User's Manual

WT5000 Precision Power Analyzer Getting Started Guide

IM WT5000-03EN 4th Edition

Product Registration

Thank you for purchasing YOKOGAWA products.

YOKOGAWA provides registered users with a variety of information and services. Please allow us to serve you best by completing the product registration form accessible from our website.

https://tmi.yokogawa.com/

Thank you for purchasing the WT5000 Precision Power Analyzer. This instrument is capable of measuring parameters such as voltage, current, and power with high precision.

This getting started guide primarily explains the handling precautions and basic operations of this instrument. To ensure correct use, please read this manual thoroughly before operation. Keep this manual in a safe place for quick reference in the event that a question arises.

The following manuals, including this one, are provided as manuals for this instrument. Please read all manuals.

List of Manuals

Manual Title	Manual No.	Description
WT5000	IM WT5000-01EN	The supplied CD contains the PDF file of this
Precision Power Analyzer		manual. This manual explains all the instrument's
Features Guide		features other than the communication interface
		features.
WT5000	IM WT5000-02EN	The supplied CD contains the PDF file of this
Precision Power Analyzer		manual. The manual explains how to operate
User's Manual		this instrument.
WT5000	IM WT5000-03EN	This manual. This guide explains the handling
Precision Power Analyzer		precautions and basic operations of this
Getting Started Guide		instrument.
WT5000	IM WT5000-17EN	The supplied CD contains the PDF file of this
Precision Power Analyzer		manual. The manual explains the instrument's
Communication Interface User's Manual		communication interface features and
		instructions on how to use them.
WT5000	IM WT5000-92Z1	Document for China
Precision Power Analyzer		

The "EN" and "Z1" in the manual numbers are the language codes.

Contact information of Yokogawa offices worldwide is provided on the following sheet.

Document No.	Description
PIM 113-01Z2	List of worldwide contacts
PIM 113-01Z2	List of worldwide contacts

Notes

- The contents of this manual are subject to change without prior notice as a result of continuing improvements to the instrument's performance and functions. The figures given in this manual may differ from those that actually appear on your screen.
- Every effort has been made in the preparation of this manual to ensure the accuracy of its contents. However, should you have any questions or find any errors, please contact your nearest YOKOGAWA dealer.
- Copying or reproducing all or any part of the contents of this manual without the permission of YOKOGAWA is strictly prohibited.
- The TCP/IP software of this product and the documents concerning it have been developed/created by YOKOGAWA based on the BSD Networking Software, Release 1 that has been licensed from the Regents of the University of California.

Trademarks

- Microsoft, Internet Explorer, MS-DOS, Windows, Windows 7, Windows 8.1, and Windows 10 are registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.
- Adobe and Acrobat are either registered trademarks or trademarks of Adobe Systems Incorporated.
- In this manual, the ® and TM symbols do not accompany their respective registered trademark or trademark names.
- Other company and product names are trademarks or registered trademarks of their respective holders.

Revisions

- 1st Edition: September 2018
- 2nd Edition: March 2020
- 3rd Edition: April 2021
- 4th Edition: September 2021

Checking the Contents of the Package

Unpack the box, and check the following before operating the instrument. If the wrong items have been delivered, if items are missing, or if there is a problem with the appearance of the items, contact your nearest YOKOGAWA dealer.

WT5000

Check that the product that you received is what you ordered by referring to the model name and suffix code given on the name plate on the left side panel.

MODEL	Suffix		Specifications
WT5000			Precision Power Analyzer
Language	-HE		English menu
	-HJ		Japanese/English menu
	-HC		Chinese menu
	-HG		German menu
Power cord ¹	-D		UL/CSA standard and PSE compliant, maximum rated voltage: 125 V
	-F		VDE standard, Korean standard, maximum rated voltage: 250 V
	-H		Chinese standard, maximum rated voltage: 250 V
	-N		Brazilian standard, maximum rated voltage: 250 V
	-C	1	British standard, maximum rated voltage: 250 V
	-R		Australian standard, maximum rated voltage: 250 V
	-T		Taiwanese standard, maximum rated voltage: 125 V
	-B		Indian standard, maximum rated voltage: 250 V
	-U		IEC Plug Type B, maximum rated voltage: 250 V
	-Y		No power cord included ²
Options		/M1	32 GB internal memory
(option)		/MTR1	Motor evaluation function ¹
		/DA20	20-channel D/A output ³
		/MTR2	Motor evaluation function 2 ^{3, 4}
		/DS	Date streaming
		/G7	IEC Harmoinc/Flicker measurement

- 1 Make sure that the attached power cord meets the designated standards of the country and area that you are using it in.
- 2 Prepare a power cord that complies with the standard specified by the country or region that the instrument will be used in.
- 3 The /DA20 and /MTR2 options cannot be installed on the same instrument.
- 4 To add the /MTR2 option, you need to add the /MTR1 option.

For products whose suffix contains "Z," an exclusive manual may be included. Please read it along with the standard manual.

No. (Instrument number)

When contacting the dealer from which you purchased the instrument, please give them the instrument number.

WT5000 Standard Accessories

The following accessories are included. Check that all contents are present and undamaged.

Power cord (one cord that matches the suffix code is included)¹

Standard accessories are not covered by warranty.

- 1 Make sure that the attached power cord meets the designated standards of the country and area that you are using it in. If the suffix code is -Y, a power cord is not included.
- 2 Included with models that have 20-channel D/A output (/DA20)
- 3 Manuals

Item	Model or Part No.	Quantity	Notes
Printed manuals	IM WT5000-03EN	1	Getting Started Guide (this guide)
	IM WT5000-92Z1	1	Document for China
	PIM 113-01Z2	1	List of worldwide contacts
Manual CD	B8215ZZ	1	For details, see the following table.
		-	· · · · · · · · · · · · · · · · · · ·

Manual CD

The English folder in the manual CD contains the PDF files shown below. The CD also contains Japanese manuals.

File Name	Manual Title	Manual No.
Features Guide & Users Manual.pdf	WT5000 Precision Power Analyzer	IM WT5000-01EN
	Features Guide	
	WT5000 Precision Power Analyzer	IM WT5000-02EN
	User's Manual	
Communication Interface.pdf	WT5000 Precision Power Analyzer	IM WT5000-17EN
	Communication Interface User's Manual	

To view the PDF files above, you need Adobe Reader.

Input Elements (sold separately)

Check that the product that you received is what you ordered by referring to the model name on the input element.

MODEL	Name
760901	30A High Accuracy Element
760902	5A High Accuracy Element
760903	Current Sensor Element

Example: 760901

Nameplate

MODEL and name

Input Element's Standard Accessories.

The following accessories are included. Check that all contents are present and undamaged.

- 2
- 3 An adapter set is included for every 760901 input element.
- 4 An adapter set is included for every 760902 input element.
- 5 An adapter set is included for every 760901 and 760902 input element.
- 6 An adapter set is included for every 760903 input element.

Optional Accessories (Sold separately)

The optional accessories below are available for purchase separately. For information about ordering accessories, contact your nearest YOKOGAWA dealer.

- Use the following accessories within the ranges indicated in the specifications of each accessory. When using several accessories together, use them within the specification range of the accessory with the lowest rating.
- If you use accessories other than those below, YOKOGAWA assumes no responsibility or liability for the specifications of this instrument or any damage caused by the use of this instrument.
- · Accessories (sold separately) are not covered by warranty.
- The minimum purchase quantity is 1 piece.
- The maximum rated voltage to ground is an rms value.

Group 1

Compliance with EN standards is achieved by using the following in combination with the instrument.

Item	Model/	Maximum	Notes	Manual No.
	Part No.	Rated Voltage		
		to Ground		
Measurement lead	758917	1000 V CAT II	Two pieces in one set	—
			Used with the 758922 or 758929	
			adapter (sold separately).	
			Cable length: Approx. 0.75 m	
Safety terminal	758923	600 V CAT II	Two pieces in one set	—
adapter set	758931	1000 V CAT II	Two pieces in one set	IM 758931-01
			With hexagonal wrench (B9317WD)	
Current safety	761953	1000 V CAT II	Two pieces in one set	IM 761953-01
terminal adapter set				
High current safety	761951	1000 V CAT II	Two pieces in one set	IM 761951-01
terminal adapter set				
Safety terminal	761952	1000 V CAT II	Two pieces in one set	IM 761952-01
adapter set				
Alligator clip adapter	758922	300 V CAT II	Two pieces in one set	<u> </u>
set			For the 758917 measurement lead	
	758929	1000 V CAT II	Two pieces in one set	—
			For the 758917 measurement lead	
BNC cable	366924	—	42 V or less. Total length: Approx. 1 m.	<u> </u>
	366925	—	42 V or less. Total length: Approx. 2 m.	—
Safety BNC cable	701902	1000 V CAT II	Cable length: Approx. 1 m	—
	701903	1000 V CAT II	Cable length: Approx. 2 m	—
External sensor	B9284LK	<u> </u>	For connecting to the external current	 _
cable			sensor input terminal of this instrument.	
			Cable length: Approx. 0.5 m.	
Conversion adapter	758924	1000 V CAT II	BNC-4 mm socket adapter	—
Cable for current	761954	—	Total length: Approx. 3 m.	—
sensor element (3 m)				
Cable for current	761955	—	Total length: Approx. 5 m.	—
sensor element (5 m)				
Cable for current	761956	<u> </u>	Total length: Approx. 10 m.	<u> </u>
sensor element (10 m)				
1.5 mm hexagonal	B9317WD	<u> </u>	—	<u> </u>
wrench				
Rack mounting kit	751542-E4	 	EIA standard	IM 751542-E4-01EN
	751542-J4	_	JIS standard	IM 751542-J4-01EN

Group 2 The following accessories by themselves comply with EN standards.

Item	Model/	Maximum Rated	Notes	Manual No.
	Part No.	Voltage to Ground		
AC/DC Current	CT2000A	1000 Vrms CAT III	DC: 0 to 2000 A	IM CT2000A-01
Sensor			AC: 3000 Apeak	
AC/DC Current	CT1000A	1000 V CAT III	DC: 0 to 1000 A	IM CT1000A-01
Sensor			AC: 1000 Arms, 1500 Apeak	
AC/DC Current	CT1000	1000 Vrms CAT III	DC: 0 to 1000 A	IM CT1000-01
Sensor			AC: 1000 Apeak	
AC/DC Current	CT200	1000 Vrms CAT III	DC: 0 to 200 A	IM CT1000-01
Sensor			AC: 200 Apeak	
AC/DC Current	CT60	1000 Vrms CAT III	DC: 0 to 60 A	IM CT1000-01
Sensor			AC: 60 Apeak	
Clamp-on Probe	720930	300 Vrms CAT III	AC: 0 to 50 Arms	IM 720930-01EN
Clamp-on Probe	720931	600 Vrms CAT III	AC: 0 to 200 Arms (300 Apeak)	IM 720930-01EN
Clamp-on Probe	751552	600 Vrms CAT III	AC: 0.001 to 1200 Arms	IM 751552-01E

Conventions Used in This Manual

Notes

The notes and cautions in this manual are categorized using the following symbols.

	Improper handling or use can lead to injury to the user or damage to the instrument. This symbol appears on the instrument to indicate that the user must refer to the user's manual for special instructions. The same symbol appears in the corresponding place in the user's manual to identify those instructions. In the manual, the symbol is used in conjunction with the word "WARNING" or "CAUTION."		
WARNING	Calls attention to actions or conditions that could cause serious or fatal injury to the user, and precautions that can be taken to prevent such occurrences.		
CAUTION	Calls attention to actions or conditions that could cause light injury to the user or damage to the instrument or user's data, and precautions that can be taken to prevent such occurrences.		
French			
AVERTISSE	MENT Attire l'attention sur des gestes ou des conditions susceptibles de provoquer des blessures graves (voire mortelles), et sur les précautions de sécurité pouvant prévenir de tels accidents.		
ATTENTION	 Attire l'attention sur des gestes ou des conditions susceptibles de provoquer des blessures légères ou d'endommager l'instrument ou les données de l'utilisateur, et sur les précautions de sécurité susceptibles de prévenir de tels accidents. 		
Note	Calls attention to information that is important for the proper operation of the instrument.		

Prefixes k and K

Prefixes k and K used before units are distinguished as follows:

k: Denotes 1000. Example: 100 kHz

K: Denotes 1024. Example: 720 KB (file size)

Character Notations

Menu Names and Panel Keys in Bold Characters

Indicate controls such as menu commands, tabs, and buttons that appear on the screen and front panel keys

Safety Precautions

This product is designed to be used by a person with specialized knowledge. This instrument is an IEC safety class I instrument (provided with a terminal for protective earth grounding).

The general safety precautions described herein must be observed during all phases of operation. If the instrument is used in a manner not specified in this manual, the protection provided by the instrument may be impaired. YOKOGAWA assumes no liability for the customer's failure to comply with these requirements.

This manual is part of the product and contains important information. Store this manual in a safe place close to the instrument so that you can refer to it immediately. Keep this manual until you dispose of the instrument.

The following symbols are used on this instrument.

Handle with care. Refer to the user's manual or service manual. This symbol appears on dangerous locations on the instrument which require special instructions for proper handling or use. The same symbol appears in the corresponding place in the manual to identify those instructions.

Electric shock, danger

Protective earth ground or protective earth ground terminal

Ground or the functional ground terminal (do not use as the protective earth ground terminal)

- \sim Alternating current
- --- Direct current
- $\overline{\sim}\,$ Both direct and alternating current

Power-off state

French

À manipuler délicatement. Toujours se reporter aux manuels d'utilisation et d'entretien. Ce symbole a été apposé aux endroits dangereux de l'instrument pour lesquels des consignes spéciales d'utilisation ou de manipulation ont été émises. Le même symbole apparaît à l'endroit correspondant du manuel pour identifier les consignes qui s'y rapportent.

Safety Precautions

Failure to comply with the precautions below could lead to injury or death or damage to the instrument.

WARNING

Use the Instrument Only for Its Intended Purpose

This instrument is a power measurement instrument that can measure parameters such as voltage, current, and power. Do not use this instrument for anything other than as a power measurement instrument.

Check the Physical Appearance

Do not use the instrument if there is a problem with its physical appearance.

Use the Correct Power supply

Make sure that the power supply voltage matches the instrument's rated supply voltage and that it does not exceed the maximum voltage range of the power cord to use.

Use the Correct Power Cord and Plug

To prevent electric shock or fire, use the power cord for the instrument. The main power plug must be plugged into an outlet with a protective earth terminal. Do not invalidate this protection by using an extension cord without protective earth grounding. Further, do not use this power cord with other instruments.

Connect the Protective Ground Terminal

Make sure to connect the protective earth to prevent electric shock before turning on the power. The power cord to use is a three-prong type power cord.Connect the power cord to a properly grounded three-prong outlet.

Do Not Impair the Protective Grounding

Never cut off the internal or external protective earth wire or disconnect the wiring of the protective earth terminal. Doing so may result in electric shock or damage to the instrument.

Do Not Use When the Protection Functions Are Defective

Before using this instrument, check that the protection functions, such as the protective grounding and fuse, are working properly. If you suspect a defect, do not use the instrument.

Do Not Operate in an Explosive Atmosphere

Do not operate the instrument in the presence of flammable gases or vapors. Doing so is extremely dangerous.

Do Not Remove the Covers or Disassemble or Alter the Instrument

Only qualified YOKOGAWA personnel may remove the covers and disassemble or alter the instrument.

The inside of the instrument is dangerous because parts of it have high voltages.

Ground the Instrument before Making External Connections

Securely connect the protective grounding before connecting to the item under measurement or to an external control unit. Before touching a circuit, turn off its power and check that it has no voltage.

Measurement Category

This instrument is a measurement category II product. Do not use it for measurement category III or IV measurements.

Install or Use the Instrument in Appropriate Locations

- Do not install or use the instrument outdoors or in locations subject to rain or water.
- Install the instrument so that you can immediately remove the power cord if an abnormal or dangerous condition occurs.

Connect Cables Correctly

This instrument can measure large voltages and currents directly. If you use a voltage transformer or a current transformer together with this power meter, you can measure even larger voltages or currents. When you are measuring a large voltage or current, the power capacity of the item under measurement becomes large. If you do not connect the cables correctly, an overvoltage or overcurrent may be generated in the circuit under measurement. This may lead to not only damage to the instrument and the item under measurement, but electric shock and fire as well. Be careful when you connect the cables, and be sure to check the following points.

Before you begin measuring (before you turn the item under measurement on), check that:

- · Cables have been connected to the terminals of this instrument correctly.
- Check that there are no voltage measurement cables that have been connected to the current input terminals.
- Check that there are no current measurement cables that have been connected to the voltage input terminals.
- If you are measuring multiphase power, check that there are no mistakes in the phase wiring.
- Cables have been connected to the power supply and the item under measurement correctly.

Check that there are no short circuits between terminals or between connected cables.

During measurement (never touch the terminals and the connected cables when the item under measurement is on), check that:

• The input terminals are not abnormally hot.

After measuring (immediately after you turn the item under measurement off):

After you measure a large voltage or current, power may remain for some time in the item under measurement even after you turn it off. This remaining power may lead to electric shock, so do not touch the input terminals immediately after you turn the item under measurement off. The amount of time that power remains in the item under measurement varies depending on the item.

Manual CD

Never play this manual CD, which contains the user's manuals, in an audio CD player. Doing so may cause loss of hearing or speaker damage due to the large sounds that may be produced.

Accessories

Use the accessories specified in this manual. Moreover, use the accessories of this product only with Yokogawa products that specify them as accessories. Do not use faulty accessories.

CAUTION

Operating Environment Limitations

This product is classified as Class A (for use in industrial environments). Operation of this product in a residential area may cause radio interference, in which case the user will be required to correct the interference.

French

AVERTISSEMENT

Utiliser l'instrument aux seules fins pour lesquelles il est prévu

Cet instrument est un instrument de mesure de puissance pouvant mesurer des paramètres tels que la tension, le courant et la puissance. Ne pas utiliser cet instrument à des fins autres que la mesure de puissance.

Inspecter l'apparence physique

Ne pas utiliser l'instrument si son intégrité physique semble être compromise.

Vérifier l'alimentation

Assurez-vous que la tension d'alimentation correspond à la tension d'alimentation nominale de l'appareil et qu'elle ne dépasse pas la plage de tension maximale du cordon d'alimentation à utiliser.

Utiliser le cordon d'alimentation et la fiche adaptés

Pour éviter tout risque de choc électrique, utiliser exclusivement le cordon d'alimentation prévu pour cet instrument. La fiche doit être branchée sur une prise secteur raccordée à la terre. En cas d'utilisation d'une rallonge, celleci doit être impérativement reliée à la terre. Par ailleurs, ne pas utiliser ce cordon d'alimentation avec d'autres instruments.

Brancher la prise de terre

Avant de mettre l'instrument sous tension, penser à brancher la prise de terre pour éviter tout choc électrique. Le cordon d'alimentation à utiliser est un cordon d'alimentation à trois broches. Brancher le cordon d'alimentation sur une prise de courant à trois plots et mise à la terre.

Ne pas entraver la mise à la terre de protection

Ne jamais neutraliser le fil de terre interne ou externe, ni débrancher la borne de mise à la terre. Cela pourrait entraîner un choc électrique ou endommager l'instrument.

Ne pas utiliser lorsque les fonctions de protection sont défectueuses

Avant d'utiliser l'instrument, vérifier que les fonctions de protection, telles que le raccordement à la terre et le fusible, fonctionnent correctement. En cas de dysfonctionnement possible, ne pas utiliser l'instrument.

Ne pas utiliser dans un environnement explosif

Ne pas utiliser l'instrument en présence de gaz ou de vapeurs inflammables. Cela pourrait être extrêmement dangereux.

Ne pas retirer le capot, ni démonter ou modifier l'instrument

Seul le personnel YOKOGAWA qualifié est habilité à retirer le capot et à démonter ou modifier l'instrument. Certains composants à l'intérieur de l'instrument sont à haute tension et par conséquent, représentent un danger.

Relier l'instrument à la terre avant de le brancher sur des connexions externes

Toujours relier l'instrument à la terre avant de le brancher aux appareils à mesurer ou à une commande externe. Avant de toucher un circuit, mettre l'instrument hors tension et vérifier l'absence de tension.

Catégorie de mesure

Cet instrument appartient à la catégorie de mesure II. Ne pas l'utiliser pour réaliser des mesures de catégorie III ou IV.

Installer et utiliser l'instrument aux emplacements appropriés

- Ne pas installer, ni utiliser l'instrument à l'extérieur ou dans des lieux exposés à la pluie ou à l'eau.
- Installer l'instrument de manière à pourvoir immédiatement le débrancher du secteur en cas de fonctionnement anormal ou dangereux.

Brancher les câbles correctement

L'instrument est capable de mesurer directement les tensions et les courants élevés. L'utilisation d'un transformateur de tension ou d'un transformateur de courant avec cet instrument permet de mesurer des tensions et des courants encore plus élevés. Lors de la mesure d'une tension ou d'un courant élevé, la capacité de l'appareil mesuré devient élevée. Si les câbles sont incorrectement branchés, une surtension ou une surintensité risque de se produire dans le circuit soumis à la mesure. Cela pourrait non seulement endommager l'instrument et l'appareil mesuré, mais aussi entraîner un choc électrique et un incendie. Toujours brancher les câbles correctement et vérifier les points suivants.

Avant de procéder à une mesure (avant de mettre l'appareil mesuré sous tension), vérifier que :

• Les câbles ont été correctement branchés sur les bornes de l'instrument.

Les câbles de mesure de la tension n'ont pas été malencontreusement branchés sur les bornes d'entrée de courant.

Les câbles de mesure du courant n'ont pas été malencontreusement branchés sur les bornes d'entrée de tension.

Pour la mesure d'alimentation multiphase, vérifier que le câblage est correct.

• Les câbles ont été correctement branchés sur le secteur et sur l'appareil à mesurer. Vérifier qu'il n'y a pas de court-circuit entre les bornes ou les câbles.

Pendant la mesure (ne jamais toucher les bornes et les câbles branchés lorsque l'appareil à mesurer est sous tension), vérifier que :

· Les bornes d'entrée ne chauffent pas anormalement.

Après la mesure (tout de suite après avoir mis l'appareil mesuré hors tension) : Si vous avez mesuré une tension ou un courant élevé, une puissance résiduelle peut rester un certain temps dans l'appareil mesuré, même après sa mise hors tension. La puissance résiduelle peut entraîner un choc électrique, par conséquent, après avoir mis l'appareil hors tension, il convient d'attendre avant de toucher les bornes d'entrée. La durée pendant laquelle la puissance résiduelle reste dans l'appareil mesuré varie selon les appareils.

Manuel CD

Ce CD contient les manuels d'utilisation. Ne jamais insérer ce CD dans un lecteur de CD audio. Cela pourrait entraîner une perte d'audition ou l'endommagement des enceintes en raison du volume potentiellement élevé des sons produits.

