS
F9				
F10				
F11		$\mu$	Same as left	
F12		$\Omega$	Same as left	
Print Screen	Execute DATA SAVE EXEC			
Scroll Lock				
Pause				
Insert				
Home				
Page Up	Execute Page Up*			Execute Page Up*
Delete				
End				
Page Down	Execute Page Down*			Execute Page Down*
$\rightarrow$	Move cursor to the right	Move cursor to the right	Same as left	Move cursor to the right
$\leftarrow$	Move cursor to the left	Move cursor to the left	Same as left	Move cursor to the left
$\downarrow$	Move cursor down			Move cursor down
$\uparrow$	Move cursor up			Move cursor up


Numeric keypad	When the Ctrl Key Is Held Down on the USB Keyboard	When the Soft Keyboard Is Displayed on the instrument		Other
			+Shift on the USB Keyboard	+Shift on the USB Keyboard
Num Lock				
1		1	Same as left	
*		*	Same as left	
-		-	Same as left	
+		+	Same as left	
Enter	Execute SET	Enter	Same as left	Execute SET
1		1		
2	Move cursor down	2		Move cursor down
3	Execute Page Down*	3		Execute Page Down*
4	Move cursor to the left	4	Move cursor to the left	Move cursor to the left
5		5		
6	Move cursor to the right	6	Move cursor to the right	Move cursor to the right
7		phat 7		
8	Move cursor up	the	jit display	Move cursor up
9	- Exedudepergequpata display:	Page ug/down		Execute Page Up*
0	- Graph display: Displa	page (Group)	p/down	
.				

: No feature is assigned to the key.

## 109 Keyboard (Japanese)

Key	When the Ctrl Key Is Held Down on the USB Keyboard	When the Soft Keyboard Is Displayed on the instrument		Other
			+Shift on the USB Keyboard	
a	SETUP LOAD menu	a	A	
b	STORE REC	b	B	
c	Execute CAL	c	C	
d	Execute HOLD	d	D	
e	STORE END	e	E	
$f$	DATA SAVE menu	$f$	F	
g	INTEGRATION menu	g	G	
h	SETUP SAVE menu	h	H	
i		i	1	
j	Execute NULL	j	J	
k	STORE PAUSE	k	K	
1	NUMERIC UPPER	1	L	
m	NUMERIC LOWER	m	M	
n	NUMERIC FULL	n	N	
0	CUSTOM	-	0	
p	INTEGRATION STOP	p	P	
q	INTEGRATION START	q	Q	
r	INTEGRATION RESET	$r$	R	
s	SETUP menu	s	S	
t	STORE menu	t	T	
u	GRAPH UPPER	u	U	
$v$	GRAPH LOWER	$v$	V	
w	GRAPH FULL	w	w	
x	TOUCH LOCK	x	X	
y	KEY LOCK	y	Y	
z	Execute SINGLE	$z$	Z	
1		1	!	
2		2	"	
3		3	\#	
4		4	\$	
5		5	\%	
6		6	\&	
7		7	'	
8		8	1	
9		9	)	
0		0		
Enter	Execute SET	Enter	Same as left	Execute SET
Esc	Execute ESC	Escape	Same as left	Execute ESC
BS		Back Space	Same as left	
Tab				
Space		Space	Same as left	
-		-	=	
$\wedge$		$\wedge$	to	
1		1	I	
@		@	,	
[		[	\{	
;		;	+	
:		:	*	
]		]	\}	
,		,	<	
.	UTILITY menu	.	$>$	
1	Execute Help	1	?	
1		1	-	
Caps Lock				

## Appendix 7 USB Keyboard Key Assignments

Key	When the Ctrl Key Is Held Down on the USB Keyboard	When the Soft Keyboard Is Displayed on the instrument		Other
			+Shift on the USB Keyboard	
F1	Execute VOLTAGE RANGE UP			ELEMENTS 1
F2	Execute VOLTAGE RANGE DOWN	Move cursor to the left	Same as left	ELEMENTS 2
F3		Move cursor to the right	Same as left	ELEMENTS 3
F4	Execute VOLTAGE RANGE AUTO	Back Space	Same as left	ELEMENTS 4
F5	Execute CURRENT RANGE UP	All Clear	Same as left	ELEMENTS 5
F6	Execute CURRENT RANGE DOWN	Enter	Same as left	ELEMENTS 6
F7		History	Same as left	ELEMENTS 7
F8	Execute CURRENT RANGE AUTO			OPTIONS
F9				
F10				
F11		$\mu$	Same as left	
F12		$\Omega$	Same as left	
Print Screen	Execute DATA SAVE EXEC			
Scroll Lock				
Pause				
Insert				
Home				
Page Up	Execute Page Up*			Execute Page Up*
Delete				
End				
Page Down	Execute Page Down*			Execute Page Down*
$\rightarrow$	Move cursor to the right	Move cursor to the right	Same as left	Move cursor to the right
$\leftarrow$	Move cursor to the left	Move cursor to the left	Same as left	Move cursor to the left
$\downarrow$	Move cursor down			Move cursor down
$\uparrow$	Move cursor up			Move cursor up


Numeric keypad	When the Ctrl Key Is Held Down on the USB Keyboard	When the Soft Keyboard Is Displayed on the instrument		Other
			+Shift on the USB Keyboard	+Shift on the USB Keyboard
Num Lock				
1		I	Same as left	
*		*	Same as left	
-		-	Same as left	
+		+	Same as left	
Enter	Execute SET	Enter	Same as left	Execute SET
1		1		
2	Move cursor down	2		Move cursor down
3	Execute Page Down*	3		Execute Page Down*
4	Move cursor to the left	4	Move cursor to the left	Move cursor to the left
5		5		
6	Move cursor to the right	6	Move cursor to the right	Move cursor to the right
7		7		
8	Move cursor up	8		Move cursor up
9	Execute Page Up*	9		Execute Page Up*
0		0		
.		.		

: No feature is assigned to the key.

* Full screen display or the top half of the split display
- Numeric data display: Page up/down
- Graph display: Display page (Group) up/down


## Appendix 8 List of Initial Settings and Numeric Data Display Order

Factory Default Settings (Example for a model with seven input elements installed)

The default settings vary depending on the number of installed input elements and what options are installed.

Measurement Mode

Item	Setting
Measurement Mode	Normal
Input (Basic)	
Item	Setting
Wiring	1 P 2 W
Voltage Range	1000 V
Auto	OFF


760901, 760902		760903	
Item	Setting	Item	Setting
Current Range	760901:30A	Current Range	760903:1A
	760902:5A		
Auto	OFF	Auto	OFF
Ext Sensor	OFF	Terminal	Sensor
Sensor Preset	Others	CT Preset	Custom
Sensor Ratio	10.0000	Input Resistance	$1 \Omega$
		Scaling	OFF
		CT Ratio	1.0000
Scaling	OFF	Scaling	OFF
VT Ratio	1.0000	VT Ratio	1.0000
CT Preset	Others	CT Preset	Others
CT Ratio	1.0000	CT Ratio	1.0000
SF Ratio	1.0000	SF Ratio	1.0000


Item	Setting	
	When the measurement mode is   - Normal   - IEC Harmonic	When the measurement mode is IEC Flicker
Line Filter	OFF	ON*
Cutoff	0.5 kHz	10.0 kHz
Freq Filter	OFF	ON*
Cutoff	0.1 kHz	1.0 kHz
Sync Source	Element1: $11^{*}$	
	Element2: 12*	
	Element3: 13 *	
	Element4: 14*	
	Element5: 15*	
	Element6: 16*	
	Element7: $17 *$	

[^6]
## Input (Advanced/Options)

Wiring

Item	Setting	
Wiring	1P2W	
Ext Sensor	760901,760902	760903
OFF	-	


Range	
Item	Setting
Crest Factor	CF3
Range $\Sigma$ Link	ON
Current Range Display FormatDirect	

Range Config

Item	Setting	
Valid Measurement Range	All measurement ranges: Checking availableOFF	
Peak Over Jump		
Line Filter		
Item	Setting	
	When the measurement mode is   - Normal   - IEC Harmonic	When the measurement mode is IEC Flicker
Line Filter Advanced Settings	OFF	OFF*
Line Filter Type	Butterworth	Butterworth*
Line Filter	OFF	ON*
Cutoff	0.5 kHz	10.0 kHz

* A fixed value. It cannot be changed.

Freq Filter/Rectifier/Level

Item	Setting	
	When the measurement mode is   - Normal   - IEC Harmonic	When the measurement mode is IEC Flicker
Sync Source/   Freq Measurement		
Freq Filter Advanced Settings	OFF	OFF*
HPF		
Freq Filter ( 0.1 Hz )	ON	OFF*
LPF		
Freq Filter	OFF	ON*
Cutoff	0.1 kHz	1.0 kHz
Freq2 Measurement		
HPF		
Freq Filter (Freq2)	OFF	
Cutoff	0.1 Hz	
Level		
Voltage Level (Freq2)	0.0\%	
Current Level (Freq2)	0.0\%	

* A fixed value. It cannot be changed.

Null	
Item	Setting
Null	OFF
Control Target	All items: Checking available   U1 to U7, I1 to I7,   Speed 1 and $2^{1}$, Torque 1 and $2^{1}$, Speed 3 and $4^{2}$, Torque 3 and $4^{2}$,   Aux1 to Aux4 ${ }^{1}$, Aux5 to Aux8 ${ }^{2}$
Null Value Update	New

1 Available on models with the motor evaluation function 1 (option)
2 Available on models with the motor evaluation function 2 (option)

## Motor/Aux

Item	Setting		
MTR Configuration	Single Motor(Speed: Pulse)		
Ch Settings			
	Torque	Speed	Pm
Scaling	1.0000	1.0000	1.0000
Unit	Nm	rpm	W
Sense Type	Analog	Pulse	
Analog Auto Range	OFF	-	
Analog Range	20 V	-	
Linear Scale A	1.000	-	
Linear Scale B	0.000	-	
Calculation		-	
Point1X	1.000 V	-	
Point1Y	1.000 Nm	-	
Point2X	-1.000V	-	
Point2Y	$-1.000 \mathrm{Nm}$	-	
Line Filter	OFF	-	
Pulse Noise Filter	-	OFF	
Sync Source	None	None	
Pulse Range Upper	-	10000.0000	
Pulse Range Lower	-	0.0000	
Rated Upper	-		
Rated Freq (Upper)	-		
Rated Lower	-		
Rated Freq (Lower)	-		
Pulse N(Speed)		60	

Sync Speed
Pole 2

Source I1
Electrical Angle Measurement OFF
Harmonics Trigger Hrm1, Hrm2: Z Phase1(ChD)
Electrical Angle 0.00
Correction
Auto Enter Correction U1
Target

Sensor Correction

Item	Setting
Current Amplitude Correction	OFF
Correction Ratio	1.000000
Current Phase Correction	OFF
Frequency	60 Hz
Phase Difference Between I/O	$0.000^{\circ}$
Time Difference Between I/O	0.000 s

Computation/Output

## Efficiency

Item	Setting
П1	P 2 B/P $\sum$ A
\2	P 2 A/P $2 B$
П3	OFF/OFF
$\eta 4$	OFF/OFF
Udef1	P1+None+None+None
Udef2	P1+None+None+None

$\Delta$ Measure

Item	Setting
$\Delta$ Measure Type	-
$\Delta$ Measure Mode	rms

Update Rate/Averaging

Item	Setting
Update Rate	
Update Mode	Constant
Update Rate	500ms
Measurement Method	Sync Source Period Average
Trigger	
Mode	Auto
Source	U1
Slope	Rise
Level	$0.0 \%$
Averaging	
Averaging	OFF
Averaging Type	Exp.
Averaging Count	2

Harmonics (Mode other than IEC harmonic mode)