Accessoires

Utiliser les accessoires spécifiés dans ce manuel. En outre, utiliser les accessoires de ce produit uniquement avec des produits Yokogawa pour lesquels ils sont spécifiés comme accessoires.

Ne pas utiliser d'accessoires défectueux.

ATTENTION

Limitations relatives à l'environnement opérationnel

Ce produit est classé dans classe A (pour utilisation dans des environnements industriels). L'utilisation de ce produit dans un zone résidentielle peut entraîner une interférence radio que l'utilisateur sera tenu de rectifier.

Regulations and Sales in Each Country or Region

Waste Electrical and Electronic Equipment

🖌 Waste Electrical and Electronic Equipment (WEEE), Directive

(This directive is valid only in the EU.)

This product complies with the WEEE directive marking requirement. This marking indicates that you must not discard this electrical/electronic product in domestic household waste.

Product Category

With reference to the equipment types in the WEEE directive, this product is classified as a "Monitoring and control instruments" product.

When disposing products in the EU, contact your local Yokogawa office in Europe. Do not dispose in domestic household waste.

EU Battery Directive

EU Battery Directive

(This directive is valid only in the EU.)

Batteries are included in this product. This marking indicates they shall be sorted out and collected as ordained in the EU battery directive.

Battery type: Lithium battery

You cannot replace batteries by yourself. When you need to replace batteries, contact your local Yokogawa office in Europe.

Authorized Representative in the EEA

Yokogawa Europe B.V. is the authorized representative of Yokogawa Test & Measurement Corporation for this product in the EEA. To contact Yokogawa Europe B. V., see the separate list of worldwide contacts, PIM 113-01Z2.

關於在台灣銷售

This section is valid only in Taiwan.

關於在台灣所販賣的符合其相關規定的電源線 A1100WD 的限用物質含量信息,請至下麵的網址進 行查詢

http://tmi.yokogawa.com/gs/service-support/product-compliance/

Disposal

When disposing of this instrument, follow the laws and ordinances of the country or region where the product will be disposed of.

Contents

List of Manuals	i
Checking the Contents of the Package	iii
Conventions Used in This Manual	viii
Safety Precautions	ix
Regulations and Sales in Each Country or Region	xvii

Chapter 1 Component Names and Functions

1.1	Front Panel, Rear Panel, and Top Panel1-	1
1.2	Panel Keys1-	5
1.3	Screens	0
1.4	System Configuration	3

Chapter 2 Measurement Preparation

2.1	Handling Precautions
2.2	Installing the Instrument
<u>^</u> 2.3	Installing Input Elements
<u>^</u> 2.4	Connecting the Power Supply
2.5	Turning the Power Switch On and Off 2-14
<u>^</u> 2.6	Precautions When Wiring the Circuit under Measurement 2-16
2.7	Assembling the Adapters for the Voltage Input Terminals 2-22
2.8	Wiring for Accurately Measuring a Single-phase Device
2.9	Guide for Selecting the Method Used to Measure the Power 2-30
<u>^</u> 2.10	Wiring the Circuit under Measurement for Direct Input (760901, 760902)2-31
<u>^</u> 2.11	Wiring the Circuit under Measurement When Using Current Sensors (760901, 760902)
<u>^</u> 2.12	Wiring the Circuit under Measurement When Using Voltage and Current Transformers
	(760901, 760902)
<u>^</u> 2.13	Wiring the Circuit under Measurement When Using Current Probes (760903) 2-48
<u>^</u> 2.14	Wiring the Circuit under Measurement When Using a Voltage Transformer or Current
	Sensor (CT Series) (760903)
2.15	Connecting to a Current Sensor (CT Series) and Using the Phase Correction Function
	(760903)

Chapter 3 Common Operations

3.1	Touch Panel Operations	3-1
3.2	Setup Menu Operation and Function	3-2
3.3	Entering Values and Strings	3-4
3.4	Using USB Keyboards and Mouse Devices	3-6
3.5	Setting the Menu and Message Languages	3-10
3.6	Synchronizing the Clock	3-12
3.7	Initializing the Settings	3-14
3.8	Displaying Help	3-16

Chapter 4 External Signal I/O

<u>^</u> 4.1	Motor/Auxiliary Inputs (ChA to H, option)	4-1
<u>^</u> 4.2	External Clock Input (EXT CLK IN)	4-3
<u>^</u> 4.3	External Start Signal I/O (MEAS START)	4-4
<u>^</u> 4.4	VIDEO Output (VIDEO OUT (WXGA))	4-6
<u>^</u> 4.5	D/A Output and Remote Control (D/A OUTPUT; option)	4-7

Contents

Chapter 5	Troubleshooting, Maintenance, and Inspection		
-	5.1	Troubleshooting	•
	5.2	Power Supply Fuse	
	5.3	Recommended Part Replacement 5-3	
	5.4	Disposing of YOKOGAWA Products	2
Chapter 6	Spec	cifications	_
-	6.1	Signal Input Section	2
	6.2	Measurement Output Section	5
	6.3	Display	
	6.4	Control area	
	6.5	Wiring Systems	Δ
	6.6	Measuring Mode	
	6.7	Features	
	6.8	Measurement Function Computation	
	6.9	Auxiliary I/O	5
	6.10	Peripheral Device Connection	
	6.11	Computer Interface	
	6.12	System Maintenance Processing	
	6.13	General Specifications	6
	6.14	External Dimensions	
	6.15	760901 30A High Accuracy Element Specifications	
	6.16	760902 5A High Accuracy Element Specifications	App
	6.17	760903 Current Sensor Element Specifications	App

Appendix

Appendix 1	Symbols and Determination of Measurement Functions	App-1
Appendix 2	Power Basics (Power, harmonics, and AC RLC circuits)	App-14
Appendix 3	How to Make Accurate Measurements	App-22
Appendix 4	Power Range	App-24
Appendix 5	Setting the Measurement Period	Арр-40
Appendix 6	User-Defined Function Operands	Арр-48
Appendix 7	USB Keyboard Key Assignments	Арр-53
Appendix 8	List of Initial Settings and Numeric Data Display Order	App-57
Appendix 9	Limitations on Modifying Settings and Operations	App-71
Appendix 10	Measurement Functions That Can Be Measured in Each Measurement Mode	Арр-73
Appendix 11	Firmware Version	App-76
Appendix 12	Block Diagram	App-77

1.1 Front Panel, Rear Panel, and Top Panel

Front Panel

Use to connect a USB keyboard, mouse, or memory device. Usage explanation \rightarrow section 3.4 and the user's manual

Rear Panel

Input Elements

The following three input elements are available.

For connecting a sensor cable from a current sensor (CT sensor) \rightarrow section 2.14

Current probe power supply terminal \triangle For connecting the power plug of a current probe \rightarrow section 2.13

Current probe input terminal ${\rm I}\!\!\!\Delta$

For connecting the terminator of a current probe \rightarrow section 2.13

1

Top Panel

Inlet holes \rightarrow section 2.2 (There are also inlet holes on the bottom panel.)

1.2 Panel Keys

SETUP Area

MENU Key

Press this key to show the setup menu.

SAVE Key

Press this key to show a menu for saving setup parameters.

LOAD Key

Press this key to show a menu for loading setup parameters.

1

DISPLAY Area

NUMERIC Key (top half of the split display)

Press this key to show numeric data in the top half of the split display.

GRAPH Key (top half of the split display)

Press this key to show graphs (waveforms, trends, bar graphs, vectors) in the top half of the split display.

NUMERIC Key (bottom half of the split display)

Press this key to show numeric data in the bottom half of the split display.

GRAPH Key (bottom half of the split display)

Press this key to show graphs (waveforms, trends, bar graphs, vectors) in the bottom half of the split display.

NUMERIC Key (full screen)

Press this key to show numeric data in full screen.

GRAPH Key (full screen)

Press this key to show graphs (waveforms, trends, bar graphs, vectors) in full screen.

CUSTOM Key (full screen)

Press this key to switch the full screen to a custom display.¹

1 Up to five screen configurations registered by the user on the Display menu

DISPLA	Y		
	NUMERIC	GRAPH	
		GRAPH	CUSTOM

Functions Common to All Keys

Pressing a key causes the key to light.

Functions Common to the NUMERIC Keys

Pressing the key repeatedly causes the display format of the numeric display to switch as follows: All Items \rightarrow 4 Items \rightarrow 8 Items \rightarrow 16 Items \rightarrow Matrix \rightarrow Hrm List Single \rightarrow Hrm List Dual \rightarrow All Items \rightarrow ...

Functions Common to the GRAPH Keys

Pressing the key repeatedly causes the display to switch as follows: waveform \rightarrow trend \rightarrow bar graph \rightarrow vector \rightarrow waveform \rightarrow ...

CUSTOM Key Function

Pressing the key repeatedly causes the display to switch as follows: Custom 1 \rightarrow Custom 2 $\rightarrow ... \rightarrow$ Custom 5 \rightarrow Custom 1 $\rightarrow ...$ ²

2 The display switches between only the registered screen configurations; unregistered settings are skipped. If no screen configurations are registered, the display does not switch to the Custom display.

CURSOR Area

ESC Key

- · Press this key to clear a menu or dialog box.
- If lower level menus are displayed, the menu is cleared one level at a time.

SET Key

Press this key to confirm the parameter selected with the arrow keys or the entered value.

Arrow Keys (▲ ▼ ◀ ► keys)

- Press the ◀ and ► keys to move the cursor between digits when entering a number.
- Press the ▲ and ▼ keys to increase and decrease the number you are entering. Press these keys also to select settings.

ELEMENTS/RANGE Area

1 to 7 Keys

- Press this key to select the input element that you want to select the measurement range for.
- The selected element key lights.
- When you select the wiring system, input elements that are assigned to the same wiring unit are selected at the same time.

OPTIONS Key

- On models with the motor evaluation option, press this key to show a menu for configuring the motor evaluation function or auxiliary input function.
- · Press this key to show the motor evaluation function (option) in the input information area of the display.

▲ and ▼ Keys

- Press these keys to select the voltage range, current range, or external current sensor range.
- The ranges selected with these keys are valid when the AUTO key described below is not illuminated (when the fixed range feature is being used).

AUTO Key

- Press AUTO to activate the auto range feature. When this feature is active, the AUTO key is lit. The auto range feature automatically sets the voltage, current, external current sensor, and current probe input ranges depending on the amplitude of the received electrical signal.
- Press AUTO again to activate the fixed range feature. The AUTO key turns off.

ELEMENTS

STORE Area

MENU Key

Press this key to show a store menu.

REC Key

Press this key to start storing data and create a file. While storing, this key lights.

PAUSE Key

Press this key to pause the storage operation. While paused, this key blinks. When storage is complete, this key lights.

ERROR LED

This LED blinks when a storage error occurs.

END Key

Press this key to end the storage operation and close the file.

STORE

DATA SAVE Area

MENU Key

Press this key to show a data save menu.

EXEC Key

Press this key to save data.

DATA SAVE

INTEGRATION Area

MENU Key

Press this key to show an integration menu.

START Key

Press this key to start (execute) integration. While integration is in progress, this key lights.

STOP Key

Press this key to stop integration. While stopped, this key blinks. When integration is complete, this key lights.

ERROR LED

This LED blinks when an integration error occurs.

RESET Key

Press this key to reset integration.

INTEGRATION

HOLD/SINGLE/NULL/CAL Area

HOLD Key

- Press this key to switch from updating the display after each data update interval to stopping the series of display operations and holding the display of the numeric data. When HOLD is on, the key lights.
- If you press the key again, the hold operation is released, and the updating of the numeric data display resumes.

SINGLE Key

Press SINGLE while data is being held to take a single measurement at the set data update interval, update the data, and hold the data again.

NULL Key

- Press this key to execute the null function. When the null function is on, the key lights.
- Press the key again to release the null function.

CAL Key

Press this key to execute zero-level compensation. When zero level compensation is executed, the instrument creates a zero input condition in its internal circuitry and sets the zero level to the level at that point.

UTILITY Area

UTILITY Key

- Press this key to show a utility menu.
- In remote mode (the REMOTE LED is lit), press this key to change to local mode, which enables front panel key operation.

REMOTE LED

When the instrument is set to remote mode through the communication interface, the LED lights.

TOUCH LOCK Key

- · Press this key to lock touch panel operations. The key lights.
- Press the key again to clear that state.

KEY LOCK key

- · Press this key to lock the keys on the front panel. The key lights.
- Press the key again to clear that state.

UTILITY REMOTE

1.3 Screens

Display Example When Measuring Power (Numeric and waveform displays)

Input information area [|] (for details, see the following figure)

Menu icons

Input Information (Elements tab)

Input element number —	1_Null] <mark>_</mark> U1	300V Aut	- Auto range indicator - Voltage range
Line filter			2A Auto	Current range
Frequency filter		100Hz	Sync I Sc Hrm	1 Sync source 1 Harmonic group
			Scaling in	dicator
	\Box	U1	1000V	
		11	30A	
	3 <mark>53M</mark> 353M	off off	Sync I Hrm [1
	<u>s a(</u>	U2	1000V	
		12	30A	
		off off	Sync <mark>1</mark> Hrm [<mark>1</mark> 1

Input Information (Options tab)

Display example when motor evaluation function 1 is set to single motor (speed: pulse) and motor evaluation function 2 is set to Auxiliary

Non-Numeric Displays

Overload indicator

Displayed if the measured value exceeds 140%¹ of the measurement range for crest factor CF3 or CF6.

Displayed if the measured value exceeds 280%² of the measurement range for crest factor CF6A.

1 160% for the 1000 V range at CF3 and 500 V range at CF6

2 320% for the 500 V range at CF6A

Overflow indicator

Displayed if the measured or computed result cannot be displayed using the specified decimal place or unit.

No-data indicator

Displayed if a measurement function is not selected or if there is no numeric data.

Error

Error indicator

Displayed in cases such as when a measured value is outside of its determined range.

Note

The instrument's LCD may have a few defective pixels. For details, see section 6.3, "Display."

1

IM WT5000-03EN

1

2.1 Handling Precautions

Safety Precautions

If you are using this instrument for the first time, make sure to thoroughly read the safety precautions given on pages ix to xv.

Do Not Remove the Case

Do not remove the case from the instrument. Some parts of the instrument use high voltages and are extremely dangerous. For internal inspection and adjustment, contact your nearest YOKOGAWA dealer.

Unplug If Abnormal Behavior Occurs

If you notice smoke or unusual odors coming from the instrument, immediately turn off the power and unplug the power cord. Also, turn off the power to any circuits under measurement that are connected to the input terminals. Then, contact your nearest YOKOGAWA dealer.

Do Not Damage the Power Cord

Nothing should be placed on top of the power cord. The power cord should also be kept away from any heat sources. When removing the plug from the power outlet, do not pull on the cord. Pull from the plug. If the power cord is damaged or if you are using the instrument in a location where the power supply specifications are different, purchase a power cord that matches the specifications of the region that the instrument will be used in.

Operating Environment and Conditions

This instrument complies with the EMC standard under specific operating environment and operating conditions. If the installation, wiring, and so on are not appropriate, the compliance conditions of the EMC standard may not be met. In such cases, the user will be required to take appropriate measures.

General Handling Precautions

Do Not Place Objects on Top of the Instrument

Never stack the instrument or place other instruments or any objects containing water on top of it. Doing so may damage the instrument.

Keep Electrically Charged Objects Away from the Instrument

Keep electrically charged objects away from the input terminals. They may damage the internal circuitry.

Do Not Damage the LCD

Because the LCD is very vulnerable and can be easily scratched, do not allow any sharp objects near it. Also it should not be exposed to vibrations and shocks.

Unplug during Extended Non-Use

Turn off the power to the circuit under measurement and the instrument and remove the power cord from the outlet.

Connecting a PC to the Instrument

Before connecting a PC to the USB port for PCs, ground the PC to the same electrical potential as the instrument.

When Carrying the Instrument

WARNING

- The instrument should only be carried by two persons. Firmly grasp the handles on the side of the case. The instrument can weigh as much as approximately 18 kg. Take care to avoid injury while moving the instrument.
- When you hold or put away the handle, be careful not to get your hand caught between the handle and the case.
- When you carry the instrument, be careful not to get your hand caught between the wall, installation surface, or other objects and the instrument.

French

AVERTISSEMENT

- L'instrument ne doit être transporté que par deux personnes. Saisissez fermement les poignées sur le côté du boîtier. L'instrument peut peser jusqu'à 18 kg environ. Prenez soin d'éviter les blessures lors du déplacement de l'instrument.
- Lorsque vous attrapez ou rabattez la poignée, veillez à ne pas vous coincer la main entre la poignée et l'instrument.
- Lorsque vous déplacez l'instrument, veillez à ne pas vous coincer la main entre l'instrument et le mur, la surface d'installation ou tout autre objet.

First, turn off the circuit under measurement and remove the measurement cables. Then, turn off the instrument and remove the power cord and any attached cables.

In addition, if storage device is inserted in the instrument, be sure to remove the storage device before you move the instrument.

When Cleaning the Instrument

When cleaning the case or the operation panel, turn off the circuit under measurement and the instrument and remove the instrument's power cord from the outlet. Then, wipe the instrument lightly with a clean dry cloth. Do not use chemicals such as benzene or thinner. These can cause discoloring and deformation.
2.2 Installing the Instrument

WARNING

- · Do not install or use the instrument outdoors or in locations subject to rain or water.
- Install the instrument so that you can immediately remove the power cord if an abnormal or dangerous condition occurs.

CAUTION

If you block the inlet or outlet holes on the instrument, it will become hot and may break down.

French

AVERTISSEMENT

- Ne pas installer, ni utiliser l'instrument à l'extérieur ou dans des lieux exposés à la pluie ou à l'eau.
- Installer l'instrument de manière à pourvoir immédiatement le débrancher du secteur en cas de fonctionnement anormal ou dangereux.

ATTENTION

Ne pas boucher les orifices d'entrée ou de sortie de l'instrument pour éviter toute surchauffe et panne éventuelle.

Installation Conditions

Install the instrument in an indoors environment that meets the following conditions.

Flat, Even Surface

Install the instrument on a stable surface that is level in all directions. If you use the instrument on an unstable or tilted surface, the accuracy of its measurements may be impeded.

Well-Ventilated Location

Inlet and vent holes are located on the top and bottom of the instrument. To prevent internal overheating, allow at least 20 mm of space around the inlet and vent holes.

- · When connecting measurement wires and other various cables, allow extra space for operation.
- Install the instrument as to avoid hot air from a heat source being sucked in through the inlet holes.

Ambient Temperature and Humidity

Ambient temperature: 5°C to 40°C Ambient humidity: 20% to 80%RH (No condensation)

Do not install the instrument in the following places.

- Outdoors
- · In direct sunlight or near heat sources
- · Where the instrument is exposed to water or other liquids
- · Where an excessive amount of soot, steam, dust, or corrosive gas is present
- Near strong magnetic field sources
- · Near high voltage equipment or power lines
- · Where the level of mechanical vibration is high
- On an unstable surface

Note

- For the most accurate measurements, use the instrument in the following kind of environment. Ambient temperature: 23°C ± 5°C Ambient humidity: 20% RH to 80% RH (no condensation)
 When using the instrument in a place where the ambient temperature is 5°C to 18°C or 28°C to 40°C, add the temperature coefficient to the accuracy as specified in chapter 6.
- When installing the instrument in a place where the ambient humidity is 30% or less, take measures to prevent static electricity such as using an anti-static mat.
- Condensation may occur if the instrument is moved to another place where the ambient temperature or humidity is higher, or if the temperature changes rapidly. In these kinds of circumstances, wait for at least an hour before using the instrument, to acclimate it to the surrounding temperature.

Storage Location

- Ambient temperature: -25°C to 60°C (no condensation)
- Ambient humidity: 20% RH to 80% RH (no condensation)

When storing the instrument, avoid the following places.

- · Where the level of mechanical vibration is high
- In direct sunlight
- · Where there are corrosive or explosive gases
- · Where an excessive amount of soot, dust, salt, or iron is present
- · Near a strong source of heat or moisture
- · Where water, oil, or chemicals may splash onto the instrument

We recommend that the instrument be stored in an environment where the temperature is between 5° C and 40° C.

Installation Orientation

Desktop

Place the instrument on a flat, level surface as shown in the figure below.

Rubber Stoppers

If the instrument is installed so that it is flat as shown in the above figure, rubber stoppers can be attached to the feet to prevent the instrument from sliding. Two sets of rubber stoppers (four stoppers) are included in the package.

WARNING

- When you put away the stand, be careful not to get your hand caught between the stand and the instrument.
- Handling the stand without firmly supporting the instrument can be dangerous. Please take the following precautions.
 - Only handle the stand when the instrument is on a stable surface.
 - Do not handle the stand when the instrument is tilted.
- · Do not place the instrument in any position other than those shown in the above figures.

CAUTION

Do not apply excessive force or shock to the stand. Doing so may break the stand support.

French

AVERTISSEMENT

- Lorsque vous rabattez le support, veillez à ne pas vous coincer la main entre le support et l'instrument.
- Lorsque vous manipulez le support, soutenez toujours l'instrument fermement. Prenez les précautions suivantes.
 - Ne manipulez le support que lorsque l'instrument est placé sur une surface stable.
 - Ne manipulez pas le support lorsque l'instrument est incliné.
- Ne pas placer l'instrument dans des positions autres celles indiquées ci-dessus. Ne pas empiler l'instrument.

ATTENTION

Évitez d'appliquer une force excessive ou des chocs sur le support. Le système de soutien du support peut se casser.

Functional Ground

If you use this instrument in a noisy environment, measurement results may be affected by the noise, or interface communication may not operate properly. These problems may be alleviated by connecting the functional ground terminal to ground.

Rack Mounting

To mount the instrument on a rack, use a rack mount kit (sold separately).

Item	Model	Notes
Rack mount kit	751542-E4	For EIA
Rack mount kit	751542-J4	For JIS

A summary of the procedure for mounting the instrument on a rack is given below. For detailed instructions, see the manual that is included with the rack mount kit.

1. Remove the handles from both sides of the instrument.

- 2. Remove the four feet from the bottom of the instrument.
- **3.** Remove the two plastic rivets and the four seals covering the rack mount attachment holes on each side of the instrument near the front.
- 4. Place seals over the feet and handle attachment holes.
- 5. Attach the rack mount kit to the instrument.
- 6. Mount the instrument on a rack.

Note

- Rack mount in the following manner to prevent internal heating.
- Allow at least 20 mm of space around the inlet and vent holes.
- Insert shelves to prevent hot air from peripheral devices from hitting this instrument.
- Make sure to provide adequate support from the bottom of the instrument. The support should not block the inlet and vent holes.