Item	Setting
Element Settings	Element1 to Element7: Hrm1
PLL Source	U1
Min Order	1
Max Order	100
Thd Formula	$1 /$ Total
FFT Points	1024

Harmonics (IEC harmonic mode)

Item	Setting
Object	Element1
PLL Source	U1
Min Order	1
Max Order	100
Thd Formula	$1 /$ Total
IEC 61000-4-7	Edition 2.0
U Grouping	OFF
I Grouping	OFF



Display	
Item	Setting
Display	Numeric+Graph(Wave)
Numeric	All Items
Page	Page 1
Item (Numeric)	
Order(k)	1
Display All Elements	ON
Graph	Wave
Wave	
Group	Group 1
Item (Wave)	
Group	1
Display On	U1 to 17, Speed1 and $2^{1}$, Torque 1 and $2^{1}$, Speed3 and $4^{2}$, Torque3 and $4^{2}$
Vertical Zoom	$\times 1$
Vertical Position	0.000\%
Form (Wave)	
Format	Single
Time/div	5 ms
Advanced	
Interpolate	Line
Graticule	Grid(囬)
Scale Value	ON
Wave Label	OFF
Cursor (Wave Cursor)	
Cursor	OFF
C1+ Trace	U1
C1+ Position	200
C2x Trace	11
C2x Position	800
Cursor Path	Max
Linkage	OFF
Trend	
Group	Group 1
Item (Trend)	
Group	1
Display On	T1 to T8
Function	T1: Urms, T2: Irms, T3: P, T4: S, T5: Q, T6: $\lambda$, T7: $\Phi$, T8: FreqU, T9 to T16: Urms
Element	Element1
Order	-
Scaling	Auto
Upper Scale	100.0
Lower Scale	-100.0
Form (Trend)	
Trend Format	Single
Time/div	3s
Advanced	Same as those listed under Form (Wave)
Cursor (Trend Cursor)	
Cursor	OFF
C1+ Trace	T1
C1+ Position	200
C2x Trace	T2
C2x Position	1800
Linkage	OFF

1 Available on models with the motor evaluation function 1 (option)
2 Available on models with the motor evaluation function 2 (option)

Item	Setting		
Bar			
Group	Group 1		
Item (Bar)			
Bar Item No.	1	2	3
Function	U	I	P
Element	Element1	Element1	Element1
Scale Mode	Fixed	Fixed	Fixed
Form (Bar)			
Format	Single		
Start Order	1		
End Order	100		
Cursor (Bar Cursor)			
Cursor	OFF		
C1+ Order	1		
C2x Order	15		
Linkage	OFF		
Vector			
Group	Group 1		
Item (Vector)			
Vector Item No	1	2	
Object	EA	Element1	
U Mag	1.000	1.000	
1 Mag	1.000	1.000	
Form (Vector)			
Format	Single		
Numeric	On		

Store

Item	Setting
Store Mode	Manual
Store Count	100
Interval	$00: 00: 00$
Stored Items	Selected Items
Store Time Stamp	Measure
Select Stored Items	Element1
	Urms, Irms, P, S, Q, $\lambda, \Phi$, FreqU, Freql
Auto Naming	Numbering
Auto CSV Conversion	ON

Data Save

Item	Setting
Saved Objects	Numeric
Saved Numeric Items	Selected Items
Select Saved Numeric Items	Element1
	Urms, Irms, P, S, Q, $\lambda, \Phi$, FreqU, FreqI
Image File Format	PNG
Image Color	Color
Auto Naming	Numbering

Integration

Item	Setting
Integration Mode	Normal
Integration Timer	$0: 00: 00$
Independent Control	OFF
Auto Cal	OFF
WP $\pm$ Type	
$\quad$ Setting	Each
$\quad$ Element1 to 7	Charge/Discharge
q mode	
$\quad$ Setting	Each
$\quad$ Element1 to 7	dc
Resume Action	Error

D/A Output (Available on models with the D/A output option)

Item	Setting			
Ch.	Function	Element/ $\Sigma$	Order	Range Mode
1	Urms	Element 1	-	Fixed
2	Irms	Element 1	-	Fixed
3	P	Element 1	-	Fixed
4	S	Element 1	-	Fixed
5	Q	Element 1	-	Fixed
6	$\lambda$	Element 1	-	Fixed
7	$\Phi$	Element 1	-	Fixed
8	fU	Element 1	-	Fixed
9	fl	Element 1	-	Fixed
10 to 20	Urms	Element 1	-	Fixed
Integration Rated Time	$00001: 00: 00$			

Flicker (IEC voltage fluctuation/flicker measurement mode)

Item		Setting
Measure	d Settings	
Measu	rement Mode	Flicker
IEC 6100	1000-4-15	Edition 2.0
IEC 61	1000-3-3	Edition 3.0
Eleme	nt Objects	1
Un Mo		Auto
Un Se		230.00 V
Freque	ency	50 Hz
Voltag		230 V
dmin		0.20\%
Interva		Minute:10, Second:0
Count		12
Limit Se	ttings	
dc	Judgement	ON
	Limit	3.30\%
dmax	Judgement	ON
	Limit	4.00\%
Tmax	Judgement	ON
	Limit Time	500 ms
	Limit Threshold Lv	3.30\%
Pst	Judgement	ON
	Limit	1.00
Plt	Judgement	ON
	Limit	0.65
	N Value	12

## Utility

System Configuration

Item	Setting
Date/Time	
Display ${ }^{1,2}$	ON
Setting Method ${ }^{1,2}$	Manual
Time Zone ${ }^{1,2}$	UTC+ 09:00
Time Synchro	
IEEE15881,2	OFF
Delay Mechanism ${ }^{1,2}$	E2E
Network Layer ${ }^{1,2}$	Layer 3
Domain Number ${ }^{1,2}$	0
Language	
Menu Language ${ }^{1}$	English
Message Language ${ }^{1}$	English
LCD	
Auto OFF ${ }^{1,2}$	OFF
Auto OFF Time ${ }^{1,2}$	5 min
Brightness	7
Grid Intensity	4
Preference	
Freq Display at Low Frequency ${ }^{1,2}$	0
Motor Display at Low Pulse Freq ${ }^{1,2}$	0
Decimal Point for CSV File ${ }^{1,2}$	Period
Rounding to Zero	ON
USB Keyboard ${ }^{1,2}$	English

1 This item is not affected when the instrument is initialized (by pressing Setup and then Initialize Settings).
2 This item is not loaded when a setup parameter file is loaded (by pressing Setup and then Load Setup).