2.3 Installing Input Elements

WARNING

- To prevent electric shock and damage to the instrument, be sure to turn the power off before you install or remove input elements.
- Check that the input cable is not connected to the input terminals before installing or removing input elements.
- To prevent electric shock and to satisfy the specifications, make sure to put the accessory cover panel on the slots that are not being used. Using the instrument without the cover panel allows the dust to enter the instrument and may cause malfunction due to the rise in temperature inside the instrument.
- If an input element happens to come out of the slot while it is in use, it may cause electric shock or cause damage to the instrument as well as the input element. Make sure to screw input elements in place at the two locations (top and bottom).
 Torque for tightening the screws: 0.6 N•m
- There are protrusions in the slot. Do not put your hand in the slot. If you put your hand in the slot, the protrusions may cut your hand.

Precautions to Be Taken When Using the Elements

- Do not apply an input voltage exceeding the maximum input voltage, maximum isolation voltage, withstand voltage, or allowable surge voltage.
- To avoid electric shock, be sure to ground the instrument.
- To prevent the possibility of electric shock, be sure to fasten the element screws. Failing to do so is extremely dangerous because the electrical and mechanical protection functions will not be activated.
- Avoid continuous connection under an environment in which the surge voltage may occur.

2.3 Installing Input Elements

French

AVERTISSEMENT

- Pour éviter tout risque de choc électrique et d'endommagement de l'instrument, veillez à mettre l'instrument hors tension avant d'installer ou de retirer des éléments d'entrée.
- Avant d'installer ou de retirer des éléments d'entrée, vérifiez que le câble d'entrée n'est pas connecté aux bornes d'entrée.
- Afin d'éviter tout risque de choc électrique et de respecter les spécifications, assurezvous de mettre le cache de recouvrement sur les slots non utilisés. L'utilisation de l'instrument sans le cache laisse entrer la poussière dans l'instrument, ce qui peut causer un dysfonctionnement dû à une élévation de la température à l'intérieur de l'instrument.
- Si un élément d'entrée sort du slot en cours d'utilisation, il peut provoquer un choc électrique ou endommager l'instrument, ainsi que l'élément d'entrée. Assurez-vous de visser les éléments d'entrée dans les deux emplacements (haut et bas).
 Couple de serrage des vis : 0.6 N•m
- Les sots présentent des rebords en saillie. Ne pas insérer les doigts dans les slots, car les saillies pourraient vous blesser.

Précautions à prendre lors de l'utilisation des éléments

- N'appliquez pas de tension d'entrée dépassant la tension d'entrée maximum, la tension d'isolation maximum, la tension de maintient ou la surtension autorisée.
- Pour éviter tout risque de choc électrique, l'instrument doit impérativement être relié à la terre.
- Afin d'éviter toute possibilité de choc électrique, assurez-vous de fixer les vis des éléments. Le non-respect de cette consigne est extrêmement dangereux car les fonctions de protection électrique et mécanique ne seront pas activées.
- Évitez un branchement continu dans un environnement pouvant être soumis à une surtension.

Input Element Types

The following three types are available.

30A High Accuracy Element	760901
5A High Accuracy Element	760902
Current Sensor Element	760903

Notes in Installing and Removing Input Elements

- A wiring unit is configured with adjacent input elements. It is not possible to configure a wiring unit using input elements that are separated apart.
- If you replace one installed input element with another, the settings other than those indicated below will be initialized when the power is turned on.
 - Date and time settings
 - Communication settings
 - · Menu and message language settings

If you want to keep the settings, specify a save destination and save them before replacing the input element.

Installing Elements

- 1. Make sure that the instrument's power switch is turned off.
- **2.** Check the element numbers indicated above the input element installation slots on the rear panel of this instrument. Then install the input elements in the appropriate slots.

While holding the handles on the top and bottom of an input element, press hard until it clicks in place. If there is a cover panel on the slot you want to install an element in, remove the cover panel, first.

- **3.** Fix the elements securely in place by fastening the supplied screws at the top and bottom locations of the input elements. (Screw tightening torque: 0.6 N•m)
- 4. Turn on the instrument's power switch.
- 5. In the overview screen, check that the names of the elements you installed are displayed correctly at the appropriate slots. If they are not correct, remove the elements according to the steps in "Removing Elements" provided later, and reinstall the elements according to steps 1 to 3 shown above. For instructions on how to display the overview screen, see section 14.7, "Viewing System Information (Overview)" in the User's Manual.

Be sure to attach the supplied cover panels to unused slots.

Installation Positions of Input Elements

Install input elements in order from the smallest numbered slot. Do not skip slots.

Removing Elements

- 1. Make sure that the instrument's power switch is turned off.
- 2. Loosen the two screws that are fastened to the input element you want to remove.
- 3. Hold the two handles at the top and bottom of the input element, and pull it out.

Safety Precautions for Laser Products

The following input elements use laser light sources internally.

- 760901 30A High Accuracy Element
- 760902 5A High Accuracy Element
- 760903 Current Sensor Element

The above input element is a class 1 laser product as defined by IEC 60825-1: Safety of Laser Products—Part1: Equipment Classification, and Requirements. In addition, these instruments comply with 21 CFR 1040.10 and 1040.11 except for deviations pursuant to Laser Notice No. 50, dated June 24, 2007.

- 760901 30A High Accuracy Element
- 760902 5A High Accuracy Element
- 760903 Current Sensor Element

The following information is printed on the side.

Complies with 21 CFR 1040.10 and 1040.11 except for deviations pursuant to Laser Notice No.50, dated June 24, 2007 4-9-8 Myojin-cho, Hachioji-shi, Tokyo 192-8566, Japan

WT5000

The following information is printed on the top.

IF CLASS 1 LASER PRODUCT MODULE IS AVAILABLE クラス1レーザモジュール実装時 安装Class 1激光模块时

Complies with 21 CFR 1040.10 and 1040.11 except for deviations pursuant to Laser Notice No.50, dated June 24, 2007 4-9-8 Myojin-cho, Hachioji-shi, Tokyo 192-8566, Japan

Laser Specifications

- Laser Class: Class 1
- Maximum Output: 0 mW (This instrument doesn't radiate the laser beam to outside.)
- Wavelength: 850 ± 10 nm

If the instrument is used in a manner not specified in this manual, the protection provided by the instrument may be impaired. YOKOGAWA assumes no liability for the customer's failure to comply with these warnings and requirements.

2.4 Connecting the Power Supply

Before Connecting the Power Supply

To prevent electric shock and damage to the instrument, follow the warnings below.

WARNING

- Make sure that the power supply voltage matches the instrument's rated supply voltage and that it does not exceed the maximum voltage range of the power cord to use.
- Connect the power cord after checking that the power switch of the instrument is turned off.
- To prevent electric shock or fire, use the power cord for the instrument.
- To avoid electric shock, be sure to ground the instrument. Connect the power cord to a three-prong power outlet with a protective earth terminal.
- Do not use an ungrounded extension cord. If you do, the instrument will not be grounded.
- If there is no AC outlet that is compatible with the power cord that you will be using and you cannot ground the instrument, do not use the instrument.

French

AVERTISSEMENT

- Assurez-vous que la tension d'alimentation correspond à la tension d'alimentation nominale de l'appareil et qu'elle ne dépasse pas la plage de tension maximale du cordon d'alimentation à utiliser.
- Brancher le cordon d'alimentation après avoir vérifié que l'interrupteur de l'instrument est sur OFF.
- Pour éviter tout risque de choc électrique, utiliser exclusivement le cordon d'alimentation prévu pour cet instrument.
- Relier l'instrument à la terre pour éviter tout risque de choc électrique. Brancher le cordon d'alimentation sur une prise de courant à trois plots reliée à la terre.
- Toujours utiliser une rallonge avec broche de mise à la terre, à défaut de quoi l'instrument ne serait pas relié à la terre.
- Si une sortie CA conforme au câble d'alimentation fourni n'est pas disponible et que vous ne pouvez pas relier l'instrument à la terre, ne l'utilisez pas.

Connecting the Power Cord

- 1. Check that the instrument's power switch is off.
- 2. Connect the power cord plug to the power inlet on the rear panel of the instrument.
- **3.** Connect the other end of the cord to an outlet that meets the following conditions. Use a grounded three-prong outlet.

Item	Specifications
Rated supply voltage	100 VAC to 120 VAC, 220 VAC to 240 VAC
Permitted supply voltage range	90 VAC to 132 VAC, 198 VAC to 264 VAC
Rated supply frequency	50/60 Hz
Permitted supply frequency range	48 Hz to 63 Hz
Maximum power consumption	560 VA

* This instrument can use a 100 V or a 200 V power supply. The maximum rated voltage differs according to the type of power cord. Check that the voltage supplied to the instrument is less than or equal to the maximum rated voltage of the power cord that you will be using before use.

2.5 Turning the Power Switch On and Off

Before Turning On the Power, Check That:

- The instrument is installed properly. → section 2.2, "Installing the Instrument"
- The power cord is connected properly. \rightarrow section 2.3, "Connecting the Power Supply"

Power Switch Location

The power switch is located in the lower left of the front panel.

Turning On and Off the Power Switch

The power switch is a push button. Press the button once to turn the instrument on and press it again to turn the instrument off.

Operations Performed When the Power Is Turned On

When the power switch is turned on, a self-test starts automatically. When the self-test completes successfully, the screen that was displayed immediately before the power was turned off appears. A navigation window also appears.

Before using the instrument, make sure that the self-test completes successfully.

Note

- After turning the power switch off, wait at least 10 seconds before you turn it on again.
- It may take a few seconds for the startup screen to appear.

Navigation window

If this check box is selected, the measurement screen will appear the next time the instrument is started, instead of the navigation window.

When the Power-on Operation Does Not Finish Normally

Turn off the power switch, and check the following items.

- Check that the power cord is securely connected.
- Check that the correct voltage is coming to the power outlet. → section 2.3, "Connecting the Power Supply"
- Initialize the settings to their factory defaults by turning on the power switch while holding down the ESC key.

If the instrument still does not work properly after checking these items, contact your nearest YOKOGAWA dealer for repairs.

To Make Accurate Measurements

- After turning on the power switch, wait at least 30 minutes to allow the instrument to warm up.
- After warm-up, execute zero-level compensation. \rightarrow see the user's manual

Operations Performed When the Power Is Turned Off

After the power is turned off, the instrument stores the setup parameters in its memory before shutting down. The same is true when the power cord is disconnected from the outlet. The next time the power is turned on, the instrument powers up using the stored setup parameters.

Note.

The instrument stores the settings using an internal battery. When the battery voltage falls below a specified value, you will no longer be able to store setup parameters, and a message (error 901) will appear on the screen when you turn on the power. If this message appears frequently, you need to replace the battery soon. You cannot replace batteries by yourself. Contact your nearest YOKOGAWA dealer to have the battery replaced.

CAUTION

Turning off the power switch abruptly or unplugging the power cord while the instrument is saving data may corrupt the media on which data is being saved. Also, the data being saved is not guaranteed. Always turn the power switch off after data has been saved.

French

ATTENTION

Une mise hors tension abrupte ou le débranchement du cordon d'alimentation tandis que l'instrument enregistre des données peuvent compromettre les supports sur lesquels les données sont enregistrées. De plus, l'enregistrement des données n'est pas garanti. Mettez toujours l'instrument hors tension après l'enregistrement des données.

2.6 Precautions When Wiring the Circuit under Measurement

To prevent electric shock and damage to the instrument, follow the warnings below.

WARNING

- Ground the instrument before connecting measurement cables. The power cord to use is a three-prong type power cord. Insert the power cord into a grounded three-prong outlet.
- Turn the circuit under measurement off before connecting and disconnecting cables to it. Connecting or removing measurement cables while the power is on is dangerous.
- Do not wire a current circuit to the voltage input terminal or a voltage circuit to the current input terminal.
- Strip the insulation covers of measurement cables so that when they are wired to the safety terminal adapters, the conductive parts (bare wires) do not protrude from the adapters. Also, make sure to fasten the safety terminal adapter screws securely so that cables do not come loose.
- When connecting measurement cables to the voltage input terminals, only connect measurement cables that have safety terminals that cover their conductive parts. Using a terminal with bare conductive parts (such as a banana plug) can be dangerous if the terminal comes loose.
- When connecting connectors to the external current sensor input terminals, connect only those that have safety terminals that cover their conductive parts. Using a connector with bare conductive parts can be dangerous if the voltage is 42 V or higher.
- When the voltage of the circuit under measurement is being applied to the current input terminals, do not touch the external current sensor input terminals. Doing so is dangerous because the terminals are electrically connected inside the instrument.
- When connecting a measurement cable from an external current sensor to an external current sensor input terminal, remove the cables connected to the current input terminals. Also, when the voltage of the circuit under measurement is being applied to the external current sensor input terminals, do not touch the current input terminals. Doing so is dangerous because the terminals are electrically connected inside the instrument.
- When using an external voltage transformer (VT) or current transformer (CT), make sure that it has enough dielectric strength for the voltage (U) being measured (2U + 1000 V recommended). Also, make sure that the secondary side of the CT does not become an open circuit while the power is being applied. If this happens, high voltage will appear at the secondary side of the CT, making it extremely dangerous.
- When using a 30A High Accuracy Element (760901) and applying a current exceeding 10 A from a current transformer (CT) to this instrument, provide protection.
- When using a 5A High Accuracy Element (760902) and applying a current exceeding 0.7 A from a current transformer (CT) to this instrument, provide protection.
- When using an external current sensor, make sure to use a sensor that comes in a case. The conductive parts and the case should be insulated, and the sensor should have enough dielectric strength for the voltage of the circuit under measurement. Using a bare sensor is dangerous, because there is a high probability that you might accidentally touch it.
- When using a shunt-type current sensor as an external current sensor, turn off the circuit under measurement before you connect the sensor. Connecting or removing the sensor while the power is on is dangerous.
- When using a clamp-type current sensor as an external current sensor, make sure that you understand the voltage of the circuit under measurement and the specifications and handling of the clamp-type sensor, and then confirm that there are no dangers, such as shock hazards.

- When using a current sensor (CT) on a current sensor element (760903), use a sensor with overload protection.
- The sensor input shell and current probe input of the current sensor element (760903) are not isolated.
- The protection function and non-isolation function of the current sensor element (760903) are enabled when the module screws are fastened. It is extremely dangerous if you do not fasten the screws.
- For safety reasons, when using the instrument after mounting it on a rack, furnish a switch for turning off the circuit under measurement from the front side of the rack.
- To make the protective features effective, before applying the voltage or current from the circuit under measurement, check that:
 - The power cord for the instrument is being used to connect to the power supply, and the instrument is grounded.
 - The instrument is turned on.
- When the instrument is turned on, do not apply a signal that exceeds the following values to the voltage or current input terminals. When the instrument is turned off, turn the circuit under measurement off. For information about other input terminals, see the specifications in chapter 6.

Instantaneous maximum allowable input (1 s or less)

Voltage input (760901, 760902, 760903)

Peak value of 2.5 kV or rms value of 1.5 kV, whichever is less.

Current input

Direct input

30A High Accuracy Element (760901)

Peak value of 150 A or rms value of 55 A, whichever is less.

5A High Accuracy Element (760902)

Peak value of 10 A or rms value of 7 A, whichever is less.

External current sensor input (760901, 760902)

Peak value less than or equal to 10 times the range.

Current sensor input (760903) (0.1 s or less)

Input Resistance: 1 Ω

Peak value of 1.8 A or rms value of 1.2 A, whichever is less.

Input Resistance: 1.5 Ω

Peak value of 1.2 A or rms value of 0.84 A, whichever is less.

Input Resistance: 5 Ω

Peak value of 0.36 A or rms value of 0.25 A, whichever is less.

Input Resistance: 10 Ω

Peak value of 0.18 A or rms value of 0.12 A, whichever is less.

Current probe input (760903)

Peak value at 10 times the range or 25 V, whichever is less

Continuous maximum allowable input

Voltage input (760901, 760902, 760903) Peak value of 1.6 kV or rms value of 1.5 kV, whichever is less. If the frequency of the input voltage exceeds 100 kHz, (1200 – f) Vrms or less f is the frequency of the input voltage in units of kHz
Current input
Direct input
30A High Accuracy Element (760901)
Peak value of 90 A or rms value of 33 A, whichever is less.
5A High Accuracy Element (760902)
Peak value of 10 A or rms value of 7 A, whichever is less.
External current sensor input (760901, 760902)
Peak value less than or equal to 2.5 times the range.
Current sensor input (760903)
Input Resistance: 1 Ω
Peak value of 1.5 A or rms value of 1.1 A, whichever is less.
Input Resistance: 1.5 Ω
Peak value of 1.0 A or rms value of 0.73 A, whichever is less.
Input Resistance: 5 Ω
Peak value of 0.3 A or rms value of 0.22 A, whichever is less.
Input Resistance: 10 Ω
Peak value of 0.15 A or rms value of 0.11 A, whichever is less.
Current probe input (760903)
Peak value at 5 times the range or rms value of 25 V, whichever is less

CAUTION

- Use measurement cables with dielectric strengths and current capacities that are appropriate for the voltage or current being measured.
 Example: When making measurements on a current of 20 A, use copper wires that have a conductive cross-sectional area of 4 mm² or greater.
- Attaching a measurement cable to this product may cause radio interference in which case the user will be required to correct the interference.

French

AVERTISSEMENT

- Relier l'instrument à la terre avant de brancher les câbles de mesure. Le cordon d'alimentation à utiliser est un cordon d'alimentation à trois broches. Brancher le cordon d'alimentation sur une prise de courant à trois plots mise à la terre.
- Mettre le circuit à mesurer hors tension avant de brancher et de débrancher les câbles. Il est dangereux de brancher ou de débrancher les câbles de mesure lorsque le circuit est sous tension.
- Ne pas brancher un circuit de courant sur une borne d'entrée de tension ou un circuit de tension sur une borne d'entrée de courant.
- Retirez les caches d'isolation des câbles de mesure pour qu'ils soient raccordés aux adaptateurs de bornes de sécurité, les parties conductrices (fils nus) ne dépassant pas des adaptateurs. De plus, assurez-vous de fixer correctement les vis des adaptateurs de bornes de sécurité de façon à éviter la désolidarisation des câbles.
- Lors de la connexion des câbles de mesure sur les bornes d'entrée de tension, ne brancher que des câbles de mesure dotés de bornes de sécurité capables de couvrir leurs éléments conducteurs. L'utilisation d'une borne dotée d'éléments conducteurs nus (comme une fiche banane) serait dangereuse si la borne venait à se détacher.
- Lors de la connexion de câbles sur les bornes d'entrée du capteur de courant, ne brancher que des câbles dotés de bornes de sécurité capables de couvrir leurs éléments conducteurs. L'utilisation d'un connecteur doté d'éléments conducteurs peut être dangereuse si la tension est de 42 V ou plus.
- Lorsque la tension du circuit à mesurer est appliquée aux bornes d'entrée de courant, ne pas toucher les bornes d'entrée de capteur de courant externe, car elles sont connectées électroniquement à l'intérieur de l'instrument, ce qui présente un danger.
- Lors du branchement d'un câble de mesure d'un capteur de courant externe sur un connecteur d'entrée de capteur de courant externe, retirer les câbles branchés sur les bornes d'entrée de courant. De plus, lorsque la tension du circuit à mesurer est appliquée aux bornes d'entrée de capteur de courant externe, ne pas toucher les bornes d'entrée de courant, car elles sont connectées électroniquement à l'intérieur de l'instrument, ce qui présente un danger.
- En cas d'utilisation d'un transformateur externe de tension ou de courant, vérifier que la rigidité diélectrique est suffisante pour la tension (U) à mesurer (2U + 1000 V recommandé). De plus, il convient d'éviter que le côté secondaire du transformateur de courant devienne un circuit ouvert pendant que le courant est appliqué. Si cela se produisait, la haute tension se déplacerait du côté secondaire du transformateur de courant, le rendant extrêmement dangereux.
- Il faut fournir une protection en cas d'utilisation d'un élément de haute précision de 30 A (760901) et si le courant appliqué sur cet instrument en provenance d'un transformateur de courant (CT) dépasse 10 A.
- Il faut fournir une protection en cas d'utilisation d'un élément de haute précision de 5 A (760902) et si le courant appliqué sur cet instrument en provenance d'un transformateur de courant (CT) dépasse 0,7 A.
- Lors de l'utilisation d'un capteur de courant externe, toujours utiliser un capteur rangé dans un étui. Les éléments conducteurs et l'étui doivent être isolés, et le capteur doit avoir une rigidité diélectrique suffisante pour la tension du circuit à mesurer. L'utilisation d'un capteur nu est dangereuse car le risque de le toucher accidentellement est très élevé.
- Lors de l'utilisation d'un capteur de courant de type shunt en guise de capteur de courant externe, mettre le circuit à mesurer hors tension avant de brancher le capteur. Il est dangereux de brancher ou de débrancher le capteur lorsque le circuit est sous tension.
- Lors de l'utilisation d'un capteur de courant par serrage en guise de capteur de courant externe, tenir compte de la tension du circuit à mesurer, des spécifications et des consignes de manipulation du capteur par serrage, puis vérifier l'absence de dangers, tels le choc électrique.

2.6 Precautions When Wiring the Circuit under Measurement

- Si vous utilisez un capteur de courant (CT) sur un élément de capteur de courant (760903), utilisez un capteur doté d'une protection contre les surcharges.
- La coque d'entrée du capteur et l'entrée de la sonde de courant de l'élément de capteur de courant (760903) ne sont pas isolées.
- La fonction de protection et la fonction de non-isolation de l'élément de capteur de courant (760903) sont activées lorsque les vis du module sont serrées. Il est extrêmement dangereux de ne pas serrer les vis.
- Pour des raisons de sécurité, lors de l'utilisation de l'instrument après son installation sur un rack, prévoir un commutateur pour mettre le circuit mesuré hors tension depuis l'avant du rack.
- Pour garantir la sécurité, avant d'appliquer la tension ou le courant depuis le circuit à mesurer, vérifier ce qui suit :
 - Le cordon d'alimentation de l'instrument est utilisé pour la connexion à l'alimentation, et l'instrument est bien relié à la terre.
 - L'instrument est sous tension.
- Lorsque l'instrument est sous tension, ne pas appliquer de signal sur les bornes d'entrée de tension ou de courant dépassant les valeurs suivantes. Lorsque l'instrument est hors tension, éteindre également le circuit à mesurer. Pour de plus amples informations sur d'autres bornes d'entrée, se reporter aux spécifications au chapitre 6.

Entrée instantanée maximale admissible (1 s ou moins)

Entrée de tension (760901, 760902, 760903)

Valeur crête de 2.5 kV ou valeur efficace de 1,5 kV, selon la valeur la plus basse.

Entrée de courant

Entrée directe

Élément de haute précision de 30 A (760901)

Valeur crête de 150 A ou valeur efficace de 55 A, selon la valeur la plus basse.