## Remote Control

Item	Setting
Network(VXI-11)	Infinite
Time Out	
GP-IB	
Address ${ }^{11,2}$	1
Command Type	WT5000
1	This item is not affected when the instrument is initialized (by pressing Setup and then Initialize
Settings).	
2	This item is not loaded when a setup parameter file is loaded (by pressing Setup and then Load
Setup).	


Network	
Item	Setting
TCP/IP	
DHCP ${ }^{1,2}$	ON
DNS ${ }^{1,2}$	Auto
FTP/Web Server	
User Name ${ }^{1,2}$	anonymous
Time Out ${ }^{1,2}$	900 s
Net Drive	
Login Name ${ }^{1,2}$	anonymous
FTP Passive ${ }^{1,2}$	OFF
Time Out ${ }^{1,2}$	15 s
SNTP	
Time Out ${ }^{1,2}$	3 s
Adjust at Power On ${ }^{1,2}$	OFF
Time Difference from $\mathrm{GMT}^{1}{ }^{1,}$   2	Hour: 9, Minute: 0

1 This item is not affected when the instrument is initialized (by pressing Setup and then Initialize Settings).
2 This item is not loaded when a setup parameter file is loaded (by pressing Setup and then Load Setup).

## Selftest

Item	Setting		
Test Item	Memory		
Upgrade			
Item	Setting		
Item	Firmware		

## App

## Other

Item	Setting
Hold	OFF
KEY LOCK 1,2	OFF
TOUCH LOCK	

1 This item is not affected when the instrument is initialized (by pressing Setup and then Initialize Settings).
2 This item is not loaded when a setup parameter file is loaded (by pressing Setup and then Load Setup).

# Numeric Data Display Order (Example for a model with seven input elements installed) 

If you reset the order of the numeric data using the Element Origin setting, the data of each measurement function is displayed in the order indicated in the table below.

All Items Display

Page											
1	2	3	4	5	6	7	8	9	10	11	12
Urms	Urms	Irms	ITime	F1	Ev1	Speed ${ }^{1}$	$\Delta \mathrm{U} 1$	U(k)	Uhdf(k)	Uthd	ФUi-Uj
rmsl	Umn	Imn	Wp	F2	Ev2	Torque ${ }^{1}$	$\Delta \mathrm{U} 2$	I(k)	Ihdf(k)	lthd	ФUi-Uk
P	Udc	Idc	WP+	F3	Ev3	SyncSp ${ }^{1}$	$\Delta \mathrm{U} 3$	$\mathrm{P}(\mathrm{k})$	Phdf(k)	Pthd	ФUi-li
S	Urmn	Irmn	WP-	F4	Ev4	Slip ${ }^{1}$	$\Delta U \Sigma$	S(k)	Z(k)	Uthf	ФUj-lj
Q	Uac	lac	q	F5	Ev5	Pm ${ }^{1}$	$\Delta$	Q(k)	$\mathrm{Rs}(\mathrm{k})$	Ithf	ФUk-Ik
$\lambda$	Ufnd	Ifnd	q+	F6	Ev6	EaM1U ${ }^{1}$	$\Delta \mathrm{P} 1$	$\lambda(\mathrm{k})$	Xs(k)	Utif	
Ф	U+pk	I+pk	q-	F7	Ev7	EaM1I ${ }^{1}$	$\Delta \mathrm{P} 2$	$\Phi(\mathrm{k})$	$\mathrm{Rp}(\mathrm{k})$	Itif	
fU	U-pk	l-pk	WS	F8	Ev8	EaM3U ${ }^{2}$	$\Delta \mathrm{P} 3$	$\Phi \mathrm{U}(\mathrm{k})$	Xp(k)	hvf	
$f$	CfU	Cfl	WQ	F9	П1	EaM3 ${ }^{2}$	$\Delta \mathrm{P} \Sigma$	ФI(k)	K-factor	hcf	
	$\mathrm{Pc}^{* 3}$			F10	П2						
	$\mathrm{P}+\mathrm{pk}^{*} 3$			F11	ๆ3						
	$\mathrm{P}-\mathrm{pk}^{3}$			F12	$\eta 4$						
				F13							
				F14							
				F15							
				F16							
				F17							
				F18							
				F19							
				F20							

4 Items Display

Page											
1	2	3	4	5	6	7	8	9	10	11	12
Urms1	Urms2	Urms3	Urms4	Urms5	Urms6	Urms7	Urms $\Sigma \mathrm{A}$	Urms $\Sigma$ B	WP1	WP5	П1
Irms1	Irms2	Irms3	Irms4	Irms5	Irms6	Irms7	Irms $\sum$ A	Irms ${ }^{\text {PB }}$	WP2	WP6	П2
P1	P2	P3	P4	P5	P6	P7	P $\sum$ A	P $\sum$ B	WP3	WP7	П3
$\lambda 1$	$\lambda 2$	$\lambda 3$	$\lambda 4$	$\lambda 5$	$\lambda 6$	$\lambda 7$	$\lambda \Sigma A$	$\lambda \Sigma B$	WP4	WPEA	П4