Élément de haute précision de 5 A (760902)

Valeur crête de 10 A ou valeur efficace de 7 A, selon la valeur la plus basse.

Entrée de capteur externe (760901, 760902)

Valeur crête inférieure ou égale à 10 fois la plage.

Entrée du capteur de courant (760903) (0,1 s ou moins)

Résistance d'entrée : 1 Ω

Valeur crête de 1.8 A ou valeur efficace de 1.2 A, selon la valeur la plus basse.

Résistance d'entrée : 1,5 Ω

Valeur crête de 1.2 A ou valeur efficace de 0.84 A, selon la valeur la plus basse.

Résistance d'entrée : 5 Ω

Valeur crête de 0.36 A ou valeur efficace de 0.25 A, selon la valeur la plus basse. Résistance d'entrée : 10 Ω

Valeur crête de 0.18 A ou valeur efficace de 0.12 A, selon la valeur la plus basse.

Entrée de la sonde de courant (760903)

Valeur de crête à 10 fois la plage ou 25 V, selon la valeur la moins élevée

Entrée continue maximale admissible

Entrée de tension (760901, 760902, 760903)

Valeur crête de 1.6 kV ou valeur efficace de 1,5 kV, selon la valeur la plus basse. Si la fréquence de la tension d'entrée dépasse 100 kHz,

(1200 - f) Vrms ou moins. f est la fréquence de la tension d'entrée en unités de kHz.

Entrée de courant

Entrée directe

Élément de haute précision de 30 A (760901)

Valeur crête de 90 A ou valeur efficace de 33 A, selon la valeur la plus basse.

Élément de haute précision de 5 A (760902)

Valeur crête de 10 A ou valeur efficace de 7 A, selon la valeur la plus basse.

Entrée de capteur externe (760901, 760902)

Valeur crête inférieure ou égale à 2.5 fois la plage.

Entrée du capteur de courant (760903)

Résistance d'entrée : 1 Ω

Valeur crête de 1.5 A ou valeur efficace de 1.1 A, selon la valeur la plus basse. Résistance d'entrée : 1.5 Ω

Valeur crête de 1.0 A ou valeur efficace de 0.73 A, selon la valeur la plus basse.

Résistance d'entrée : 5 Ω

Valeur crête de 0.3 A ou valeur efficace de 0.22 A, selon la valeur la plus basse. Résistance d'entrée : 10 Ω

Valeur crête de 0.15 A ou valeur efficace de 0.11 A, selon la valeur la plus basse.

Entrée de la sonde de courant (760903)

Valeur de crête à 5 fois la plage ou valeur efficace (rms) de 25 V, selon la valeur la moins élevée

ATTENTION

 Utiliser des câbles de mesure dont la rigidité diélectrique et la capacité de courant conviennent pour la tension ou le courant à mesurer.
 Exemple : Lors de la réalisation de mesures sur un courant de 20 A, utiliser des fils en

cuivre à section transversale conductrice de 4 mm².

 Le branchement d'un câble de mesure sur ce produit peut entraîner une interférence radio que l'utilisateur sera tenu de rectifier.

Note.

- If you are measuring large currents or voltages or currents that contain high frequency components, take special care in dealing with mutual interference and noise when you wire the cables.
- Keep measurement cables as short as possible to minimize the loss between the circuit under measurement and the instrument.
- The thick lines on the wiring diagrams shown in sections 2.9 to 2.14 are the parts where the current flows. Use wires that are suitable for the current levels.
- To make accurate measurements of the voltage of the circuit under measurement, connect the measurement cable that is connected to the voltage input terminal to the circuit as closely as possible.
- To make accurate measurements, separate the measurement cables as far away from the ground wires and the instrument's case as possible to minimize static capacitance to the ground.
- To measure the apparent power and power factor more accurately on an unbalanced three-phase circuit, we
 recommend that you use a three-phase three-wire system with a three-voltage three-current method (3P3W; 3V3A or
 3P3W;3V3AR).

2.7 Assembling the Adapters for the Voltage Input Terminals

Voltage Input Terminals of the 760901, 760902, and 760903

When connecting a measurement cable to a voltage input terminal of this instrument, use the included B9317WB(black)/B9317WC(red) Safety Terminal Adapter Set or the 758923 Safety Terminal Adapter Set (sold separately). The assembly procedure for the 758931 (sold separately) is the same as that for the B9317WB/B9317WC.

B9317WB(black)/B9317WC(red) Safety Terminal Adapter Set

When assembling an adapter, check the wiring method in sections 2.9 to 2.11, and connect an appropriate cable.

Assembling the Safety Terminal Adapter

1. Remove approximately 10 mm of the covering from the end of the cable and pass the cable through the internal insulator.

Attachable cable Covering: max. diameter 3.9 mm Core wire: max. diameter 1.8 mm

2. Insert the tip of the cable into the plug. Fasten the cable in place using the supplied hexagonal wrench (B9317WD).

Insert the hexagonal wrench into the plug and tighten.

3. Insert the plug into the internal insulator.

4. Attach the external cover. Make sure that the cover does not come off.

Note.

Once you attach the cover, it is difficult to disassemble the safety terminal adapter. Use care when attaching the cover.

Below is an illustration of the adapter after it has been assembled.

Current Input Terminal of the 760901 (30 A Element)

When connecting a measurement cable to the 30 A current input terminal of this instrument, use the included A1650JZ(black)/A1651JZ(red) High Current Safety Terminal Adapter Set. The assembly procedure for the 761951 (sold separately) is the same as that for the A1650JZ/A1651JZ.

A1650JZ(black)/A1651JZ(red) High Current Safety Terminal Adapter Set

When assembling an adapter, check the wiring method in sections 2.10 to 2.12, and connect an appropriate cable.

Assembling the Safety Terminal Adapter

1. Connect a lug terminal appropriate for the cable thickness.

2. Cut the cap according to the cable thickness.

3. Run the cable through the cap and cover.

4. Pinch the cut-out area of the plug with a wrench, and fix the lug terminal to the plug with a screw (M6 bolt). Fasten the screw (M6 bolt) along with the included flat washer and spring washer.

5. Assemble the plug, cover, and cap together.

Note_

- Once you attach the cover, it is difficult to disassemble the safety terminal adapter. Use care when attaching the cover.
- The measurement cable, lug terminal, and wrench are not included. Please use your own.
- The screw (M6 bolt) is installed inside the instrument along with the flat washer and spring washer.

Below is an illustration of the adapter after it has been assembled.

Note.

Keep measurement cables as short as possible to minimize the loss between the circuit under measurement and the instrument.

Removing the Cover

If the screw (M6 bolt) comes loose, remove the cover, and then tighten the screw (M6 bolt).

Pinch the top and bottom of the cover tightly with your fingers to release the latch, and remove the cover. Be careful not to apply too much force causing the cover to break and causing injury to your hand.

Inserting the High Current Safety Terminal Adapter Set into an Element

- **1.** Hold the adapter so that the \blacktriangle mark is facing up.
- 2. Align the adapter's ▲ mark with the element's ▼ mark, and insert the adapter until its protrusion hits the element. The adapter will be locked in place with a click sound.

3. Pull lightly on the adapter to make sure that it does not come off.

Note.

If you insert the adapter when the adapter's ▲ mark is not aligned with the element's ▼ mark, the lock may not engage.

Removing the High Current Safety Terminal Adapter Set from an Element

- From the position in which the adapter's ▲ mark is aligned with the element's ▼ mark, rotate the adapter to the right or left by 45° to align the adapter protrusion with the element's ● mark.
- **2.** Push the adapter in until the adapter protrusion is in the element's rectangular indentation. The adapter lock will disengage.

Note.

- You need to firmly push the adapter in for the lock to disengage.
- · If the slide cover is shifted down, you cannot push the adapter in. Slide the cover up.

3. Pull the adapter out.

Note.

- Do not pull the adapter with excessive force. This can damage the adapter. If the adapter does not come off when you pull lightly on the adapter, the lock is not disengaged. Repeat steps 1 and 2 to disengage the lock.
- After disengaging the lock, be sure to remove the adapter from the element. If you keep the adapter connected to the element after disengaging the lock, the adapter may unintentionally come off the element later.

Current Input Terminal of the 760902 (5 A Element)

When connecting a measurement cable to the 5 A current input terminal of this instrument, use the included B8213YA(red)/B8213YB(black) Safety Terminal Adapter Set. The assembly procedure for the 761953 (sold separately) is the same as that for the B8213YA/B8213YB.

B8213YA(red)/B8213YB(black) Safety Terminal Adapter Set

When assembling an adapter, check the wiring method in sections 2.10 to 2.12, and connect an appropriate cable.

Assembling the Safety Terminal Adapter

1. Remove approximately 15 mm of the covering from the end of the cable and pass the cable through the internal insulator.

2. Insert the tip of the cable into the plug. Fasten the cable in place using the supplied hexagonal wrench (B9317WD).

3. Insert the plug into the internal insulator.

4. Attach the external cover. Make sure that the cover does not come off.

Note

Once you attach the cover, it is difficult to disassemble the safety terminal adapter. Use care when attaching the cover.

Below is an illustration of the adapter after it has been assembled.

Explanation

Wire the adapters that come with this instrument or the adapters and various sensors that are sold separately as shown below:

Wiring When Measuring Voltage

* Optional accessory model: 758931

Wiring When Measuring Current

2 Optional accessory model: 761953

2.7 Assembling the Adapters for the Voltage Input Terminals

Use the 751552 clamp-on probes (sold separately) as shown below.

* The current input terminal and external current sensor input terminal cannot be wired (used) simultaneously.

Use the current sensor that outputs voltage as shown below.

* The current input terminal and external current sensor input terminal on the same element cannot be wired (used) simultaneously.

Use the 720930 or 720931 clamp-on probe (sold separately) as shown below.

* The current sensor input terminal and current probe input terminal cannot be wired (used) simultaneously.

2.8

Wiring for Accurately Measuring a Singlephase Device

When you are wiring a single-phase device, there are the four patterns of terminal wiring positions shown in the following figures for wiring the voltage input and current input terminals. Depending on the terminal wiring positions, the effects of stray capacitance and the effects of the measured voltage and current amplitudes may become large. To make accurate measurements, refer to the items below when wiring the voltage input and current input terminals.

Effects of Stray Capacitance

When measuring a single-phase device, the effects of stray capacitance on measurement accuracy can be minimized by connecting the instrument's current input terminal to the side that is closest to the earth potential of the power supply (SOURCE).

Effects of the Measured Voltage and Current Amplitudes

· When the measured current is relatively small Connect the current measurement terminal between the voltage measurement terminal and the load.

Explanation

For details on the effects of stray capacitance and the effects of the measured voltage and current amplitudes, see appendix 3, "How to Make Accurate Measurements."

Guide for Selecting the Method Used to 2.9 Measure the Power

Select the measurement method from the table below according to the amplitude of the measured voltage or current. For details about a wiring method, see its corresponding section (indicated in the table).

Voltage Measurement Methods

		Voltage at 1000 V or less	Voltage exceeding 1000 V	
Voltage wiring	Direct input	→ section 2.10 (760901, 760902) → section 2.13 (760903)	Direct input is not possible.	
	VT (voltage transformer)	section 2.14 (760903)		

Current Measurement Methods (760901, 760902)

		Voltage at 1000 V or less			
Input	30 A(760901)	Current at 30 A or less	Current exceeding 30 A		Voltage exceeding
element	5 A(760902)	Current at 5 A or less	Current exceeding	j 5 A	1000 V
	Direct input	\rightarrow section 2.10*	Direct	nput is not possible.	
	Shunt-type current sensor	\rightarrow section	on 2.11 Shun cann		t-type current sensors ot be used.
Current wiring	Clamp-type current sensor (voltage output type)	\rightarrow section 2.11			
	Clamp-type current sensor (current output type)	\rightarrow section 2.12			
	CT (current transformer)	\rightarrow section 2.12			

* Voltage: 1000 V or less (maximum allowable voltage that can be measured) (rated voltage of EN61010-2-030)

Current Measurement Methods (760903)

The current cannot be input directly. Use an isolated current sensor to measure current.

- Connecting a current probe (voltage output type) or a clamp-type current sensor (voltage output type): section 2.13
- Connecting a current sensor (CT series, current output type): section 2.14

Notes when Replacing Other Power Meters with the Instrument

In three-phase three-wire systems (3P3W) and three-phase three-wire systems that use a three-voltage three-current method (3P3W; 3V3A or 3P3W; 3V3AR), the wiring system of the instrument may be different from that of another product (another digital power meter) depending on whether the reference voltage is set to S phase or T phase when measuring the line voltage (see appendix 2). To make accurate measurements, see the referenced sections in the selection guide above and check the wiring method of the corresponding three-phase three-wire system.

meter to this instrument without making changes to the three-phase three-wire systems.

meter to this instrument, you have to make changes to the three-phase three-wire systems.

For example, if you replace the WT2000 (used in a three-phase three-wire system) with this instrument and leave the wiring unchanged, the measured power of each element will be different between the WT2000 and this instrument. Refer to this manual and re-wire the system correctly. If you are replacing a power meter that is remotely controlled from a PC or the like, check not only the differences in the communication commands but also the differences in the Ethernet communication protocol.

2.10 Wiring the Circuit under Measurement for Direct Input (760901, 760902)

This section explains how to wire the measurement cable directly from the circuit under measurement to the voltage or current input terminal.

To prevent electric shock and damage to the instrument, follow the warnings given in section 2.5, "Precautions When Wiring the Circuit under Measurement."

Connecting to the Input Terminals

Voltage Input Terminals

- The terminals are safety banana jacks (female) that are 4 mm in diameter.
- · Only insert a safety terminal whose conductive parts are not exposed into a voltage input terminal.

()

If you are using the included B9317WB/B9317WC¹ Safety Terminal Adapter Set, see section 2.7.
 Voltage input terminals

1 Optional accessory model: 758931

Current Input Terminals

- The terminals on the 760901 30A High Accuracy Element are safety banana jacks (male) that are 6 mm in diameter.
- The terminals on the 760902 5A High Accuracy Element are safety banana jacks (male) that are 4 mm in diameter.
- Slide the input element's slide cover up, and insert a safety terminal whose conductive parts are not
 exposed into a current input terminal.

CAUTION

When you move the slide cover, be careful not to get your hand caught between the slide cover and the element.

French

ATTENTION

Lorsque vous déplacez le volet coulissant, veillez à ne pas vous coincer la main entre le volet coulissant et l'élément.

2

2.10 Wiring the Circuit under Measurement for Direct Input (760901, 760902)

• If you are using the included A1650JZ/A1651JZ² High Current Safety Terminal Adapter Set (for the 760901) or the B8213YA/B8213YB³ Current Safety Terminal Adapter Set (for the 760902), see section 2.7.

A1650JZ/A1651JZ² (for the 760901)

Current input terminals

Note_

When connecting a measurement cable from an external current sensor to an external current sensor input terminal, remove the cables connected to the current input terminals.

Connecting to This Instrument

In the figures that follow, the input elements of this instrument, voltage input terminals, and current input terminals are shown simplified as follows.

The wiring examples shown below are examples of the following wiring systems in which the specified input elements have been wired. To wire other input elements, substitute the numbers in the figures with the appropriate element numbers.

- · Single-phase two-wire systems (1P2W): Input element 1
- Single-phase three-wire system (1P3W) and three-phase three-wire system (3P3W): Input elements 1 and 2
- Three-phase three-wire system that uses a three-voltage three-current method (3P3W; 3V3A or 3P3W;3V3AR) and three-phase four-wire system (3P4W): Input elements 1 to 3

CAUTION

The thick lines on the wiring diagrams are the parts where the current flows. Use wires that are suitable for the current levels.

French

ATTENTION

Les lignes épaisses sur les schémas de câblage illustrent l'acheminement du courant. Utiliser des fils qui conviennent aux niveaux de courant.

Wiring Examples of Single-Phase Two-Wire Systems (1P2W)

If seven input elements are available, seven single-phase two-wire systems can be wired. For information about deciding which of the wiring systems shown below you should select, see section 2.8.

Wiring Example of a Single-Phase Three-Wire System (1P3W)

If six or more input elements are available, three single-phase three-wire systems can be wired.

Wiring Example of a Three-Phase Three-Wire System (3P3W)

If six or more input elements are available, three three-phase three-wire systems can be wired.

Wiring Example of a Three-Phase Three-Wire System That Uses a Three-Voltage Three-Current Method (3P3W; 3V3A)

If six or more input elements are available, two three-phase three-wire systems that use a threevoltage three-current method can be wired.

Wiring Example of a Three-Phase Three-Wire System That Uses a Three-Voltage Three-Current Method (3P3W; 3V3AR)

If six or more input elements are available, two three-phase three-wire systems that use a threevoltage three-current method can be wired.

When this wiring system is compared with the wiring of 3P3W (3V3A), the connection direction of input element 1's voltage input U1 is reversed. Connect U and ± of U1, U2, and U3 so as to create a circular flow. If the three-phase load is balanced in this wiring system, the line voltage of each phase will be 120°, but because the U1 connection is reversed with respect to the direction of the current, power P1 will be negative. (The polarity of power P1 will be displayed reversed with respect to the actual polarity.)

Wiring Example of a Three-Phase Four-Wire System (3P4W)

If six or more input elements are available, two three-phase four-wire systems can be wired.

For details about the relationship between the wiring system and how measured and computed values are determined, see appendix 1, "Symbols and Determination of Measurement Functions."

2.11 Wiring the Circuit under Measurement When Using Current Sensors (760901, 760902)

To prevent electric shock and damage to the instrument, follow the warnings given in section 2.5, "Precautions When Wiring the Circuit under Measurement."

If the maximum current of the circuit under measurement exceeds the maximum range of the input elements, you can measure the current of the circuit under measurement by connecting an external current sensor to the external current sensor input terminal.

- 30A High Accuracy Element (760901): When the maximum current exceeds 30 Arms
- 5A High Accuracy Element (760902): When the maximum current exceeds 5 Arms

Current Sensor Output Type

Voltage Output

Refer to the wiring examples in this section when using a shunt-type current sensor or a clamp-type current sensor that outputs voltage.

Current Output

If you are using a clamp-type current sensor that outputs current, see section 2.12.

Connecting to the Input Terminals

Voltage Input Terminals

- The terminals are safety banana jacks (female) that are 4 mm in diameter.
- Only insert a safety terminal whose conductive parts are not exposed into a voltage input terminal.
- If you are using the included B9317WB/B9317WC¹ Safety Terminal Adapter Set, see section 2.7.
 - 1 Optional accessory model: 758931

External Current Sensor Input Terminal

- The terminal is an isolated BNC.
- Slide the input element's slide cover down, and connect an external current sensor cable with a BNC (B9284LK, sold separately) to an external current sensor input terminal.

CAUTION

When you move the slide cover, be careful not to get your hand caught between the slide cover and the element.

French

ATTENTION

Lorsque vous déplacez le volet coulissant, veillez à ne pas vous coincer la main entre le volet coulissant et l'élément.

2

Measurement Preparation

2.11 Wiring the Circuit under Measurement When Using Current Sensors (760901, 760902)

Note.

- When connecting a measurement cable from an external current sensor to an external current sensor input terminal, remove the cables connected to the current input terminals.
- Make sure that you have the polarities correct when you make connections. If the polarity is reversed, the polarity of the measurement current will be reversed, and you will not be able to make correct measurements. Be especially careful when connecting clamp-type current sensors to the circuit under measurement, because it is easy to reverse the connection.
- Note that the frequency and phase characteristics of the current sensor affect the measured data.
- To measure the apparent power and power factor more accurately on an unbalanced three-phase circuit, we recommend that you use a three-phase three-wire system that uses a three-voltage three-current method (3P3W; 3V3A or 3P3W; 3V3AR).
Using Shunt-type Current Sensors and Clamp-on Probes

Connecting an External Current Sensor Cable

To minimize error when using shunt-type current sensors, follow the guidelines below when connecting the external current sensor cable.

- Connect the shielded wire of the external current sensor cable to the L side of the shunt output terminal (OUT).
- Minimize the area of the space between the wires connecting the current sensor to the external current sensor cable. This reduces the effects of the lines of magnetic force (which are caused by the measurement current) and the external noise that enter the space.

Shunt-type current sensor

Position on the (Grounded) Circuit under Measurement That You Should Connect the Shunt-type Current Sensor To

Connect the shunt-type current sensor to the power earth ground as shown in the figure below. If you have to connect the sensor to the non-earth side, use a wire that is thicker than AWG18 (with a conductive cross-sectional area of approximately 1 mm²) between the sensor and the instrument to reduce the effects of common mode voltage. Take safety and error reduction into consideration when constructing external current sensor cables.

Ungrounded Measurement Circuits

When the circuit under measurement is not grounded and the signal is high in frequency or large in power, the effects of the inductance of the shunt-type current sensor cable become large. In this case, use an isolation sensor (CT, DC-CT, or clamp) to perform measurements.

Connecting to This Instrument

In the figures on the following pages, the input elements of this instrument, voltage input terminals, and external current sensor input terminals are shown simplified as follows.

The following wiring examples are for connecting shunt-type current sensors. When connecting a clamp-type current sensor that outputs voltage, substitute shunt-type current sensors with clamp-type current sensors.

The wiring examples shown below are examples of the following wiring systems in which the specified input elements have been wired. To wire other input elements, substitute the numbers in the figures with the appropriate element numbers.

- · Single-phase two-wire systems (1P2W): Input element 1
- Single-phase three-wire system (1P3W) and three-phase three-wire system (3P3W): Input elements 1 and 2
- Three-phase three-wire system that uses a three-voltage three-current method (3P3W; 3V3A or 3P3W;3V3AR) and three-phase four-wire system (3P4W): Input elements 1 to 3

CAUTION

The thick lines on the wiring diagrams are the parts where the current flows. Use wires that are suitable for the current levels.

French

ATTENTION

Les lignes épaisses sur les schémas de câblage illustrent l'acheminement du courant. Utiliser des fils qui conviennent aux niveaux de courant.

Wiring Example of a Single-Phase, Two-Wire System (1P2W) with a Shunt-Type Current Sensor

Wiring Example of a Single-Phase Three-Wire System (1P3W) with Shunt-Type Current Sensors

Wiring Example of a Three-Phase Three-Wire System (3P3W) with Shunt-Type Current Sensors

Wiring Example of a Three-Phase Three-Wire System That Uses a Three-Voltage Three-Current Method (3P3W; 3V3A) with Shunt-Type Current Sensors

Wiring Example of a Three-Phase Three-Wire System That Uses a Three-Voltage Three-Current Method (3P3W; 3V3AR) with Shunt-Type Current Sensors

Wiring Example of a Three-Phase Four-Wire System (3P4W) with Shunt-Type Current Sensors

Note.

For details about the relationship between the wiring system and how measured and computed values are determined, see appendix 1, "Symbols and Determination of Measurement Functions."

2.12 Wiring the Circuit under Measurement When Using Voltage and Current Transformers (760901, 760902)

This section explains how to wire measurement cables from external voltage transformers¹ or current transformers² to the voltage or current input terminals of elements. Also refer to this section when wiring clamp-type current sensors that output current.

- 1 VT(voltage transformer)
- 2 CT(current transformer)

To prevent electric shock and damage to the instrument, follow the warnings given in section 2.5, "Precautions When Wiring the Circuit under Measurement."

Voltage Measurement

When the maximum voltage of the circuit under measurement exceeds 1000 Vrms, you can perform measurements by connecting an external VT to the voltage input terminal.

Current Measurement

If the maximum current of the circuit under measurement exceeds the maximum range of the input elements, you can measure the current of the circuit under measurement by connecting an external CT, or a clamp-type sensor that outputs current, to the current input terminal.

- 30A High Accuracy Element (760901): When the maximum current exceeds 30 Arms
- 5A High Accuracy Element (760902): When the maximum current exceeds 5 Arms

Connecting to the Input Terminals

Voltage Input Terminals

- The terminals are safety banana jacks (female) that are 4 mm in diameter.
- · Only insert a safety terminal whose conductive parts are not exposed into a voltage input terminal.
- If you are using the included B9317WB/B9317WC¹ Safety Terminal Adapter Set, see section 2.7.
 1 Optional accessory model: 758931

Current Input Terminals

- The terminals on the 760901 30A High Accuracy Element are safety banana jacks (male) that are 6 mm in diameter.
- The terminals on the 760902 5A High Accuracy Element are safety banana jacks (male) that are 4 mm in diameter.
- Slide the input element's slide cover up, and insert a safety terminal whose conductive parts are not exposed into a current input terminal.

CAUTION

When you move the slide cover, be careful not to get your hand caught between the slide cover and the element.

French

ATTENTION

Lorsque vous déplacez le volet coulissant, veillez à ne pas vous coincer la main entre le volet coulissant et l'élément.

2.12 Wiring the Circuit under Measurement When Using Voltage and Current Transformers (760901, 760902)

- If you are using the included A1650JZ/A1651JZ² High Current Safety Terminal Adapter Set (for the 760901) or the B8213YA/B8213YB³ Safety Terminal Adapter Set (for the 760902), see section 2.7.
 - 2 Optional accessory model: 761951
 - 3 Optional accessory model: 761953

WARNING

Do not connect a current transformer without protection.

French

AVERTISSEMENT

Ne pas brancher de transformateur de courant sans protection.

Note_

When connecting a measurement cable from an external current sensor to an external current sensor input terminal, remove the cables connected to the current input terminals.

General VT and CT Handling Precautions

- Do not short the secondary side of a VT. Doing so may damage it.
- · Do not short the secondary side of a CT. Doing so may damage it.

Also, follow the VT or CT handling precautions in the manual that comes with the VT or CT that you are using.

Note.

- The thick lines on the wiring diagrams are the parts where the current flows. Use wires that are suitable for the current levels.
- Make sure that you have the polarities correct when you make connections. If the polarity is reversed, the polarity of the measurement current will be reversed, and you will not be able to make correct measurements. Be especially careful when connecting clamp-type current sensors to the circuit under measurement, because it is easy to reverse the connection.
- · Note that the frequency and phase characteristics of the VT or CT affect the measured data.
- For safety reasons, the common terminals (+/–) of the secondary side of the VT and CT are grounded in the wiring diagrams in this section. However, the necessity of grounding and the grounding location (ground near the VT or CT or ground near the power meter) vary depending on the item under measurement.
- To measure the apparent power and power factor more accurately on an unbalanced three-phase circuit, we recommend that you use a three-phase three-wire system that uses a three-voltage three-current method (3P3W; 3V3A or 3P3W; 3V3AR).

2.12 Wiring the Circuit under Measurement When Using Voltage and Current Transformers (760901, 760902)

Connecting to This Instrument

In the wiring examples that follow, the input elements of this instrument, voltage input terminals, and current input terminals are shown simplified as follows.

Also, the wiring examples are for when a CT is connected. When connecting a pass-through CT or a clamp-type current sensor that outputs current, substitute the CT with the pass-through CT or clamp-type current sensor.

Some CTs (including pass-through types) require load resistance and power supplies. Check your CT's manual.

The wiring examples shown below are examples of the following wiring systems in which the specified input elements have been wired.

To wire other input elements, substitute the numbers in the figures with the appropriate element numbers.

- Single-phase two-wire systems (1P2W): Input element 1
- Single-phase three-wire system (1P3W) and three-phase three-wire system (3P3W): Input elements 1 and 2
- Three-phase three-wire system that uses a three-voltage three-current method (3P3W; 3V3A or 3P3W;3V3AR) and three-phase four-wire system (3P4W): Input elements 1 to 3

CAUTION

The thick lines on the wiring diagrams are the parts where the current flows. Use wires that are suitable for the current levels.

French

ATTENTION

Les lignes épaisses sur les schémas de câblage illustrent l'acheminement du courant. Utiliser des fils qui conviennent aux niveaux de courant.

Wiring Example of Single-Phase Two-Wire Systems (1P2W) with a VT and CT

Wiring Example of a Single-Phase Three-Wire System (1P3W) with VTs and CTs

Wiring Example of a Three-Phase Three-Wire System (3P3W) with VTs and CTs

Wiring Example of a Three-Phase Three-Wire System That Uses a Three-Voltage Three-Current Method (3P3W; 3V3A) with VTs and CTs

Wiring Example of a Three-Phase Three-Wire System That Uses a Three-Voltage Three-Current Method (3P3W; 3V3AR) with VTs and CTs

Wiring Example of a Three-Phase Four-Wire System (3P4W) with VTs and CTs

For details about the relationship between the wiring system and how measured and computed values are determined, see appendix 1, "Symbols and Determination of Measurement Functions."

2.13 Wiring the Circuit under Measurement When Using Current Probes (760903)

To prevent electric shock and damage to the instrument, follow the warnings given in section 2.5, "Precautions When Wiring the Circuit under Measurement."

You can connect a current probe to the current probe input terminal to measure the current in the circuit under measurement.

Connecting to the Input Terminals

Voltage Input Terminals

- The terminals are safety banana jacks (female) that are 4 mm in diameter.
- · Only insert a safety terminal whose conductive parts are not exposed into a voltage input terminal.
- If you are using the included B9317WB/B9317WC¹ Safety Terminal Adapter Set, see section 2.7.
 - 1 Optional accessory model: 758931

Current Probe Input Terminal and Current Probe Power Supply Terminal

- The current probe input terminal is a BNC connector.
- Raise the slide cover of the input element, and connect the current probe to the current probe input terminal.
- If necessary, connect the power supply terminal of the current probe to the current probe power supply terminal. The current probe power supply terminal is a dedicated connector.

CAUTION

When you move the slide cover, be careful not to get your hand caught between the slide cover and the element.

French

ATTENTION

Lorsque vous déplacez le couvercle coulissant, veillez à ne pas vous coincer la main entre le couvercle coulissant et l'élément.

Specifications of the Current Probe Power Supply Terminal

Specifications
Dedicated connector
±12 V DC
0.8 A
Total output when multiple elements are used
Sensor power: 8 A
•Probe power supply: The total absolute value of the positive and negative currents of
the power supply is included in the positive sensor power supply current.

2.13 Wiring the Circuit under Measurement When Using Current Probes (760903)

- When you connect a current probe to the current probe power supply terminal, be careful not to exceed the output current above. If exceeded, power supply to the current probe will stop due to the activation of the power supply overcurrent protection circuit of this instrument.
- If Terminal is set to Sensor, power supply to the current probe will stop.

Note.

- If you want to connect a current probe to the current probe input terminal, remove the cable from the current sensor connection terminal.
- Make sure that you have the polarities correct when you make connections. If the polarity is reversed, the polarity of the measurement current will be reversed, and you will not be able to make correct measurements. Be especially careful when connecting clamp-type current sensors to the circuit under measurement, because it is easy to reverse the connection.
- Note that the frequency and phase characteristics of the current probe affect the measured data.
- To measure the apparent power and power factor more accurately on an unbalanced three-phase circuit, we recommend that you use a three-phase three-wire system that uses a three-voltage three-current method (3P3W; 3V3A or 3P3W; 3V3AR).
- Only use the standard accessory probes for this instrument. If you use other probes, the specifications of this instrument may no longer be met.

Connecting to This Instrument

In the figures on the following pages, the input elements, voltage input terminals, and current probe input terminals of this instrument are shown simplified as follows.

Input element

The wiring examples shown below are examples of the following wiring systems in which the specified input elements have been wired. To wire other input elements, substitute the numbers in the figures with the appropriate element numbers.

- · Single-phase two-wire systems (1P2W): Input element 1
- Single-phase three-wire system (1P3W) and three-phase three-wire system (3P3W): Input elements 1 and 2
- Three-phase three-wire system that uses a three-voltage three-current method (3P3W; 3V3A or 3P3W;3V3AR) and three-phase four-wire system (3P4W): Input elements 1 to 3

CAUTION

The thick lines on the wiring diagrams are the parts where the current flows. Use wires that are suitable for the current levels.

French

ATTENTION

Les lignes épaisses sur les schémas de câblage illustrent l'acheminement du courant. Utiliser des fils qui conviennent aux niveaux de courant.

Wiring Example of a Single-Phase, Two-Wire System (1P2W) with a Current Probe

Wiring Example of a Single-Phase Three-Wire System (1P3W) with Current Probes

Wiring Example of a Three-Phase Three-Wire System (3P3W) with Current Probes

Wiring Example of a Three-Phase Three-Wire System That Uses a Three-Voltage Three-Current Method (3P3W; 3V3A) with Current Probes

Wiring Example of a Three-Phase Three-Wire System That Uses a Three-Voltage Three-Current Method (3P3W; 3V3AR) with Current Probes

Wiring Example of a Three-Phase Four-Wire System (3P4W) with Current Probes

Note.

For details about the relationship between the wiring system and how measured and computed values are determined, see appendix 1, "Symbols and Determination of Measurement Functions."

2.14 Wiring the Circuit under Measurement When Using a Voltage Transformer or Current Sensor (CT Series) (760903)

This section explains how to wire measurement cables from external voltage transformers* or current sensors (CT series) to the voltage or current input terminals of elements. 1 VT(voltage transformer)

To prevent electric shock and damage to the instrument, follow the warnings given in section 2.5, "Precautions When Wiring the Circuit under Measurement."

Voltage Measurement

When the maximum voltage of the circuit under measurement exceeds 1000 Vrms, you can perform measurements by connecting an external VT to the voltage input terminal.

Current Measurement

You can perform measurements by connecting a current sensor (CT series) and a cable for current sensor element to the current sensor connection terminal.

Connecting to the Input Terminals

Voltage Input Terminals

- The terminals are safety banana jacks (female) that are 4 mm in diameter.
- · Only insert a safety terminal whose conductive parts are not exposed into a voltage input terminal.
- If you are using the included B9317WB/B9317WC¹ Safety Terminal Adapter Set, see section 2.7.
 1 Optional accessory model: 758931

Current Sensor Connection Terminal

- The terminal is a D-sub9 pin (Socket).
- Slide the input element's slide cover down, and connect a cable for current sensor element to the current sensor connection terminal.

CAUTION

When you move the slide cover, be careful not to get your hand caught between the slide cover and the element.

French

ATTENTION

Lorsque vous déplacez le couvercle coulissant, veillez à ne pas vous coincer la main entre le couvercle coulissant et l'élément.

Specifications of the Current Sensor Connection Terminal

Item	Specifications	
Connector type	D-sub9 pin (Socket)	

A YOKOGAWA CT series AC/DC current sensor can be connected by using a cable for current sensor element (761954, 761955, 761956), sold separately. For the current sensor (CT series) models, see the next page.

- If you use accessories other than those specified in this document, YOKOGAWA assumes no responsibility or liability for the specifications or any failures that occur.
- The input resistance and CT ratio are set automatically by selecting, with the CT Preset setting, the model of the current sensor (CT series) that you are using.
- When the CT Preset is set to Custom, the input resistance can be set to 1 Ω, 1.5 Ω, 5 Ω, or 10 Ω.
 For the allowable input, see the instantaneous maximum allowable input and continuous maximum allowable input in section 6.17.
- When the input resistance settings are being changed, when the overcurrent protection is active, or when Terminal is set to Probe, the input resistance is bypassed.

AC/DC Current Sensors That Can Be Connected Using a Cable for Current Sensor Element (761954, 761955, 761956)

AC/DC current sensors (CT Series) that can be connected using a cable for current sensor element (761954, 761955, 761956) are the following models:

CT2000A, CT1000A, CT1000, CT200, CT6

When you connect one of the above current sensors (CT series) to the current sensor connection terminal, be careful not to exceed the output current given on page 2-53. If exceeded, power supply to the CT series will stop due to the activation of the power supply overcurrent protection circuit of this instrument.

When using current sensors (CT series), the number of current sensors (CT series) that can be used is limited by the measured current (current measured with current sensors (CT series)).

The measured current versus consumed current characteristics of current sensors (CT Series) that can be connected to the instrument are indicated below.

Measured current and current consumption of the CT2000A(example of characteristics)

Measured current and current consumption of the CT1000(example of characteristics)

Measured current and current consumption of the CT60(example of characteristics)

Measured current and current consumption of the CT1000A(example of characteristics)

Measured current and current consumption of the CT200(example of characteristics)

2.14 Wiring the Circuit under Measurement When Using a Voltage Transformer or Current Sensor (CT Series) (760903)

Item		CT2000A	CT1000A	CT1000	CT200	СТ60
Current Rating		DC: 0 to 2000 A	DC: 0 to 1000 A	DC: 0 to 1000 A	DC: 0 to 200 A	DC: 0 to 60 A
		AC: 3000 Apeak	AC: 1000 Arms,	AC: 1000 Apeak	AC: 200 Apeak	AC: 60 Apeak
			1500 Apeak			
Output Current		Primary rated	Primary rated	Primary rated	Primary rated	Primary rated
		current at 2000 A	current at 1000 A	current at 1000 A	current at 200 A	current at 60 A
		is 1 A	is 666.6 mA	is 666.6 mA	is 200.0 mA	is 100.0 mA
Current T	ransformation Ratio	2000 : 1	1500 : 1	1500 : 1	1000 : 1	600 : 1
760903 CT Ratio*		2000	1500	1500	1000	600
	Input Resistance*	1 Ω	1Ω	1.5 Ω	5 Ω	10 Ω

* When a CT Preset is used

For the detailed specifications of the current sensors (CT series), see the manual of the relevant current sensor.

WARNING

Do not connect a current transformer without protection.

CAUTION

- Do not use cables other than the cable for current sensor element. If you do, the instrument or other devices may malfunction.
- Before connecting or disconnecting a current sensor (CT series) from the instrument, turn the instrument off. Connecting or disconnecting the current sensor (CT series) while the instrument is on can damage the instrument or the current sensor (CT series).

French

AVERTISSEMENT

Ne pas brancher de transformateur de courant sans protection.

ATTENTION

- N'utilisez pas de câbles autres que le câble pour l'élément de capteur de courant. Dans le cas contraire, l'instrument ou d'autres appareils peuvent ne pas fonctionner correctement.
- Avant de connecter ou de déconnecter un capteur de courant (série CT) à/de l'instrument, mettez l'instrument hors tension. Connecter ou déconnecter le capteur de courant (série CT) alors que l'instrument est allumé peut endommager l'instrument ou le capteur de courant (série CT).

Note.

- If you want to connect a cable to the current sensor connection terminal, remove the cables from the current probe input terminal and current probe power supply terminal.
- Warm up the YOKOGAWA current sensors (CT Series) for at least 30 minutes without input.

Connecting a Current Sensor (CT Series) with a Cable for Current Sensor Element (761954, 761955, 761956)

Connect the element, cable, and current sensor (CT series) as follows:

Connecting the Cable

When you connect a cable to the element and current sensor, be sure to tighten the screws by hand to ensure that the cable is connected securely. If the screws are too tight when loosening them, use a flat-blade screwdriver.

Note

- Do not install the dedicated cable outdoors or in locations subject to rain or water.
- Arrange the dedicated cable so that it is not affected by vibration. If necessary, secure the cable in place. Make sure it does not make contact with conductors such as buses or bars that are not isolated.
- The minimum bend radius of the dedicated cable is 100 mm. If you use the cable at a radius less than 100 mm, the characteristics may degrade. Arrange the cable so that the radius is no less than 100 mm.
- Stop using the dedicated cable if the cable sheath is damaged and the internal conductor is exposed.

CAUTION

The temperature range of the dedicated cable is -40 to +85°C. When handling the dedicated cable (especially the connector area) after measuring hot or cold temperatures, be careful of injuries and burns.

French

ATTENTION

La plage de température du câble dédié est de -40 à +85 °C. Lorsque vous manipulez le câble dédié (en particulier la zone du connecteur) après avoir mesuré des températures chaudes ou froides, veillez à ne pas vous blesser ou à ne pas vous brûler.

Pinout and Signal Assignments of the Current Sensor Connection Terminal

The pinout and signal names of the current sensor (CT series) compatible with the current sensor connection terminal are shown below.

760	903	CT	CT series						
Current Sensor		or CT2000A		CT1000A		CT1000/CT200/CT60			
Terminal									
Pin	Signal	Pin	Signal	Pin	Signal	Pin	Signal		
No.	_	No.	-	No.		No.	_		
1	RETURN	1	Output Return	1	OUTPUT RETURN	1	Output Return		
2	N.C.	2	[Do not connect]	2	(DON'T USE)	2	[Do not connect]		
3	GND (ST)	3	GND Status	3	GND STATUS	3	[Do not connect]		
4	GND	4	0 V Power Supply Input	4	0 V	4	0 V Power Supply Input		
5	V-	5	-15 V Power Supply Input	5	-15 V DC	5	-15 V Power Supply Input		
6	INPUT	6	Secondary Signal Output	6	OUTPUT	6	Secondary Signal Output		
7	CT-ID	7	[Do not connect]	7	(DON'T USE)	7	[Do not connect]		
8	ST	8	Operation Status	8	NORMAL OP STATUS	8	[Do not connect]		
9	V+	9	+15 V Power Supply Input	9	+15 V DC	9	+15 V Power Supply Input		

Note_

- The connector shell of the current sensor connection terminal is connected to the WT5000 case.
- GND (pin 4) and GND (ST) (pin 3) of the current sensor connection terminal are connected to the WT5000 case inside the 760903.
- For the detailed specifications of the current sensors (CT series), see the manual of the relevant current sensor.
- The cable for current sensor element (sold separately) is a straight cable.

Sensor Current Input (INPUT, RETURN)

When a current sensor (CT series) is connected to the 760903 (current sensor element), the current from the current sensor (CT series) can be measured.

CAUTION

Do not apply more than ± 10 V between the sensor current input pins (INPUT, RETURN) and the WT5000 case. If you do, the instrument may malfunction.

French

ATTENTION

N'appliquez pas plus de ± 10 V entre les broches d'entrée de courant du capteur (ENTRÉE, RETOUR) et le boîtier du WT5000. Dans le cas contraire, l'instrument peut présenter un dysfonctionnement.

Item	Specifications
Pin name	INPUT (pin 6), RETURN (pin 1)
Input type	See section 6.17 (between INPUT and RETURN).
Input impedance	See section 6.17 (between INPUT and RETURN).
Maximum allowable input (continuous/ discontinuous)	See section 6.17 (between INPUT and RETURN).
Impedance to ground	Approx. 2 k Ω (when the power supply is stopped, when a current sensor (CT series) is not connected) (Between INPUT and WT5000) (Between RETURN and WT5000)
Maximum applied voltage	±10 V
to ground	(Between INPUT and WT5000)
	(Between RETURN and WT5000)

Note.

- · RETURN and GND need to be connected on the current sensor end.
- If they are not connected, the sensor current input pin may be subject to the voltage to ground and may not meet the measurement performance specifications.
- If an overcurrent is detected in the sensor current input, the protection function will be activated, and the input impedance between INPUT and RETURN will be approximately 0 Ω.

Sensor Power Output (V+, V-)

When a current sensor (CT series) is connected to the 760903 (current sensor element), power can be supplied to the current sensor (CT series).

CAUTION

- Do not short between the sensor power output pins (V+, V-) and the WT5000 case. If you
 do, the instrument may malfunction.
- Do not short the V+ and V- sensor power output pins. If you do, the instrument may malfunction.
- Do not apply external voltage to the sensor power output pins (V+, V-). If you do, the instrument may malfunction.

French

ATTENTION

- Ne court-circuitez pas entre les broches de sortie d'alimentation du capteur (V+, V-) et le boîtier WT5000. Dans le cas contraire, l'instrument peut présenter un dysfonctionnement.
- Ne court-circuitez pas les broches de sortie d'alimentation du capteur V+ et V-. Dans le cas contraire, l'instrument peut présenter un dysfonctionnement.
- N'appliquez pas de tension externe aux broches de sortie d'alimentation du capteur (V +, V-). Dans le cas contraire, l'instrument peut présenter un dysfonctionnement.

Item	Specifications
Pin name	V+ (pin 9), V- (pin 5)
Output voltage	+15 V (between V+ and GND)
	-15 V (between V- and GND)
Output current	1.8 A
	Sensor power: 8 A
	 Probe power supply: The total absolute value of the positive and negative currents of the power supply is included in the positive sensor power supply current.

Note.

If an overcurrent is detected in the sensor power output, the protection function will be activated, and the V+ and V- power supply will stop. In addition, the input impedance between the INPUT and RETURN pins of the sensor current input will be approximately 0 Ω .

Sensor Status Input (ST)

When a current sensor (CT series) is connected to the 760903 (current sensor element), the status of the current sensor (CT series) is detected.

CAUTION

Do not apply a voltage outside the 0 V to 5 V range to the sensor status input pin. If you do, the instrument may malfunction.

French

ATTENTION

N'appliquez pas de tension en dehors de la plage 0 V à 5 V à la broche d'entrée d'état du capteur. Dans le cas contraire, l'instrument peut présenter un dysfonctionnement.

Item	Specifications	
Pin name	ST (pin 8)	
Input level	0 V to 5 V	
Logic	Normal status: Low	

Note.

When the current sensor (CT series) status is normal and the power supply to the current sensor (CT series) is normal (±80 mA or more is being supplied), the sensor status indicator displays Connection Power Supply.

If the above conditions are not met, the sensor status indicator displays Non-Connection.

• If ST is not connected, connection to the current sensor (CT series) cannot be detected.

Sensor ID Input (CT-ID)

If the instrument is restarted when a current sensor (CT series) is connected to the 760903 (current sensor element), the instrument detects the CT-ID (model) of the current sensor (CT series). The detected CT-ID is displayed in the detail window of the sensor status indicator.