## 8 Items Display

Page											
1	2	3	4	5	6	7	8	9	10	11	12
Urms1	Urms2	Urms3	Urms4	Urms5	Urms6	Urms7	Urms $\Sigma \mathrm{A}$	Urms $\Sigma$ B	WP1	WP5	P1
Irms1	Irms2	Irms3	Irms4	Irms5	Irms6	Irms7	Irms $\sum \mathrm{A}$	Irms 2 B	q1	q5	P2
P1	P2	P3	P4	P5	P6	P7	PミA	P $\sum$ B	WP2	WP6	P3
S1	S2	S3	S4	S5	S6	S7	SEA	SEB	q2	q6	P4
Q1	Q2	Q3	Q4	Q5	Q6	Q7	QEA	QEB	WP3	WP7	П1
$\lambda 1$	$\lambda 2$	$\lambda 3$	$\lambda 4$	$\lambda 5$	$\lambda 6$	$\lambda 7$	$\lambda \Sigma A$	$\lambda \Sigma B$	q3	q7	П2
Ф1	Ф2	Ф3	Ф4	Ф5	Ф6	Ф7	ФミA	ФइB	WP4	WPEA	П3
fU1	fU2	fU3	fU4	fU5	fU6	fU7	-	-	q4	$q \sum A$	$\eta 4$

16 Items Display

Page											
1	2	3	4	5	6	7	8	9	10	11	12
Urms1	Urms2	Urms3	Urms4	Urms5	Urms6	Urms7	Urms $\Sigma \mathrm{A}$	P1	P5	P1	F1
Irms1	Irms2	Irms3	Irms4	Irms5	Irms6	Irms7	Irms $\sum$ A	WP1	WP5	P2	F2
P1	P2	P3	P4	P5	P6	P7	P $\sum \mathrm{A}$	Irms1	Irms5	P3	F3
S1	S2	S3	S4	S5	S6	S7	SEA	q1	q5	P4	F4
Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q $\Sigma$ A	P2	P6	P5	F5
$\lambda 1$	$\lambda 2$	$\lambda 3$	$\lambda 4$	$\lambda 5$	$\lambda 6$	$\lambda 7$	$\lambda \Sigma A$	WP2	WP6	P6	F6
Ф1	Ф2	Ф3	Ф4	Ф5	Ф6	Ф7	ФГA	Irms2	Irms6	P7	F7
Pc1	Pc2	Pc3	Pc4	Pc5	Pc6	Pc7	Pc「A	q2	q6	P $\sum \mathrm{A}$	F8
fU1	fU2	fU3	fU4	fU5	fU6	fU7	Urms£B	P3	P7	$\eta 1$	F9
fl1	fl 2	fl3	fl4	fl5	fl6	fl7	Irms ${ }^{\text {EB }}$	WP3	WP7	П2	F10
U+pk1	U+pk2	U+pk3	U+pk4	U+pk5	U+pk6	U+pk7	PミB	Irms3	Irms7	$\eta 3$	F11
U-pk1	U-pk2	U-pk3	U-pk4	U-pk5	U-pk6	U-pk7	SEB	q3	q7	$\eta 4$	F12
I+pk1	1+pk2	1+pk3	I+pk4	1+pk5	I+pk6	I+pk7	QEB	P4	P $\sum$ A	-	F13
I-pk1	I-pk2	I-pk3	I-pk4	I-pk5	I-pk6	I-pk7	$\lambda \Sigma B$	WP4	WPEA	-	F14
CfU1	CfU2	CfU3	CfU4	CfU5	CfU6	CfU7	ФГB	Irms4	Irms $\Sigma \mathrm{A}$	-	F15
Cfl1	Cfl2	Cfl3	Cfl4	Cfl5	Cfl6	CfI7	$\mathrm{Pc} \sum \mathrm{B}$	q4	$q \sum A$	-	F16

Matrix Display

Page								
$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$
Urms	Urms	Irms	ITime	-	-	-	-	-
Irms	Umn	Imn	WP	-	-	-	-	-
P	Udc	Idc	WP+	-	-	-	-	-
S	Urmn	Irmn	WP-	-	-	-	-	-
Q	Uac	Iac	q	-	-	-	-	-
$\lambda$	U+pk	I+pk	$\mathrm{q}+$	-	-	-	-	-
$\Phi$	U-pk	I-pk	$\mathrm{q}-$	-	-	-	-	-
fU	CfU	Cfl	WS	-	-	-	-	-
fl	fU	fl	WQ	-	-	-	-	-

Left Side of the HRM Single List and Dual List Displays (single screen display)


## Appendix 8 List of Initial Settings and Numeric Data Display Order

Left Side of the HRM Single List and Dual List Displays (split display)

Page										
1	3	5	7	9	11	13	15	17	19	21
Urms1	Urms2	Urms3	Urms4	Urms5	Urms6	Urms7	Urms 2 A	Urms 2 B	Urms 2 C	F1
Irms1	Irms2	Irms3	Irms4	Irms5	Irms6	Irms7	Irms $\sum$ A	Irms 2 B	Irms£C	F2
P1	P2	P3	P4	P5	P6	P7	P $\sum$ A	P $\sum$ B	PEC	F3
S1	S2	S3	S4	S5	S6	S7	SEA	SEB	SEC	F4
Q1	Q2	Q3	Q4	Q5	Q6	Q7	QEA	QEB	QEC	F5
$\lambda 1$	$\lambda 2$	入3	$\lambda 4$	$\lambda 5$	$\lambda 6$	$\lambda 7$	$\lambda \Sigma A$	$\lambda \Sigma B$	$\lambda \Sigma C$	F6
Ф1	Ф2	Ф3	Ф4	Ф5	Ф6	Ф7				F7
										F8
										F9
										F10
Page										
2	4	6	8	10	12	14	16	18	20	22
Uthd1	Uthd2	Uthd3	Uthd4	Uthd5	Uthd6	Uthd7	ФUi-Uj	ФUi-Uj	ФUi-Uj	F11
Ithd1	Ithd2	Ithd3	Ithd4	Ithd5	Ithd6	Ithd7	ФUi-Uk	ФUi-Uk	ФUi-Uk	F12
Pthd1	Pthd2	Pthd3	Pthd4	Pthd5	Pthd6	Pthd7	ФUi-li	ФUi-li	ФUi-li	F13
Uthf1	Uthf2	Uthf3	Uthf4	Uthf5	Uthf6	Uthf7	ФUj-lj	ФUj-lj	ФUj-lj	F14
Ithf1	Ithf2	Ithf3	Ithf4	Ithf5	Ithf6	Ithf7	ФUk-lk	ФUk-lk	ФUk-lk	F15
Utif1	Utif2	Utif3	Utif4	Utif5	Utif6	Utif7				F16
Itif1	Itif2	Itif3	Itif4	Itif5	Itif6	Itif7				F17
hvf1	hvf2	hvf3	hvf4	hvf5	hvf6	hvf7				F18
hcf1	hcf2	hcf3	hcf4	hcf5	hcf6	hcf7				F19
K-factor1	K-factor2	K-factor3	K-factor4	K-factor	K-factor6	K-factor7				F20

1 Displayed on models with the motor evaluation function 1 (/MTR1 option)
2 Displayed on models with the motor evaluation function 2 (/MTR2 option)
3 Not displayed when the split display is in use.