CAUTION

Do not apply a voltage outside the 0 V to 3.3 V range to the sensor ID input pin. If you do, the instrument may malfunction.

French

ATTENTION

N'appliquez pas de tension en dehors de la plage 0 V à 3,3 V à la broche d'entrée d'identification du capteur. Dans le cas contraire, l'instrument peut présenter un dysfonctionnement.

Item	Specifications	
Pin name	CT-ID (pin7)	
Input level	0 V to 3.3 V	

Note_

- Unknown is displayed when a CT1000, CT200, or CT60 is connected because they cannot be detected.
- If CT-ID is not connected, the CT-ID detection of current sensor (CT series) is not possible.

Input Circuit of the Sensor ID Input (CT-ID)

Ground (GND, GND(ST))

These are ground pins.

The ground pins are connected to the WT5000 case inside the 760903.

CAUTION

Do not apply external voltage to the ground pins. If you do, the instrument or other devices may malfunction.

French

ATTENTION

N'appliquez pas de tension externe aux broches de terre. Dans le cas contraire, l'instrument ou d'autres appareils peuvent ne pas fonctionner correctement.

Item	Specifications
Pin name	GND (pin 4), GND (ST) (pin 3)

N.C. (N.C.)

This is a no-connection pin.

CAUTION

- Do not connect anything to the N.C. pin.
- Do not apply external voltage to the N.C. pin. If you do, the instrument may malfunction.

French

ATTENTION

- Ne connectez rien à la broche N.C.
- N'appliquez pas de tension externe à la broche N.C. Dans le cas contraire, l'instrument peut présenter un dysfonctionnement.

Item	Specifications
Pin name	N.C. (pin 2)

Current Sensor Status Display

The status of power supply to the current sensor (CT series) is displayed in the sensor status indicator at the upper left of the screen.

Current sensor status

Current sensor status	Description
(Non-CS Element)	An input element other than the 760903 is installed.
(Non-Connection)	Terminal is set to Sensor, but a current sensor (CT Series) is not connected.
(Connection Power Supply)	Terminal is set to Sensor, a current sensor (CT series) is connected, and power is supplied to it. You can also check the presence of a power supply with the current sensor's (CT series') NORMAL OPERATION indicator.
(Over Current/Total Over Current)	Overcurrent is detected. For details, check the displayed error message.
•P• (Probe)	Terminal is set to Probe.

If an overcurrent is detected in any of the current sensor elements, the current sensor status is displayed as follows, and the power supply output to all the sensors and probes is stopped.

🔀 Over Current

If the total output current becomes excessive and an overcurrent is detected, the current sensor status is displayed as follows, and the power supply to all the sensors and probes stops.

🔀 Total Over Current

To resume the power supply, remove the cause of the overcurrent, and then restart the instrument. If the sensor status indicator still indicates Over Current/Total Over Current after the instrument is restarted, the instrument needs to be repaired.

Detecting the CT Series

If the instrument is restarted when a current sensor (CT series) is connected to the 760903 (current sensor element), the instrument detects the CT-ID (model) of the current sensor (CT series). The detected CT-ID is displayed in the detail window of the sensor status indicator.

- In the case of a CT1000, CT200, or CT60, Unknown is displayed because they are not detectable.
- Do not connect a signal wire to the sensor ID pin because it can cause detection errors.

Configuration after Connection

Set Terminal and CT Preset according to the instructions in section 2.2, "Setting the Voltage Range and Current Range," in the User's Manual. If the configuration is not appropriate, measured values will not be read correctly.

General VT and CT Handling Precautions

• Do not short the secondary side of a VT. Doing so may damage it.

Do not short the secondary side of a CT. Doing so may damage it.

Also, follow the VT or CT handling precautions in the manual that comes with the VT or CT that you are using.

Note.

- The thick lines on the wiring diagrams are the parts where the current flows. Use wires that are suitable for the current levels.
- Make sure that you have the polarities correct when you make connections. If the polarity is reversed, the polarity of the measurement current will be reversed, and you will not be able to make correct measurements.
- Note that the frequency and phase characteristics of the VT or CT affect the measured data.
- For safety reasons, the common terminals (+/-) of the secondary side of the VT is grounded in the wiring diagrams in this section. However, the necessity of grounding and the grounding location (ground near the VT or ground near the power meter) vary depending on the item under measurement.
- To measure the apparent power and power factor more accurately on an unbalanced three-phase circuit, we recommend that you use a three-phase three-wire system that uses a three-voltage three-current method (3P3W; 3V3A or 3P3W; 3V3AR).

Connecting to This Instrument

In the wiring examples that follow, the input elements of this instrument, voltage input terminals, and current sensor connection terminals are shown simplified as follows.

The wiring examples shown below are examples of the following wiring systems in which the specified input elements have been wired.

To wire other input elements, substitute the numbers in the figures with the appropriate element numbers.

- Single-phase two-wire systems (1P2W): Input element 1
- Single-phase three-wire system (1P3W) and three-phase three-wire system (3P3W): Input elements 1 and 2
- Three-phase three-wire system that uses a three-voltage three-current method (3P3W; 3V3A or 3P3W;3V3AR) and three-phase four-wire system (3P4W): Input elements 1 to 3

CAUTION

The thick lines on the wiring diagrams are the parts where the current flows. Use wires that are suitable for the current levels.

French

ATTENTION

Les lignes épaisses sur les schémas de câblage illustrent l'acheminement du courant. Utiliser des fils qui conviennent aux niveaux de courant.

Wiring Example of Single-Phase Two-Wire Systems (1P2W) with a VT and Current Sensor (CT Series)

Wiring Example of a Single-Phase Three-Wire System (1P3W) with VTs and Current Sensors (CT Series)

Wiring Example of a Three-Phase Three-Wire System (3P3W) with VTs and Current Sensors (CT Series)

Wiring Example of a Three-Phase Three-Wire System That Uses a Three-Voltage Three-Current Method (3P3W; 3V3A) with VTs and Current Sensors (CT Series)

Wiring Example of a Three-Phase Three-Wire System That Uses a Three-Voltage Three-Current Method (3P3W; 3V3AR) with VTs and Current Sensors (CT Series)

Wiring Example of a Three-Phase Four-Wire System (3P4W) with VTs and Current Sensors (CT Series)

For details about the relationship between the wiring system and how measured and computed values are determined, see appendix 1, "Symbols and Determination of Measurement Functions."

2.15 Connecting to a Current Sensor (CT Series) and Using the Phase Correction Function (760903)

Phase errors can be corrected and accurate power can be calculated by connecting to a current sensor (CT series) and using the phase correction function.

Propagation Delay Correction

When the propagation delay is corrected, phase errors can be minimized over the bandwidth up to the frequency (table below) corresponding to the propagation delay on each current sensor (CT series). Set the frequency and phase error according to section 2.6, "Setting the Sensor Correction," in the User's Manual. In the case of the CT2000A, for example, set the frequency (Frequency) to 10 kHz and the phase difference between I/O (Phase Difference between I/O) to -0.144°.

Frequency and phase error corresponding to the propagation delay

Current sensor (CT series)	СТ60	СТ200	CT1000	CT1000A	CT2000A
Frequency [kHz]	10	10	5	5	10
Phase difference [°]	-0.252	-0.252	-0.198	-0.018	-0.144

• The phase error is negative for phase lag.

Note_

Propagation Delay

The propagation delay of each current sensor (CT series) is as follows:

Current sensor (CT series)	СТ60	CT200	CT1000	CT1000A	CT2000A
Propagation delay (Typical)[ns]	70	70	110	10	40

Conditions

- A cable for current sensor element is used.
- The influence of external magnetic fields and conductor location is not present.
- The input resistance of the current measurement terminal is set to a CT preset.

[•] The above settings apply to all cases regardless of the cable for current sensor element (761954 (3 m), 761955 (5 m), 761956 (10 m)) in use.

3.1 Touch Panel Operations

Touch Panel Operations

The basic touch panel operations are described below.

Тар

Tap refers to the act of gently hitting the screen with your finger. This is used to select an item on a setup menu, close a setup menu, and so on.

Drag, Swipe, and Slide

Press your finger against the screen and move your finger across the screen. Drag refers to the act of selecting and moving items.

Swipe refers to the act of moving a relatively wide display range, such as scrolling the setting screen. Slide is also a term sometimes used depending on the movement operation.

Pinch Out and Pinch In

Pinch out refers to the act of pressing two fingers against the screen and spreading them apart. Pinch in refers to the act of pressing two fingers against the screen and drawing them together. On a screen displaying waveforms, you can pinch out to zoom in and pinch in to zoom out.

Pinch out

Pinch in

Flick

Flick refers to the act of pressing your finger against the screen and moving your finger abruptly. This is used to change the display.

Key Operation and Functions

For the key operation and functions, see section 1.2.

3.2 Setup Menu Operation and Function

When you tap an item on a setup menu or select an item using the arrow keys and SET key, any of the following responses will result.

Available options are displayed.

• The value toggles between on and off. Example: Voltage auto range

• The value (check box) toggles between selected and unselected. Example: Saved items

• The selected setting changes.

Example: Integration resume operation at power failure recovery

• You can change the value. Example: Cutoff frequency of a line filter

• You can change the text using the keyboard. Example: Save file name

• A related setup menu is displayed. Example: User-defined computation

• The function is executed. Example: Starts integration

How to Clear Setup Menus

- You can clear the setup menu from the screen by:
- Pressing ESC.
- Tap X in the upper right of the menu.

3.3 Entering Values and Strings

Entering Values

Using the Touch Panel

Tap the keys on the screen to change the value.

Using the Cursor Keys

Press the arrow keys and SET key to change the value.

Entering Character Strings

Use the keyboard that appears on the screen to enter character strings such as file names and comments. Tap the keyboard, or use the cursor keys and the SET key to operate the keyboard and enter a character string.

How to Operate the Keyboard

- 1. With the keyboard displayed, select the character you want to enter.
- 2. Repeat step 1 to enter all of the characters in the string.
- **3.** Tap **ENTER**, or move the cursor to ENTER, and press **SET**. The character string is confirmed, and the keyboard disappears.

Preset Character Strings

The following operands and equations, which are used with user-defined functions, are included as

procet entai	uotor ounige						
ABS(LOG10(COS(CF	TIF(EAU(MN(PC(
SQR(EXP(TAN(ITIME(HVF(EAI(RMN(
SQRT(NEG(PPK(THD(HCF(PLLFRQ(DC(
LOG(SIN(MPK(THF(KFACT(RMS(AC(

Note.

- @ cannot be entered consecutively.
- File names are not case-sensitive. Comments are case-sensitive. The following file names cannot be used due to MS-DOS limitations:
- AUX, CON, PRN, NUL, CLOCK, COM1 to COM9, and LPT1 to LPT9
- For details on file name limitations, see the features guide, IM WT5000-01EN.

3.4 Using USB Keyboards and Mouse Devices

Connecting a USB Keyboard

You can connect a USB keyboard and use it to enter file names, comments, and other items.

Compatible Keyboards

You can use the following keyboards that conform to USB Human Interface Devices (HID) Class Ver. 1.1.

- · When the USB keyboard language is English: 104-key keyboards
- · When the USB keyboard language is Japanese: 109-key keyboards

Note_

- Do not connect incompatible keyboards.
- The operation of USB keyboards that have USB hubs or mouse connectors is not guaranteed.
- For USB keyboards that have been tested for compatibility, contact your nearest YOKOGAWA dealer.

USB Ports for Peripherals

Connect a USB keyboard to one of the USB ports for peripherals on the front panel of the instrument.

Connection Procedure

Connect a USB keyboard directly to the instrument using a USB cable. You can connect or remove the USB cable regardless of whether the instrument's power switch is on or off (hot-plugging is supported). Connect the type A connector of the USB cable to the instrument, and connect the type B connector to the keyboard. When the power switch is turned on, the keyboard is detected and enabled approximately 6 seconds after it is connected.

Note

- Only connect compatible USB keyboards, mouse devices, or memory devices to the USB ports for peripherals.
- Do not connect multiple keyboards. You can connect one keyboard and one mouse.
- Do not connect and disconnect multiple USB devices repetitively. Wait for at least 10 seconds after you connect or remove one USB device before you connect or remove another USB device.
- Do not remove USB cables during the time from when this instrument is turned on until key operation becomes available (approximately 20 seconds).

Setting the USB Keyboard Language

- 1. Tap the menu icon inder Setup, or press MENU under SETUP.
- 2. Tap the Utility tab.
- 3. Tap System Configuration.

Input (Basic) Input (Advanced/Options) Utility Computation/Output X System Overview Date/Time Language Preference Freq Display at Low Frequency System Configuration Display Menu Language LCD Turn Off USB Keyboard ON English Execute Error English Remote Control MTR Display at Low Pulse Freq Network Setting Method Message Language Auto Off Selftest Manual English -(OFF) Error Message Log Decimal Point for CSV File Auto Off Time 🛃 Date/Time Period 5min -Rounding to Zero Brightness ON Time Synchro Grid Intensity 🗗 IEEE1588 4

Set the USB keyboard language.

Entering File Names, Comments, and Other Items

When a keyboard is displayed on the screen, you can enter file names, comments, and other items using the USB keyboard.

Entering Values from a USB Keyboard

You can use the USB keyboard to enter values for settings shown on the menu screen of this instrument.

- ↑ key or "8" on the numeric keypad: The value increases.
- ↓ key or "2" on the numeric keypad: The value decreases.
- \rightarrow key or "6" on the numeric keypad: The digit cursor moves to the next digit on the right.
- ← key or "4" on the numeric keypad: The digit cursor moves to the next digit on the left.

Using a USB Mouse

You can connect a USB mouse and use it to perform the same operations that you can perform with the keys of this instrument. Also, by clicking a menu item, you can perform the same operation that you can perform by pressing the menu item's soft key or selecting the menu item and pressing the SET key.

Compatible USB Mouse Devices

You can use mouse devices (with wheels) that are compliant with USB HID Class Version 1.1.

Note.

- For USB mouse devices that have been tested for compatibility, contact your nearest YOKOGAWA dealer.
- · Some settings cannot be configured by a mouse without a wheel.

USB Ports for Peripherals

Connect a USB mouse to one of the USB ports for peripherals on the front panel of the instrument.

Connection Procedure

To connect a USB mouse to this instrument, use one of the USB ports for peripherals. You can connect or disconnect the USB mouse at any time regardless of whether the instrument is on or off (hot-plugging is supported). When the power switch is on, the mouse is detected approximately 6 seconds after it is connected, and the mouse pointer (k) appears.

Note.

- Only connect compatible USB keyboards, mouse devices, or memory devices to the USB ports for peripherals.
- Even though there are two USB ports for peripherals, do not connect two mouse devices to the instrument.

Operating the Instrument Using a USB Mouse

Left Button

Move the pointer to an item such as a menu icon, button, or toggle box you want to select on the screen, and click the left button. This is equivalent to tapping the item.

Right Button

The right button is invalid. Clicking the right button produces no effect.

Mouse Wheel

- Selecting an option Rotate the mouse wheel to scroll the options.
- Specifying Values
 - In a box for setting a value, the value can be set in the following manner.
 - Rotate the mouse wheel backward to decrease the value.
 - Rotate the mouse wheel forward to increase the value.
- Selecting a File, Folder, or Media Drive from the File List Window Rotate the mouse wheel to scroll through the file list.

3.5 Setting the Menu and Message Languages

This section explains how to set the language that is used to display the menus and messages on the screen. The factory default setting is ENG (English).

1. Tap the menu icon 🙀 under Setup, or press MENU under SETUP.

Set the menu language.

- 2. Tap the Utility tab.
- 3. Tap System Configuration.

		Se	et the message	language.		
	(Input Basic) (#	Input Advanced/Options)	Computation/Output	Utility	8
System Overview	Date/Time	Language	LCD	Preference		
System Configuration	Display	Menu Languago	e LCD Turn (Off Freq Displa	yat ncy USBK	eyboard
Remote Control		Englist	- Execu	ute Erro	r 🔻 E	inglish 🔻
Network	Setting Method	Message Larg	uage Auto Off	MTR Displa Low Pulse	y at Freq	
Selftest	Manual 🔻	English	-	OFF Erro	r 🔻	
Message Log			Auto Off	Decimal Poi Time for CSV Fi	nt le	
	🛃 Date/Time			5min Perio	od 🔻	
			Brightness	Rounding to) Zero	
	Time Synchro		Grid Intensi	ty 4		

Setting the Menu Language (Menu Language)

You can choose to display menus in any of the following languages.

- English
- Japanese
- Chinese
- German

Setting the Message Language (Message Language)

Error messages appear when errors occur. You can choose to display these messages in any of the following languages. The error codes for error messages are the same for all languages. For details on error messages, see the user's manual, IM WT5000-02EN.

- · English
- Japanese
- Chinese
- German

- Even if you set the menu or message language to a language other than English, some terms will be displayed in English.
- You can set different languages for the menu language and message language.

3.6 Synchronizing the Clock

This section explains how to set the instrument's clock, which is used to generate timestamps for measured data and files. The instrument is factory shipped with a set date and time. You must set the clock before you start measurements.

- 1. Tap the menu icon 🔐 under Setup, or press MENU under SETUP.
- 2. Tap the Utility tab.
- 3. Tap System Configuration.

Setting the Setting Method (Setting Method)

• If you select Manual, tap Date/Time, and set the date, time, and time zone.

 If you select SNTP, the instrument uses an SNTP server to set its date and time. This setting is valid when Ethernet communications have been established. For information on SNTP, see the user's manual. If you select SNTP, set the time difference from Greenwich Mean Time (Time Difference from GMT), and then tap Adjust.

Time Difference from Greenwich Mean Time (Time Difference From GMT)

This setting is valid when the method for setting the date and time is set to SNTP.

Set the time difference between the region where you are using the instrument and Greenwich Mean Time to a value within the following range.

-12 hours 00 minutes to 13 hours 00 minutes

For example, Japan standard time is ahead of GMT by 9 hours. In this case, set Hour to 9 and Minute to 0.

Checking the Standard Time

Using one of the methods below, check the standard time of the region where you are using the instrument.

- · Check the Date, Time, Language, and Regional Options on your PC.
- · Check the website at the following URL: http://www.worldtimeserver.com/

Note.

- This instrument does not support Daylight Saving Time. To set the Daylight Savings Time, reset the time difference from Greenwich Mean Time.
- Date and time settings are backed up using an internal battery. They are retained even if the power is turned off.
- This instrument has leap-year information.
- The Time Difference from GMT setting is shared with the same setting found in the SNTP settings in the Ethernet communication (Network) settings. If you change this setting in the date and time settings, the Time Difference from GMT in the Ethernet communication (Network) settings also changes.

3.7 Initializing the Settings

You can reset the instrument settings to their factory default values. This feature is useful when you want to cancel all the settings that you have entered or when you want to redo measurement from scratch. For information about the initial settings, see appendix 8, "List of Initial Settings and Numeric Data Display Order."

		Input (Basic)	Input (Advanced/Options)	Computation/O	utput Util	ity 🗴
Element 1 30A	Element 2 30A	Element 3 30A	Element 4 30A	Element 5 30A	Element 6 30A	Element 7 30A
Wiring 1P2W	Wiring 1P2W	Wiring 1P2W	Wiring 1P2W	Wiring 1P2W	Wiring 1P2W	Wiring 1P2W
Voltage Range	Voltage	Voltage	Voltage	Voltage	Voltage	Voltage
1000V	1000V	1000V	1000V	1000V	1000V	1000V
Current Range	Current	Current	Current	Current	Current	Current
30A	30A	30A	30A	30A	30A	30A
Sensor Ratio	Sensor Ratio	Sensor Ratio	Sensor Ratio	Sensor Ratio	Sensor Ratio	Sensor Ratio
10.0000	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000
Scaling OFF VT Ratio 1.0000 CT Ratio 1.0000 SF Ratio 1.0000 Line Filter OFF Cutoff 0.5kHz Freq Filter OFF Cutoff 0.1kHz Sync Source T	Scaling OFF	Scaling OFF	Scaling OFF	Scaling OFF	Scaling OFF	Scaling OFF
	VT Ratio	VT Ratio	VT Ratio	VT Ratio	VT Ratio	VT Ratio
	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	CT Ratio	CT Ratio	CT Ratio	CT Ratio	CT Ratio	CT Ratio
	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	SF Ratio	SF Ratio	SF Ratio	SF Ratio	SF Ratio	SF Ratio
	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	Line Filter OFF	Line Filter OFF	Line Filter OFF	Line Filter OFF	Line Filter OFF	Line Filter OFF
	Cutoff	Cutoff	Cutoff	Cutoff	Cutoff	Cutoff
	0.5kHz	0.5kHz	0.5kHz	0.5kHz	0.5kHz	0.5kHz
	Freq Filter OFF	Freq Filter OFF	Freq Filter OFF	Freq Filter OFF	Freq Filter OFF	Freq Filter OFF
	Cutoff	Cutoff	Cutoff	Cutoff	Cutoff	Cutoff
	0.1kHz	0.1kHz	0.1kHz	0.1kHz	0.1kHz	0.1kHz
	Sync Source	Sync Source	Sync Source	Sync Source	Sync Source	Sync Source
Initialize Settings	🖬 🖬 Navig	ation	File	List 🛃 Sa	ave Setup	Load Setup

1. Tap the menu icon under Setup, or press MENU under SETUP.

Initializes the settings

2. Tap the Initialize Settings tab.

Confirm to execute	
Are you sure	to execute?
All Settings will	be initialized.
ОК	Cancel
Executes initialization	Cancels initializatio

Settings That Cannot Be Reset to Their Factory Default Values

- Date and time settings
- Communication settings
- Menu and message language settings
- Environment settings
 Frequency display at low frequency
 MTR display at low pulse frequency
 Decimal point and separator used when saving to ASCII format (.csv)
- Custom display settings

To Reset All Settings to Their Factory Default Values

While holding down the ESC key, turn the power switch on. All settings are reset to their factory default values except the date and time settings (the display on/off setting will be reset) and the setup data stored in internal memory.

Note_

Only initialize the instrument if you are sure that it is okay for all of the settings to be returned to their default values. You cannot undo an initialization. We recommend that you save the setup parameters before you initialize the instrument.

3.8 Displaying Help

Displaying Help

Tap (in the upper right of the screen. A help document appears. The table of contents and index appear in the left frame, and text appears in the right frame.

Switching between Frames

To switch to the frame that you want to control, use the left and right cursor keys.

Moving Cursors and Scrolling

To scroll through the screen or to move the cursor in the table of contents or index, use the up and down cursor keys.

Moving to the Link Destination

To move to a description that relates to blue text or to move from the table of contents or index to the corresponding description, move the cursor to the appropriate blue text or item, and press SET.

Displaying Panel Key Descriptions

With help displayed, press a panel key to display an explanation of it.

Hiding Help

Tap 🕜 in the upper right of the screen, or press ESC. The help closes.

4.1 Motor/Auxiliary Inputs (ChA to H, option)

CAUTION

Signals that do not meet the specifications may damage this instrument, because of factors such as excessive voltage.

French

ATTENTION

N'appliquer que des signaux correspondant aux spécifications suivantes. Les autres signaux pourraient endommager l'instrument en raison de divers facteurs, notamment la tension excessive.

Motor/Auxiliary Inputs (ChA to H)

- · /MTR1 option: ChA to D
- /MTR2 option: ChE to H

You can apply the following types of signals.

- Torque meter output signal—a DC voltage (analog) signal or pulse signal that is proportional to the motor's torque
- Revolution sensor output signal—a DC voltage (analog) signal or pulse signal that is proportional to the motor's rotating speed

(Apply the signal using a safety BNC cable (sold separately).)

 Sensor output DC voltage signal (an analog signal) (Apply the signal using a safety BNC cable (sold separately).)

Apply any of the above signals by following the specifications below.

DC Voltage (Analog input)

Item	Specifications
Connector type	Isolated BNC
Input range	1 V, 2 V, 5 V, 10 V, 20 V
Effective input range	0% to ±110% of the measurement range
Input resistance	Approx. 1 MΩ
Maximum allowable input	±22 V
Maximum isolation voltage	±42 Vpeak or less

4.1 Motor/Auxiliary Inputs (ChA to H, option)

Pulse Input

Item	Specifications
Connector type	Isolated BNC
Frequency range	2 Hz to 2 MHz
Amplitude input range	±12 Vpeak
Detection level	H level: approx. 2 V or higher; L level: approx. 0.8 V or less
Pulse width	250 ns or more
Input resistance	Approx. 1 MΩ
Maximum isolation voltage	±42 Vpeak or less

Apply input signals to the terminals shown in the following table according to the motor configuration.* * See the User's Manual.

Motor evaluation function 1 (/MTR1)

Input	Motor configuration					
terminal	Single Motor (Speed:Pulse)	Single Motor	Double Motor	Auxiliary		
		(Speed:Analog)				
ChA	Torque signal	Torque signal	Torque signal 1	External signal 1		
ChB	A phase of the rotary encoder	Not use	Speed signal 1	External signal 3		
ChC	B phase of the rotary encoder	Speed signal	Torque signal 2	External signal 2		
ChD	Z phase of the rotary encoder	Not use	Speed signal 2	External signal 4		

Motor evaluation function 2 (/MTR2)

Input	Motor configuration					
terminal	Single Motor (Speed:Pulse) Single Motor Double M		Double Motor	Auxiliary		
		(Speed:Analog)		-		
ChE	Torque signal	Torque signal	Torque signal 3	External signal 5		
ChF	A phase of the rotary encoder	Not use	Speed signal 3	External signal 7		
ChG	B phase of the rotary encoder	Speed signal	Torque signal 4	External signal 6		
ChH	Z phase of the rotary encoder	Not use	Speed signal 4	External signal 8		

Terminal Used for Pulse Input

- If you do not need to detect the revolution direction of a revolution signal (SPEED), apply pulse input to the ChB terminal.
- If you need to detect the revolution direction, apply the A and B phases of a rotary encoder to the ChB and ChC terminals, respectively.
- If you need to measure the electrical angle, apply the Z phase of a rotary encoder to the ChD terminal.

4.2 External Clock Input (EXT CLK IN)

CAUTION

Signals that do not meet the specifications may damage this instrument, because of factors such as excessive voltage. Signals that do not meet the specifications may damage this instrument, because of factors such as excessive voltage.

French

ATTENTION

N'appliquer que des signaux correspondant aux spécifications suivantes. Les autres signaux pourraient endommager l'instrument en raison de divers facteurs, notamment la tension excessive.

External Clock Signal Input Connector

Apply a clock signal that meets the following specifications to the external clock input connector (EXT CLK) on the rear panel.

Common

Item	Specifications
Connector type	BNC
Input level	TTL (0 V to 5 V)

To Apply a Synchronization Source That Determines the Measurement Period

Item	Specifications
Frequency range	Same as the measurement ranges listed under "Frequency Measurement"
	in section 6.7, "Features"
Input waveform	50% duty ratio rectangular wave

To Apply a PLL Source during Harmonic Measurement

Item	Specifications
Frequency range	0.1 Hz to 300 kHz
Input waveform	50% duty ratio rectangular wave

To Apply a Trigger Source for Displaying Waveforms

Item	Specifications
Input logic	Negative logic, falling edge
Minimum pulse width	1 µs
Trigger delay	Within 2 µs+12 µs+Phase correction time

4.3 External Start Signal I/O (MEAS START)

CAUTION

- When the instrument is set to master, do not apply external voltage to the external start signal input/output connector (MEAS. START). If you do, the instrument may malfunction.
- If you have set this instrument as a slave unit or set External Sync to ON in high speed data capturing mode, only apply signals to the external start signal I/O connector that meet the following specifications. Signals that do not meet the specifications may damage this instrument, because of factors such as excessive voltage.

French

ATTENTION

- Lorsque l'instrument est réglé sur maître, ne pas appliquer de tension externe au connecteur d'entrée/de sortie du signal externe de démarrage (MEAS. START). Le cas échéant, un dysfonctionnement de l'instrument est possible.
- Si vous avez réglé cet instrument comme une unité esclave, appliquez uniquement des signaux conformes aux spécifications suivantes sur le connecteur E/S de signal de démarrage externe. Les signaux qui ne sont pas conformes aux spécifications, comme ceux dont la tension est excessive, risquent d'endommager cet instrument.

External Start Signal I/O Connector

Applying Master/Slave Sync Signals for Normal Measurement

Connect the external start signal I/O connectors on the rear panels of the master and slave instruments using a BNC cable (sold separately).

Item	Specifications	Notes
Connector type	BNC	Same for both master and slave
I/O level	TTL(0 V to 5 V)	Same for both master and slave
Output logic	Negative logic, falling edge	Applies to the master
Output hold time	Low level, 500 ns or more	Applies to the master
Input logic	Negative logic, falling edge	Applies to slaves
Minimum pulse width	Low level, 500 ns or more	Applies to slaves
Measurement start output signal delay	Within 1 µs	Applies to the master
Measurement start delay	Within 2 µs	Applies to slaves

Note.

The measurement of the master and slave units cannot be synchronized under the following conditions:

- When the data update interval differs between the master and slave.
- In real-time integration mode or real-time storage mode.

Follow the procedure below to hold values during synchronized measurement.

- · To hold values: Hold the values on the master first.
- To stop holding values: Stop holding values on the slaves first.

External Start Signal Output Circuit and Timing Chart

External Start Signal Input Circuit and Timing Chart

4.4 VIDEO Output (VIDEO OUT (WXGA))

CAUTION

- Connect the cable after turning OFF this instrument and the monitor.
- Do not short the VIDEO OUT terminal or apply external voltage to it. If you do, the instrument may malfunction.

French

ATTENTION

- Connecter le câble après avoir mis cet instrument et le moniteur hors tension.
- Ne pas court-circuiter la borne VIDEO OUT ni y appliquer de tension externe. Le cas échéant, un dysfonctionnement de l'instrument est possible.

VIDEO Output Terminal

You can use RGB output to display the screen of this instrument on a monitor. Any multisync monitor that supports WXGA can be connected.

Item	Specifications		
Connector type		D-sub 15-pin	
Output format		Analog RGB output	
Output resolution	,	WXGA output, 1280 × 800 dots, approx. 60 Hz Vsync	
Pin No.	Signal	Specifications	
1	Red	0.7 V _{P-P}	
2	Green	0.7 V _{P-P}	
3	Blue	0.7 V _{P-P}	
4	_		
5	_		
6	GND		
7	GND		
8	GND		
9	—		
10	GND		
11	_		
12	—		
13	Horizontal sync sig	nal Approx. 36.4 kHz, TTL positive logic	
14	Vertical sync signa	I Approx. 60 Hz, TTL positive logic	
15	_		

Connecting to a Monitor

- 1. Turn off this instrument and the monitor.
- 2. Connect this instrument and the monitor using an analog RGB cable.
- 3. Turn on this instrument and the monitor.

4.5 D/A Output and Remote Control (D/A OUTPUT; option)

If you select the /DA option, 20-channel D/A output and remote control features are installed in this instrument.

Connector Pinout

The connector's pinout is explained in the table below.

	Pin No.	Signal	Pin No.	Signal
	1	D/A CH1	19	D/A CH2
\mathbf{A}	2	D/A CH3	20	D/A CH4
D/A OUTPUT	3	D/A CH5	21	D/A CH6
	4	D/A CH7	22	D/A CH8
1 김당는 19	5	D/A CH9	23	D/A CH10
	6	D/A CH11	24	D/A CH12
	7	D/A CH13	25	D/A CH14
	8	D/A CH15	26	D/A CH16
	9	D/A CH17	27	D/A CH18
	10	D/A CH19	28	D/A CH20
	11	D/A COM	29	D/A COM
	12	D/A COM	30	D/A COM
	13	D/A COM	31	D/A COM
	14	Not Connected	32	EXT RESET
10 HAPP 30	15	EXT STOP	33	EXT START
$\langle \rangle$	16	EXT SINGLE	34	EXT HOLD
\sim	17	INTEG BUSY	35	EXT COM
	18	EXT COM	36	EXT COM

Note

The D/A COM and EXT COM signals are connected internally.

D/A Output (D/A OUTPUT)

You can generate numeric data as ± 5 V FS DC voltage signals from the rear panel D/A output connector. You can set up to 20 items (channels).

CAUTION

- Do not short the D/A output terminal or apply external voltage to it. If you do, the instrument may malfunction.
- When connecting the D/A output to another device, do not connect the wrong signal pin. Doing so may damage this instrument or the connected instrument.

French

ATTENTION

- Ne pas court-circuiter la borne de sortie D/A et ne pas y appliquer de tension externe. Le cas échéant, un dysfonctionnement de l'instrument est possible.
- Lors de la connexion de la sortie D/A à un autre dispositif, veiller à connecter les broches de signal correctes. Cela pourrait endommager cet instrument ou l'instrument connecté.

4.5 D/A Output and Remote Control (D/A OUTPUT; option)

Item	Specifications
D/A conversion resolution	16 bits
Output voltage	Each rated value ±5 V FS (maximum of approx. ±7.5 V)
Update interval	Same as the data update interval of this instrument
	Synchronizes to the trigger when the measurement mode is trigger
Number of outputs	20 channels
	The output items can be set for each channel.
Maximum isolation voltage	±42 Vpeak or less
Relationship between output items	See "D/A Output (D/A Output, option)" in chapter 6, "Computation and
and D/A output voltage	Output," of the Features Guide, IM WT5000-01EN.

Remote Control

Through external control, you can hold values, perform single measurements, and start, stop, and reset integration.

CAUTION

Do not apply voltage outside the range of 0 V to 5 V to the remote control input pins. Also, do not short the output pins or apply external voltage to them. If you do, the instrument may malfunction.

French

ATTENTION

Ne pas appliquer de tension hors de la plage 0 V à 5 V aux broches d'entrée de la télécommande. Ne pas court-circuiter non plus les broches de sortie, ni y appliquer de tension externe. Le cas échéant, un dysfonctionnement de l'instrument est possible.

Item	Specifications
Input signal	EXT START, EXT STOP, EXT RESET, EXT HOLD, EXT SINGLE
Output signal	INTEG BUSY
Input level	0 V to 5 V

Remote Control I/O Circuit

Controlling Integration Remotely

Apply signals according to the following timing chart.

The INTEG BUSY output signal is set to low level during integration. Use this signal when you are observing integration.

Holding the Updating of Displayed Data (The same functionality as pressing HOLD)

Apply an EXT HOLD signal as shown in the following figure.

Updating Held Display Data (The same functionality as pressing SINGLE)

While the display is being held, you can update it by applying an EXT SINGLE signal.

EXT SINGLE → 40 ms

Note.

If the width of the low pulse of the EXT SINGLE signal does not meet the conditions shown in the above figure, the signal may not be detected by this instrument.

5.1 Troubleshooting

Faults and Corrective Actions

- If a message appears on the screen, see the appendix in the User's Manual, IM WT5000-02EN.
- If "Problems and Solutions" in the following table indicates that servicing is necessary, or if the instrument does not operate properly even after you have attempted to deal with the problem according to the instructions in this section, contact your nearest YOKOGAWA dealer.

Problems and Solutions		Reference Section
Nothing appears on the scre	en when the power is turned on.	
	Securely connect the power cord to the instrument and to the power outlet.	2.4
	Set the supply voltage to within the permitted range.	2.4
	Check the screen settings.	20.4 ¹
	The built-in power supply fuse may have blown. Servicing is required.	5.2
The displayed data is not con	rrect.	
	Confirm that the ambient temperature and humidity are within their specified	2.2
	ranges.	
	Confirm that the display is not being affected by noise.	2.1, 2.6
	Check the measurement cable wiring.	2.9 to 2.12
	Check the wiring system.	2.9 to 2.12,
		1.1 ¹
	Confirm that the line filter is off.	1.13 ¹
	Check the measurement period settings.	1.12 ¹
	Check the FAQ at the following URL.	—
	http://tmi.yokogawa.com/	
	Turn the power off and then on again.	2.5
Keys do not work.		
	Check the REMOTE indicator. If the REMOTE indicator is illuminated, press	—
	LOCAL to turn it off.	
	Confirm that keys are not locked.	20.10 ¹
	Perform a key test. If the test fails, servicing is necessary.	20.7 ¹
Triggering does not work.		
	Check the trigger conditions.	9.1 ¹
	Confirm that the trigger source is being applied.	9.1 ¹
Unable to make harmonic me	easurements.	
	Check the PLL source settings.	2.1 ¹
	Confirm that the input signal that you have selected as the PLL source meets	2.1 ¹
	the specifications.	
Unable to recognize a storage	je d <u>evice.</u>	
	Check the storage device format. If necessary, format the storage device.	_
	The storage device may be damaged.	_
Unable to save data to the se	elected storage device.	
	Check the free space on the storage device. Remove files or use a different	—
	storage device as necessary.	
	If necessary, format the storage device.	_
Unable to configure or control	ol the instrument through the communication interface.	
	Confirm that the GP-IB address and the IP address settings meet the	2
	specifications.	
	Confirm that the interface meets the electrical and mechanical specifications.	2

1 See the User's Manual, IM WT5000-02EN.

2 See the Communication Interface User's Manual, IM WT5000-17EN.

5.2 Power Supply Fuse

Because the power supply fuse used by this instrument is inside the case, you cannot replace it yourself. If you believe that the power supply fuse inside the case has blown, contact your nearest YOKOGAWA dealer.

Recommended Part Replacement 5.3

The life and replacement period for expendable items varies depending on the conditions of use. Refer to the table below as a general guideline.

For part replacement and purchase, contact your nearest YOKOGAWA dealer.

Parts with Limited Service Life

Part Name	Service Life
LCD backlight	Under normal conditions of use, approximately 100000 hours

Consumable Parts

We recommend replacing them at the following intervals.

Part Name	Recommended Replacement Interval
Cooling fan	3 year
Backup battery	3 years

5.4 Disposing of YOKOGAWA Products

When disposing of YOKOGAWA products, follow the laws and ordinances of the country or region where the product will be disposed of.

If you are disposing of the product in the EU, see also page xvii.

6.1 Signal Input Section

Power Measurement

Item	Specifications	
Element	Plug-in input unit	
Number of elements	7	
Installable input elements	Elements exclusive to the WT5000	
Input element mixing	Allowed	
Empty element	Allowed	
	However, element 1 to the element before the first empty element can be used.	
	Elements installed after the empty element number cannot be used.	
Hot swapping	Not allowed	

Motor Evaluation Function (Option)

Item	Specifications		
Input connector type	Isolated BNC		
Input type	Unbalanced, functional isolation		
Input resistance	Input resistance: 1 M Ω ± 1%, input capacitance: approx. 47 pF		
Continuous maximum allowable	±22 V		
Input Maximum tarkard target	101/2010		
Maximum rated voltage to earth	±42 Vpeak		An also of Data a format
Input channels	MIR1:	ChA (Torque1/Aux1):	Analog/Pulse Input
		ChB (Speed 1/Aux3):	
		ChC (B/Torque2/Aux2):	Analog/Pulse input
		ChD (Z/Speed2/Aux4):	Pulse input
	MTR2:	ChE (Torque3/Aux5):	Analog/Pulse input
		ChF (Speed3/Aux7):	Pulse input
		ChG (B/ lorque4/Aux6):	Analog/Pulse input
		ChH (Z/Speed4/Aux8):	
Input type	Analog input	Range	1/2/5/10/20 V
		Range setting	Fixed/Auto
			Auto range
			Range increase:
			When the measured value exceeds 110% of the range
			When the peak value exceeds approximately 150%
			Range decrease:
			When the measured value is 30% of the range or less and the peak value is less than 125% of the next lower range
		Input range	±110%
		Bandwidth	20 kHz (-3dB)
		Sample rate	Approx. 200 kS/s
		Resolution	16 bit
		Accuracy	Accuracy at 6 months
		* Analog input accuracy	$\pm (0.03\%$ of reading + 0.03% of range)
		guarantee conditions	For the accuracy at 1 year, multiply the reading of the
			accuracy at 6 months by 1.5.
		Temperature coefficient	±0.03% of range/°C
		Line filter	Low-pass filter
			Filter response: Butterworth
			fc:100 Hz, 500 Hz, 1 kHz
	Pulse input	Range	10 V
		Input range	±12 Vpeak
		Detection level	H level: approx. 2 V or higher L level: approx. 0.8 V or less
		Pulse width	250 ns or more However, 50% duty ratio for detecting forward rotation

6.1 Signal Input Section

Item	Specifications			
	Frequency measurement	2 Hz to 2 MHz		
	range			
	Rotation direction	2 Hz to 1 MHz		
	detection	When the pulse noise filter is in use:		
		10 kHz: 2 Hz to 3 kHz		
		100 kHz: 2 Hz to 30 kHz		
		1 MHz: 2 Hz to 300 kHz		
	Accuracy	Accuracy at 1 year		
		$\pm (0.03 + f/10000)$ % of reading ± 1 mHz		
		The unit of f is kHz.		
		However, the waveform display data accuracy is		
		±(0.03 + f/500) % of reading ±1 mHz		
		The unit of f is kHz.		
	Pulse noise filter	Low-pass filter		
		fc:10 kHz, 100 kHz, 1 MHz		
	Z pulse delay correction	Corrects the time setting delay		
eak over-range detection	150% of the range or more			

* Analog input accuracy guarantee conditions:

Humidity: 30% RH to 75% RH

Voltage to ground: 0 V

In a wired condition after warm-up time has passed and after zero-level compensation. For 5° C to 18° C and 28° C to 40° C, add the temperature coefficient.

6.2 Measurement Output Section

D/A Output (/DA20 option)

Item	Specifications		
Output connector type	Micro ribbon connector (Amphenol 57LE connector), 36-pin		
Output source	The set measurement function		
	Normal	Voltage, current, power: U/I rms, mn, dc, rmn, ac P/S/Q/ λ / Φ /Pc and Σ	
	measurement:		
		Peak value : U/I/P, ±pk	
		Frequency: fU/fl/f2U/f2I/fPLLx	
		Integration: ITime/WPx/qx/WS/WQ	
		Efficiency	
		User-defined function	
		User-defined event	
	Harmonic	Voltage, current, power harmonics: U/I/P/S/Q/ λ / and Σ	
	measurement:		
		UI, inter-harmonic, inter-element phase difference: Φxx	
		Load circuit constant: Z/Rs/Xs/Rp/Xp	
		Relative harmonic content, strain: U/I/P	
		Telephone harmonic factor: U/I	
		Telephone influence factor: U/I	
		K-factor	
	Delta computation:	U/I/P and ΣU, P	
	Motor evaluation	Speed, Torque, SyncSp, Slip, Pm, EaM1U, EaM1I, EaM3U, EaM3I, Aux1 to 8	
	function:		
	* 0 V to +5 V whe * The % output m * Rated integrated * Approx. 7.5 V fo	n the phase angle display setting is 360° easurement function is +5 V at 100%. d value is range rating × set integration time r setting function errors.	
	* x consists of characters and numbers		
D/A resolution	16 hit		
	Voltage output, func	tional isolation	
Output voltage	Rating: +5 V maximum output voltage: approx +7.5 V		
Range mode	Fixed		
	+5 V FS		
	Manual		
	Maximum range v	value: 9 999T minimum range value: -9 999T	
Number of channels	20		
Accuracy	\pm (output source measurement accuracy $\pm 0.1\%$ of FS) accuracy at 1 year		
Output resistance	Approx 100.0		
Minimum load	100 kO		
Temperature coefficient	±0.05% of FS/°C		
Maximum ratedvoltage to	±42 Vpeak or less		
earth			
Output update interval	Same as the data up	odate interval	
. ,	Synchronizes to the	trigger when the measurement mode is trigger	
Remote control	See auxiliary I/O		

6.3 Display

Item	Specifications				
Display	10.1-inch color TFT LCD with a capacitive touch panel				
Resolution of the entire screen*	1280 × 800 dots (H × V)				
Language	Japanese/English/Chinese/German				
Display update interval	Same as the data update in	nterval			
	However,				
	1) When the data update in	terval is 50 ms, 100 ms, or 200 ms and only numeric display is in use, the			
	display is updated every The display update interv	200 ms to 500 ms (depends on the number of displayed parameters). val is 1 s when the data update interval is 10 ms.			
	2) When the data update in	nterval is 10 ms, 50 ms, 100 ms, 200 ms, or 500 ms and parameters			
	other than those of numeric display are shown, the display is updated every 1 s.				
	3) When the measurement mode is normal measurement trigger mode, measurement is executed				
	over the time interval specified by the data update interval from when a trigger is detected. The amount of time shown below is required for the instrument to compute the measured data,				
	process it for displaying,	and so on, and become ready for the next trigger.			
	When the data update	interval is 10 ms to 500 ms: Approx. 1 s			
	• When the data update	interval is 1 s to 20 s: Data update interval + 500 ms			
	In this case, storage, cor	mmunication output, and D/A output operate in sync with the triggers.			
	If the measurement mod	e display is set to normal measurement mode, storage, communication			
	Turning off the LCD:				
	furning on the LCD.	Off: Panel key operation			
		On: Key operation and panel touch			
		Auto-off on			
		Off: When the panel and keys are not accessed for a given period			
		On: Key operation and panel touch			
	Auto-off time: 1 min to 60 min				
	Brightness adjustment:	10 levels			
	Grid intensity:	8 levels			
	Color:	Waveform, trend, and vector display colors are fixed			
	Background color:	Gray			
Measurement display	Number of displayed digits:	: If the value is less than or equal to 60000: Six digits. If the value is greater than 60000: Five digits.			
	Display format:	All, 4, 8, 16, Matrix, Hrm List Single, Hrm List Dual, User			
	No-data display symbol:				
	Error display symbol:	Error			
		measurement is less than the lower limit, Error or zero can be selected.			
Waveform display	Peak-to-peak compressed	data			
	Waveform display item	Voltage, current: elements 1 to 7			
		Torque, speed: motor 1 and 2 (/MTR1), motor 3 and 4 (/MTR2)			
		Auxiliary Input: Aux 1 to 4 (/MTR1), Aux 5 to 8 (/MTR2)			
	Screen division	Single, Dual, Triad, Quad, Hexa			
	Vertical axis:	Auto, Manual (set the zoom and position)			
	Time axis:	Time/div: 0.01 ms to 2 s, 1-2-5 steps			
	Trigger	Eda			
	Trigger type.	Euge Select auto or pormal			
	Trigger source:	Select voltage, current, or Ext Clk (external clock)			
	Trigger slope	Select voltage, current, or Ext Circ (external clock).			
	nigger slope.	triager source is Ext Clk (external clock)			
	Trigger level:	When the trigger source is a voltage or current applied to an input element			
		Set to a value that is within the range defined by the middle of			
		the screen \pm 100% (to the top and bottom edges of the screen).			
		Resolution: 0.1%			
		Trigger delay: Within 2 µs			
		When the trigger source is Ext Clk (external clock) TTL level			
	Time axis zoom feature:	None			
	Amplitude zoom feature:	Can be set between 0.1x to 100x			
	Display interpolation:	Off, two-point linear interpolation			
	Grid:	Selectable (frame, grid, X-Y)			

Item	Specifications			
Trend display	Time series graph of a measurement function's data updates			
	Display items:	Up to 16 items*, most recent measured values		
		* Up to 8 items when the data update interval is 10 ms.		
	Screen division:	Single, Dual, Triad, Quad		
	Vertical axis:	Auto or Manual (set the upper and lower limits)		
	Time axis:	Time/div, 3 s to 1 day		
Bar graph display	Displays a bar graph of th	e amplitude and phase of each harmonic		
	Graph division:	Single, Dual, Triad		
	Vertical scale:	Log, Linear		
	Range setting:	Auto or Manual (set the upper and lower limits)		
	Display range:	Starting harmonic: 0 to 490, ending harmonic: 10 to 500		
Vector display	Displays the phase difference between the fundamental voltage signal and fundamental current			
	signal as a vector.			
	Divisions:	2		
	Screen zoom feature:	0.1 to 100x		
	Numeric display:	Allowed		
Custom display	The user registers up to five screen configurations.			
	Register tab:	Custom 1 to 5		
	Register Name:	14 characters		
	Register:	Registers the current screen configuration as a new configuration		
	Over Write:	Registers the current screen configuration by overwriting		
	Clear:	Deletes registered contents		
Other measurement screen	Setup menu			
display items	Measurement mode, time, data update interval, data update count, peak over-range information, integration settings/status, storage status, crest factor, averaging, element settings/status, option settings/status			

* Relative to the total number of pixels, 0.002% of the LCD screen may be defective.