## Appendix 9 Limitations on Modifying Settings and Operations

During integration, storage, IEC harmonic measurement mode (option), and voltage fluctuation and flicker measurement mode (option), there are measurement conditions and computations whose settings you cannot change and features that you cannot execute.

Operation (Changing settings or executing features)		Integration status		Storage State			IEC   Harmonics	Voltage Fluctuation and Flicker		
		Start/ Ready		Rec/ Ready	Pause	Cmpl/ Error				
		Reset						Other than Reset		
Fundamental Measurement Conditions	Measurement Mode		No	No	No	No	No	Yes	Yes	No
	Wiring	No	No	No	No	No	Yes	Yes	No	
	ๆ Formula	No	Yes	No	No	No	No	No	No	
	Range $\Sigma$ Link	No	No	No	No	No	Yes	Yes	No	
	$\Delta$ Measure Type	No								
	$\Delta$ Measure Mode	No	Yes	No	No	No	No	No	No	
	Voltage or current range	No	No	Yes	Yes	Yes	Yes	Yes	No	
	Voltage or current Auto Range	No	No	Yes	Yes	Yes	No	No	No	
	Direct Current Input or External Current Sensor	No	No	No	No	No	Yes	Yes	No	
	Terminal/CT Preset/Input Resistance/ Output Voltage Rate	No	No	No	No	No	Yes	Yes	No	
	Sensor Ratio	No	No	No	No	No	Yes	Yes	No	
	CT Preset	No	No	No	No	No	Yes	Yes	No	
	VT/CT/SF Scaling	No	No	No	No	No	Yes	Yes	No	
	Valid Measurement Range	No	No	No	No	No	Yes	Yes	No	
	Crest Factor	No	No	No	No	No	Yes	Yes	No	
	Sync Source	No								
	Line Filter Settings	No	No	No	No	No	Yes ${ }^{1}$	Yes ${ }^{2}$	No	
	Freq Filter Settings	No	No	No	No	No	Yes ${ }^{1}$	Yes ${ }^{2}$	No	
	Rectifier	No								
	Level	No								
	Update Rate	No	No	No	No	No	No	$\mathrm{No}^{3}$	No	
	Average	No	No	No	No	No	View ${ }^{4}$	No	No	
Harmonics	PLL Source	No	No	No	No	No	Yes	No	No	
	Min/Max Order	No	No	No	No	No	Yes	No	No	
	Thd Formula	No	No	No	No	No	Yes	No	No	
	Element Settings	No								
Motor	MTR Configuration	No								
	Scaling	No	No	No	No	No	Yes	Yes	No	
	Sense Type	No	No	No	No	No	Yes	Yes	No	
	Auto Range	No	No	Yes	Yes	Yes	No	No	No	
	Range	No	No	Yes	Yes	Yes	Yes	Yes	No	
	Linear Scale A/B	No	No	No	No	No	Yes	Yes	No	
	Linear Scale Calculate Execute	No	No	No	No	No	Yes	Yes	No	
	Line Filter	No	No	No	No	No	Yes	Yes	No	
	Pulse Noise Filter	No	No	No	No	No	Yes	Yes	No	
	Sync Source	No								
	Pulse Range Upper/Lower	No	No	No	No	No	Yes	Yes	No	
	Torque Pulse	No	No	No	No	No	Yes	Yes	No	
	Torque Pulse Rated Freq	No	No	No	No	No	Yes	Yes	No	
	Pulse N	No	No	No	No	No	Yes	Yes	No	
	Pole	No								
	Sync Speed Source	No								
	Electrical Angle Measurement ON/OFF	No								
	Electrical Angle Correction	No								
External signal	Scaling	No	No	No	No	No	Yes	Yes	No	
	Auto Range	No	No	Yes	Yes	Yes	No	No	No	
	Range	No	No	Yes	Yes	Yes	Yes	Yes	No	
	Linear Scale A/B	No	No	No	No	No	Yes	Yes	No	
	Linear Scale Calculate Execute	No	No	No	No	No	Yes	Yes	No	
	Line Filter	No	No	No	No	No	Yes	Yes	No	
	Pulse Noise Filter	No	No	No	No	No	Yes	Yes	No	
	Pulse Range Upper/Lower	No	No	No	No	No	Yes	Yes	No	


Operation (Changing settings or executing features)		Integration status		Storage State			IEC   Harmonics	Voltage Fluctuation and Flicker		
		Start/ Ready	Stop/   Timeup/   Error	Rec/ Ready	Pause	Cmpl/   Error				
		Reset						Other than Reset		
Computation	User-Defined Function Conditions		No	Yes	No	No	No	No	No	No
	Max Hold ON/OFF	No	No	Yes	Yes	Yes	No	No	No	
	User-Defined Event Conditions	No	Yes	No	No	No	No	No	No	
	S Formula	No								
	S, Q Formula	No								
	Pc Formula	No								
	Phase	No	No	No	No	No	Yes	No	No	
	Sync Measure	No								
Hold Single measurement	Hold	Yes								
	Single	Yes								
Integration	Independent Control	No	No	Yes	Yes	Yes	No	No	No	
D/A	D/A Rated Time	No	No	Yes	Yes	Yes	No	No	No	
Waveform display	Time/Div	No								
	Trigger Mode	No	No	Yes	Yes	Yes	No	No	No	
	Trigger Source	No								
	Trigger Slope	No								
	Trigger Level	No								
Storage	Store CSV Conversion	Yes	Yes	No	No	Yes	No	No	No	
	Store Rec	Yes	Yes	$\mathrm{No}^{5}$	Yes	No	No	No	No	
	Store Pause	Yes	Yes	Yes	Yes	Yes	No	No	No	
	Store End	Yes	Yes	Yes	Yes	Yes	No	No	No	
File	File Auto Naming	Yes	Yes	No	No	Yes	Yes	Yes	Yes	
	File Name	Yes	Yes	No	No	Yes	Yes	Yes	Yes	
	Comment	Yes	Yes	No	No	Yes	Yes	Yes	Yes	
	Setup File Save	No	No	No	No	No	Yes	Yes	No	
	Setup File Load	No	No	No	No	No	Yes	Yes	No	
	Numeric Save	Yes	Yes	No	No	Yes	No	No	No	
	Numeric Save Item Settings	Yes	Yes	No	No	Yes	Yes	Yes	Yes	
	Wave Save	Yes	Yes	No	No	Yes	No	No	No	
	Execute Image Save	Yes	Yes	No	No	Yes	Yes	Yes	Yes	
	Change Drive	Yes	Yes	No	No	No	Yes	Yes	Yes	
	Change Folder	Yes	Yes	No	No	No	Yes	Yes	Yes	
	Delete	No	No	No	No	No	Yes	Yes	No	
	Rename	No	No	No	No	No	Yes	Yes	No	
	New Folder	No	No	No	No	No	Yes	Yes	No	
	Copy	No	No	No	No	No	Yes	Yes	No	
	Move	No	No	No	No	No	Yes	Yes	No	
Utility	Initialize Settings	Yes	Yes	No	No	No	Yes	Yes	Yes	
	Date/Time	No	No	No	No	No	Yes	Yes	No	
	Setting Method	No	No	No	No	No	Yes	Yes	No	
	Menu Language	No	No	Yes	Yes	Yes	Yes	Yes	No	
	Message Language	No	No	Yes	Yes	Yes	Yes	Yes	No	
	Freq Display at Low Frequency	No								
	Motor Display at Low Pulse Freq	No	No	No	No	No	Yes	Yes	No	
	SelfTest	No	No	No	No	No	Yes	Yes	No	
Other	Manual Cal	No	No	Yes	Yes	Yes	Yes	Yes ${ }^{6}$	No	
	Null	No								

Yes: The setting can be changed, or the feature can be performed.
No: The setting cannot be changed, or the feature cannot be performed.
1 A dedicated filter for IEC Harmonic measurement. Advanced settings are invalid.
2 A dedicated filter for voltage fluctuation/flicker measurement. Advanced settings are invalid.
3 Fixed to 2 s.
4 Exponential averaging only. An attenuation constant cannot be set.
5 Store Rec can be executed in Single Shot Mode.
6 Can be executed when the flicker measurement status is Reset.

## Appendix 10 Measurement Functions That Can Be Measured in Each Measurement Mode

The measurement functions that can be measured in each measurement mode that is selectable on models with the IEC harmoincs/flicker measurement (/G7) option are as follows:

Measurement Item*1		Measurement Mode	
		Normal Measurement	IEC Harmonic
Voltage	Urms	Yes	No
	Umn	Yes	No
	Udc	Yes	No
	Urmn	Yes	No
	Uac	Yes	No
	Ufnd	Yes	Yes
	U(k)	Yes	Yes
Current	Irms	Yes	No
	Imn	Yes	No
	Idc	Yes	No
	Irmn	Yes	No
	Iac	Yes	No
	Ifnd	Yes	Yes
	l(k)	Yes	Yes
Power	P	Yes	No
	Pfnd	Yes	Yes
	$\mathrm{P}(\mathrm{k})$	Yes	Yes
	S	Yes	No
	Sfnd	Yes	Yes
	S(k)	Yes	Yes
	Q	Yes	No
	Qfnd	Yes	Yes
	Q(k)	Yes	Yes
	$\lambda$	Yes	No
	入fnd	Yes	Yes
	$\lambda(\mathrm{k})$	Yes	Yes
	$\Phi$	Yes	No
	¢fnd	Yes	Yes
	$\Phi(\mathrm{k})$	Yes	Yes
	Pc	Yes	No
Frequency	fU	Yes	Yes
	fl	Yes	Yes
	f2U	Yes	Yes
	f21	Yes	Yes
	fPLL1	Yes	Yes
	fPLL2	Yes	No
Peak	U+pk	Yes	No
	U-pk	Yes	No
	+ + pk	Yes	No
	l-pk	Yes	No
	P+pk	Yes	No
	P-pk	Yes	No
	CfU	Yes	No
	Cfl	Yes	No
Integration	ITime	Yes	No
	WP	Yes	No
	WP+	Yes	No
	WP-	Yes	No
	q	Yes	No
	q+	Yes	No
	q-	Yes	No
	WS	Yes	No
	WQ	Yes	No


Measurement Item*1		Measurement Mode	
		Normal Measurement	IEC Harmonic
Efficiency	n1 to \4	Yes	No
User-Defined Functions	F1 to F20	Yes	No
User-defined events	Event1 to Event8	Yes	No
Harmonics	$\Phi \mathrm{U}(\mathrm{k})$	Yes	Yes
	ФI(k)	Yes	Yes
	Z(k)	Yes	No
	$\mathrm{Rs}(\mathrm{k})$	Yes	No
	Xs(k)	Yes	No
	Rp(k)	Yes	No
	Xp(k)	Yes	No
	Uhdf(k)	Yes	Yes
	Ihdf(k)	Yes	Yes
	Phdf(k)	Yes	Yes
	Uthd	Yes	Yes
	Ithd	Yes	Yes
	Pthd	Yes	Yes
	Uthf	Yes	No
	Ithf	Yes	No
	Utif	Yes	No
	Itif	Yes	No
	hvf	Yes	No
	hcf	Yes	No
	K-factor	Yes	No
	ФUi-Uj	Yes	Yes
	ФUi-Uk	Yes	Yes
	ФUi-li	Yes	Yes
	ФUj-Ij	Yes	Yes
	ФUk-lk	Yes	Yes
Delta Computation	$\Delta \mathrm{U} 1$	Yes	No
	$\Delta \mathrm{U} 2$	Yes	No
	-U3	Yes	No
	$\Delta \mathrm{U}$ ¢	Yes	No
	$\Delta \mathrm{l}$	Yes	No
	$\triangle \mathrm{P} 1$	Yes	No
	$\triangle \mathrm{P} 2$	Yes	No
	$\triangle \mathrm{P} 3$	Yes	No
	$\Delta \mathrm{P} \Sigma$	Yes	No
Motor Evaluation*2	Speed	Yes	No
	Torque	Yes	No
	SyncSp	Yes	No
	Slip	Yes	No
	Pm	Yes	No
	EaM1U	Yes	No
	EaM1I	Yes	No
Motor Evaluation ${ }^{*}$	EaM3U	Yes	No
	EaM3I	Yes	No
Auxiliary Input* ${ }^{\text {2 }}$	Aux1 to Aux4	Yes	No
Auxiliary Input ${ }^{*}$	Aux5 to Aux8	Yes	No
Measurement Range*4	RngU	Yes	Yes
	Rngl	Yes	Yes
Measurement Range ${ }^{* 2^{*} 4}$	RngSpd	Yes	Yes
	RngTrq	Yes	Yes
	RngAux	Yes	Yes
Timestamp ${ }^{\text {* }}$	TS Date	Yes	No
	TS Time	Yes	No
	TS Subsec	Yes	No

Yes: Can be measured or computed.
No: Cannot be measured or computed.
*1 Variable k is the harmonic order and total value. The maximum order for which the harmonic data is measured is the maximum harmonic order to be measured that is specified in the harmonic measurement menu. The data is set to [-------] (no data) for harmonic orders without data.
*2 The motor evaluation function 1 (option, /MTR) is required.
*3 The motor evaluation function 2 (option, /MTR) is required.
*4 For measurement range functions, data can be acquired using the following methods.

- By setting a user-defined function
- By storing or by saving numeric data
- By outputting through communication
*5 For timestamp functions, data can be acquired using the following method.
- By outputting through communication

Only the specialized measurement functions can be measured in voltage fluctuation and flicker measurement mode. For the measurement functions that can be measured, see "IEC Voltage Fluctuation and Flicker Measurement Functions" in chapter 1, "Items That This Instrument Can Measure," of the Features Guide, IM WT5000-01EN.

## App

## Appendix 11 Firmware Version

This manual covers firmware versions 3.21 or later of the WT5000.
You can check the firmware version on the overview screen that appears by pressing Setup > Utility > System Overview.

## Appendix 12 Block Diagram

## WT5000



## 760901 30A High Accuracy Element



760902 5A High Accuracy Element


760903 Current Sensor Element


## Equivalent circuit when a CT, sensor cable, and current sensor element input are connected



## Input Signal Flow and Process

Input elements 1 through 7 consist of a voltage input circuit and a current input circuit. On the 760901/760902, they are mutually isolated. They are also isolated from the case.
On the 760903, only the voltage input circuit is isolated from the instrument case. (The current input circuit is not isolated from the instrument case.)

The voltage signal that is applied to the voltage input terminal $(\mathrm{U}, \pm)$ is normalized using the voltage divider and the operational amplifier (op-amp) of the voltage input circuit. It is then sent to a voltage $\mathrm{A} /$ D converter.

The current input circuit of the 760901/760902 is equipped with two types of input terminals, a current input terminal $(1, \pm)$ and an external current sensor input terminal (EXT). Only one can be used at any given time. The voltage signal from the current sensor that is received at the external current sensor input terminal is normalized using the voltage divider and the operational amplifier (op-amp). It is then sent to a current A/D converter.
The current signal that is applied to the current input terminal is converted to a voltage signal by a shunt. Then, it is sent to the current A/D converter in the same fashion as the voltage signal from the current sensor.

The current input circuit of the 760903 is equipped with two types of input terminals, a sensor input terminal (Dsub) and a probe input terminal (Probe). Only one can be used at any given time.
The voltage signal from the current sensor that is received at the probe input terminal is normalized using the voltage divider and the operational amplifier (op-amp). It is then sent to a current A/D converter.
The current signal from the current sensor that is applied to the sensor input terminal is converted to a voltage signal by a shunt. Then, it is sent to the current A/D converter in the same fashion as the voltage signal from the current sensor.
The voltage signal that is applied to the voltage A/D converter and current A/D converter is converted to digital values at an interval of approximately 100 ns .

On the 760901/760902, these digital values are isolated by the isolator and input to the FPGA. On the 760903, the digital voltage values are isolated by the isolator and input to the FPGA.

In the FPGA, the measured values are derived based on the digital values. The measured values are then transmitted to the CPU. Various computed values are determined from the measured values. The measured values and computed values are displayed and transmitted (as D/A and communication output) as measurement functions of normal measurement and harmonic measurement.


[^0]:    ATTENTION
    Lorsque vous déplacez le volet coulissant, veillez à ne pas vous coincer la main entre le volet coulissant et l'élément.

[^1]:    1 See the User's Manual, IM WT5000-02EN.
    2 See the Communication Interface User's Manual, IM WT5000-17EN.

[^2]:    Averaging period: Continuous computation

[^3]:    - For the accuracy at 1 year, multiply the reading of the accuracy at 6 months by 1.5 .

[^4]:    - For the accuracy at 1 year, multiply the reading of the accuracy at 6 months by 1.5.

[^5]:    * This is valid only when harmonics are being measured correctly.

[^6]:    * When the measurement mode is IEC Harmonic, Sync Source setting is invalid.