6.4 Control area

Item	Specifications Power switch, control keys, capacitive touch panel		
Control devices			
Key operation features	Features controlled directly with keys		
	Direct control items: Setup menu display, display format change, range change, storage, data save, integration start/ stop/reset, remote clear, key lock, touch lock		
	Panel menus can be controlled using the arrow keys and SET key.		
Touch panel	Controls all features Touch lock: Stops the touch panel operation feature		

6.5 Wiring Systems

Item	Specifications
Method	Single-phase two-wire (1P2W)
	Single-phase three-wire (1P3W)
	Three-phase three-wire (3P3W, 3V3A, 3V3AR)
	Three-phase four-wire (3P4W)

6.6 Measuring Mode

Item	Specifications		
Normal measurement	Measurement method		
	Select sync source period average or digital filter average.		
	Fixed-period data		
	Update interval: 10 ms/50 ms/100 ms/200 ms/500 ms/1 s/2 s/5 s/10 s/20 s		
	Display screen:		
	Single, split screen and the measurement display of the trend		
	Numeric, waveform (free run), trend, bar, vector		
	Measurement function: Normal, harmonic		
	Trigger update		
	Display screen:		
	Single, split screen and the measurement display of the trend		
	Numeric, waveform (triggered), trend, bar, vector		
	Measurement function: Normal, harmonic		
	However, the integration feature is not available.		
IEC harmonic measurement	Display screen: Displays one screen of measured values		
	Measuring function: Harmonic measurement, frequency		
IEC flicker measurement	Update interval: 2 s		
	Display screen: Displays one screen of dedicated measured values		
	Measurement function: Flicker function		

6.7 Features

General Features

Item	Specifications			
Crest factor setting	Select crest factor CF3, crest factor CF6, or crest factor CF6A.			
Element range setting	Can be set for each input element and wiring unit			
	Fixed/auto range setting			
	Fixed range setting			
	Manually set the range of your choice (except only the ranges selected by the valid measurement			
	range selection feature).			
	CN: Set the range for each wiring unit			
	OFF: Set the range for each element			
	Auto range setting			
	Auto range setting feature			
	Range increase			
	When Urms or Irms exceeds 110% of the measurement range (220% for crest factor CF6A).			
	When the peak value of the input signal exceeds approximately 310% (approximately 620%			
	for crest factor CF6 or CF6A) of the range.			
	Range decrease			
	Ink are less than equal to 200% of the lower range (range to decrease to) (less than equal to			
	580% for crest factor CE6 or CE6A) and Urms and Irms are less than 105%			
	Changes the range directly to the appropriate range when the range-decrease conditions are			
	met.			
	A feature for changing to the specified range when a peak over-range occurs			
	* The null value is not used for peak over-range detection.			
	Valid measurement range selection feature			
	A feature for selecting the valid measurement range according to the usage conditions			
	Only the selected ranges are used.			
Element scaling	A feature that allows direct reading by setting the current sensor conversion ratio, VT ratio, CT ratio,			
	and power coefficient SF			
	Source measurement function			
	Set voltage U, current I, power (P. S. Q), maximum voltage (U+pk)/minimum voltage (U-pk).			
	maximum current (I+pk)/minimum current (I-pk), maximum power (P+pk)/minimum power (P-pk),			
	and VT ratio in the following range.			
	Selectable range: 0.0001 to 99999.9999			
Averaging	Type: Exponential average, moving average			
	Source:			
	Normal measurement function			
	Orms, Omn, Odc, Ormn, Odc, Irms, Imn, Idc, Irmn, Idc, P, S, Q, IO, Π, I2O, I2I,			
	Torque Speed Pm Aux(/MTR1/MTR2 option)			
	Harmonic measurement function			
	U(k), I(k), P(k), S(k), Q(k)			
	Exponential averaging, attenuation constant: 2 to 64			
	Moving average, average count: 8 to 64			
	Data reset: Averaging is reset if a setting of any of the functions below is changed.			
	Averaging type, averaging attenuation constant			
	Range, crest factor, range 2 link, wiring			
	Line filter frequency filter			
	Data update interval averaging method sync source			
	Zero-level compensation			
	Maximum harmonic order, minimum harmonic order, harmonic window span			
	Waveform observation time			
Hold	Measurement hold:			
	Suspends the measurement and display operations and holds the data display of each			
	measurement function.			
	However, measurement is not suspended during integration. Only the display is held.			
	UN output, communication output, and the like are also held.			
	storage function saves the measured values that are being undated			

Item	Specifications			
Single measurement	A single measurement is performed at the specified data update interval while a measurement is			
	being held and the hold state is maintained.			
	If you press SINGLE when the measurement is not being held, measurement is performed again			
	from that point.			
Zero-level compensation	Measurement element's circuit offset correction feature			
(Cal)	Manual: Executed under the current settings through a key operation or communication.			
	Auto: Automatically execute when the measurement range is changed or the filter is changed.			
Zero-level compensation	Offset correction feature for all measurement circuits including measurement elements			
(Null)	Executed under the current settings through a key operation or communication.			
	Null status: Can be set separately for each function			
	ON: Updates the null value every time a null is executed.			
	HOLD: Holds the null value set once.			
	OFF: Disables null correction.			
	Opper null limit			
	Analog input (Element/Motor/Aux): 10% of range rating			
	Speed: 10% of $[60/PulseN \times 10000 Hz]$ [rom]			
	Torque: 10% of the absolute value of Rated Upper [Nm]			
	Rated Upper: The larger of "Nm-Hz coordinates x 2 points" for determining the linear			
	scaling value			
	Aux: 10% of the upper pulse input specification limit 2 MHz [Hz]			
Phase difference polarity	The phase difference Φ between the voltage and current indicates the current phase relative to the			
1 3	voltage of each element.			
	Select the signs to apply to the lead and lag of this phase difference.			
	• Lead(-)/Lag(+)			
	Lead: Negative (-)			
	Lag: Positive (+)			
	• Lead(+)/Lag(-)			
	Lead: Positive (+)			
	Lag: Negative (-)			
	The following measurement functions change signs depending on the phase difference polarity.			
	Phase difference: Φ, phase difference between the fundamental components: Φfnd, Phase			
	difference of harmonic measurement: $\Phi(k)$, Φ U1-U2, Φ U1-U3, Φ U1-I1, Φ U2-I2, Φ U3-I3			
	Other angles, the phase angle between $O(T)$ and $O(K)$. $\Psi O(K)$, the phase angle between $I(T)$ and $I(k)$: $\Phi I(k)$ and the electric angles: EaM1111 to EaM17 and EaM3111 to EaM317 are not affected			
	hy the phase difference polarity setting Lead is positive (+) and lag is pegative (-)			
Phase correction	The phase correction feature of the current of the input element			
	Target element 30A High Accuracy Element (760901) 5A High Accuracy Element			
	(760902) Current Sensor Element (760903)			
	Correction time $-10 \text{ us to } 0 \text{ to } \pm 10 \text{ us}$			
	Setting accuracy Instructural			
Storage	Stores numeric data to internal memory and a USB memory device			
Clorugo	Save Interval Data undate interval specified time or specified interval			
	Synchronization Manual real time integration event			
	Storage count 1 to 9999999			
	Time interval 10 ms to 99b59m59s			
	File Format Binary			
	Maximum data filo sizo 1 GB			
	Saved data conversion Converts to CSV (CSV file size of up to 2 CB can be converted)			
Data savo	Save u uala conversion Converts to COV (COV file Size of up to 2 OD can be converted.)			
Data Save	device or a network drive			
Saving and loading setup	Save setup parameters to the internal memory a LISR memory device, or a network drive			
baying and loading setup	l oad saved setup parameters			
File operations	Create folder copy move rename protect delete			

6.7 Features

Master and slave A feature for synchronizing the measurement start on slave devices to the master device			
	A feature for synchronizing the measurement start on slave devices to the master device		
synchronized measurement Connector type BNC: Same for master and slaves			
I/O level TTL: Same for master and slaves			
Output logic Negative logic, falling edge: Applies to the master			
Output hold time Low level, 500 ns or more: Applies to the master			
Input logic Negative logic, falling edge: Applies to slaves			
Minimum pulse width Low level, 500 ns or more: Applies to slaves			
Measurement start output Applies to the master: Within 1 µs			
signal delay			
Measurement start delay Applies to slaves: Within 2 µs			
Maximum number of 4 unit connected units			
Data update interval 10 ms to 20 s			
Measuring Mode Normal measurement			
User-Defined Function A feature for performing computation by combining measurement function symbols			
Number of computations 20			
Maximum number of 16			
operands			
, Number of characters in an Up to 60 characters			
expression			
Number of unit characters Up to 8 characters			
Operators +, -, ×, ÷, ABS, SQR, SQRT, LOG, LOG10, EXP, NEG, SIN, CO	S,		
TAN, ASIN, ACOS, ATAN			
Parameters Element, Σ unit, harmonic order			
MAX hold Can be defined using the user-defined function			
Efficiency equation Efficiency computation of up to 4 systems is possible.			
User-defined events Uses the measurement function and the user-defined event as trigger conditions			
Event Measurement condition			
Judgment condition <, <=, =, >, >=, !=			
Number of events 8			
Peak over-range detection Elements, Motor (/MTR1/MTR2)			
Displays over-range information on the screen when the allowable range of each element and motor (/MTR1/MTR2) is exceeded.			
System configuration Date and time, message language, menu language	Date and time, message language, menu language		
Time setting Sets the time at startup using the Simple Network Time Protocol (SNMP)	Sets the time at startup using the Simple Network Time Protocol (SNMP)		
Time synchronization Synchronization source: Supports IEEE1588-2008 (PTP v2) (slave only)	Synchronization source: Supports IEEE1588-2008 (PTP v2) (slave only)		
function Supports PTP packets of Layer3 (UDP/IPv4) and Layer2 (Ethernet)			
Supports Ordinary Clock			
Supports E2E and P2P delay correction			
Synchronization target: Time data			
Initialization feature			
Initialization reactive Returns the settings to their factory default values	200		
languare anvironmental settings. Custom display settings	aye		
* Environmental settings (Preference): Indication that appears when the frequency or motor p frequency is less than the lower limit, decimal point and separator used when saving to ASC format (csv)	ulse II		
* Starting the instrument with the FSC key held down returns all settings except the date and	ime		
to their factory default values.			
Help Displays explanations of features			
Self-test Memory, keyboard			
Upgrade Updates the firmware and prompts the user to input the add-on package license keys	Updates the firmware and prompts the user to input the add-on package license keys		

Delta	Computation	Function
-------	-------------	-----------------

Itom	Delta Computation	Symbols and Meanings		
item	Setting	Symbols and meanings		
Voltage (V)	difference	ΔUΕ		
		Differential voltage UE between UE+1 determined through computation		
	3P3W->3V3A	Δυε		
		Unmeasured line voltage computed in a three-phase three-wire system		
	DELTA->STAR	$\Delta UE, \Delta UE+1, \Delta UE+2$		
		Phase voltage computed in a three-phase three-wire (3V3A, 3V3AR) system		
	STAR->DELTA	$\Delta UE, \Delta UE+1, \Delta UE+2$		
		Line voltage calculated in a three-phase four-wire system		
Current (A)	difference	ΔΙ		
		Differential current iE between iE+1 determined through computation		
	3P3W->3V3A	ΔΙ		
		Unmeasured phase current		
	DELTA->STAR	ΔΙ		
		Neutral line current		
	STAR->DELTA	ΔΙ		
		Neutral line current		
Power (W)	difference			
	3P3W->3V3A			
	DELTA->STAR	$\Delta PE, \Delta PE+1, \Delta PE+2$		
		Phase power computed in a three-phase three-wire system		
	STAR->DELTA			

Delta computation is not possible when the computing method is digital filter average.

Averaging Function

Method	Computation				
Sync source period average	Averaging performed over a specified period				
	Set the calculation p	eriod using the set reference si	gnal (sync source) (ex	cluding WP and DCq)	
	Sync source: Ux, Ix,	EXT CLK, Z (/MTR1/MTR2 opt	ion)		
	The period of UE and IE is detected using a specified trigger value from the waveform sampling data				
	(E is the element	number.)			
	Data update interval	: 10 ms/50 ms/100 ms/200 ms/	500 ms/1 s/2 s/5 s/10 s	s/20 s	
	Averaging period: Da	ata update interval or less			
Digital filter average	Digital low-pass filter	Digital low-pass filter			
	Filter form: FIR				
	Filter response	Attenuation characteristics (<-100 dB)	Computation rate	Settling time	
	FAST	100 Hz	10kHz	40 ms	
	MID	10 Hz	1 kHz	400 ms	
	SLOW	1 Hz	100 Hz	4 s	
	VSLOW	0.1 Hz	10 Hz	40 s	
	Averaging period: Co However, the com response change, Data update interval	ontinuous computation puted value is reset to 0 when or data update interval change 10 ms/50 ms/100 ms/200 ms/	a range change, line fi is executed.	lter change, zero cal, filter	
Filter Function

Item	Specifications				
Line filter	For elements 1 to 7				
	Can be set separately for	each element			
	Computation rate Maximum computation rate: 10 MS/s				
	Filter response	Bessel			
	,	Filter form: IIR			
		Filter type: LPF			
		Filter order: 4			
		LPF:			
		Cutoff frequency: 100 Hz to 100 kHz, 1 MHz ¹			
		Resolution: 100 Hz			
		Cutoff characteristic: –24 dB/Oct (typical)			
	Filter response	Butterworth			
		Filter form: IIR			
		Filter type: LPF			
		Filter order: 4			
		LPF: Outoff from women in 100 Line to 100 kills i 1 Mills1			
		Cuton frequency: 100 Hz to 100 kHz, 1 MHz			
		Resolution. 100 Hz			
	1 Anti aliaging filton alama	outon characteristic. –24 ub/Oct (typical)			
		antis internal analog inter, Dessei			
		a input			
	Can be used during analo	y IIIput Maximum computation rate: 200 kS/a			
	Computation rate	Waximum computation rate. 200 KS/S			
	riller response	Dullerworth			
		Filter order: 4			
		I PF			
		Cutoff frequency: 100 Hz, 500 Hz, 1 kHz			
		Cutoff characteristic: –24 dB/Oct (tvpical)			
	For harmonic measurement				
	Stable measurement is po	ssible through the anti-aliasing filter provided for each sampling			
	frequency.	5 5 Free			
	Harmonic analysis in an a	rea different from normal measurement is possible.			
	When the line filter	According to the element's line filter			
	advanced setting is off				
	When the line filter	Filter exclusive to harmonic measurement (independent of the			
	advanced setting is on	element's line filter)			
	Filter response	Bessel			
	-	Filter form: IIR			
		Filter type: LPF			
		Filter order: 4			
		LPF:			
		Cutoff frequency: 100 Hz to 100 kHz			
		Resolution: 100 Hz			
	-	Cutoff characteristic: -24 dB/Oct (typical)			
	Filter response	Butterworth			
		Filter form: IIK			
		Filler type. LPF Filter order: 4			
		Cutoff frequency: 100 Hz to 100 kHz			
		Resolution: 100 Hz			
		Cutoff characteristic: -24 dB/Oct (typical)			
Frequency filter	Elements 1 to 7. for frequence	cy measurement and sync source			
<u>,</u> . .	Can be set separately for each element				
	Computation rate	Maximum computation rate: 10 MS/s			
	1	The computation rate is selected automatically based on the set			
		frequency 100, 1 k, 10 k, 100 k, 1 M, 5 M, or 10 MHz.			

Item	Specifications	
	Filter response	Butterworth
		Filter form: IIR
		Filter type: LPF, HPF, (BPF) ¹
		Filter order: 4
		LPF:
		Cutoff frequency: 100 Hz to 100 kHz
		Resolution: 100 Hz
		HPF:
		When the line filter advanced setting is off: Fixed to 0.1 Hz
		When the line filter advanced setting is on:
		Cutoff frequency: 0.1 Hz, 1 Hz, 10 Hz, 100 Hz to 100 kHz
		Resolution: 100 Hz (fc \geq 100 Hz)
		Cutoff characteristic: –24 dB/Oct (typical)
	1 BPF is possible by s	setting HPF and LPF simultaneously.
	LPF, BPF, and HPF	can be set for the first frequency and for the sync source.
	Default setting: H	IPF, 0.1 Hz
	HPF only for the se	cond frequency.
	Default setting: C)ff

Integration Function

Item	Specifications
Sample rate	5 MS/s
Calculation period	Manual, integration time, real-time control
	Integration time repetition, real-time control repetition
	Integration timer range: 0h00m00s to 10000h00m00s
	Count over: When the maximum integration time (10000 hours) is reached or when an integrated
	value reaches the maximum or minimum displayable integrated value (±9999999 MWh, ±999999
	MAh, ±999999 MVAh, ±999999 Mvarh), the integration time and value at that point are held and
	integration is stopped.
Power failure recovery	Resumes integration if a power failure occurs during integration.
Independent integration	Integration can be executed separately for each element.
External control	With the /DA20 option, start, stop, and reset are possible through external signals.
Auto calibration	Auto offset calibration feature
	Zero-level compensation is performed at the current range of all elements approximately every
	hour.
Timer accuracy	±0.02% of reading
Integration accuracy	±[Power accuracy (or current accuracy) + timer accuracy]

Frequency Measurement Function

Item Specifications Measured item Measures the frequency of the voltage or current applied to all input elements. Measurement system A/D data level trigger gate generation Reciprocal method Display resolution 99999 Minimum frequency resolution 0.1 Hz ≤ f ≤ 2 MHz Measurement range 0.1 Hz ≤ f ≤ 2 MHz For the relationship between the data update interval and the measurement range, see the specifications of each element (sections 6.15 and 6.16). * Measurement frequency range is limited by the element. * The display limit is 1.1 times the upper limit of the measurement range (2.2 MHz). Display: Error, 32-bit floating-point value: 0xFFFFFFE Accuracy Depends on the element Condition When the input signal level is 30% or more (60% or more when the crest factor is set to CF6 or CF6A) of the measurement range. However, 1) Input condition for 50% of the range or more • Twice the lower frequency limit above or less • Minimum current range 500 mA range (760903)(CF3) Input resistance: 1.5Ω, 6.67 mA range (760903)(CF3) Input resistance: 1.5Ω, 6.67 mA range (760903)(CF3) • Minimum external current sensor range 50 mV range (760903)(CF3) • Minimum external current sensor range 50 mV range (760903)(CF3)					
Measured Item Measures the frequency of the voltage or current applied to all input elements. Measurement system A/D data level trigger gate generation Reciprocal method Display resolution 99999 Minimum frequency 0.0001 Hz resolution 0.1 Hz ≤ f ≤ 2 MHz Measurement range 0.1 Hz ≤ f ≤ 2 MHz For the relationship between the data update interval and the measurement range, see the specifications of each element (sections 6.15 and 6.16). * Measurement frequency range is limited by the element. * The display limit is 1.1 times the upper limit of the measurement range (2.2 MHz). Display: Error, 32-bit floating-point value: 0xFFFFFFE Accuracy Depends on the element Condition When the input signal level is 30% or more (60% or more when the crest factor is set to CF6 or CF6A) of the measurement range. However, 1) Input condition for 50% of the range or more • Twice the lower frequency limit above or less • Minimum current range • Minimum current range 500 m Arange (760902)(CF3) Input resistance: 1.50, 6.67 mA range (760903)(CF3) Input resistance: 1.50, 6.67 mA range (760903)(CF3) • Minimum current probe input range 50 mV range (760901, 760902)(CF3) • Minimum current probe input range 50 mV range (760903)(CF3) • Minimum current probe input range	Item	Specifications			
Measurement system A/D data level trigger gate generation Reciprocal method Display resolution 9999 Minimum frequency resolution 0.0001 Hz Measurement range 0.1 Hz ≤ f ≤ 2 MHz For the relationship between the data update interval and the measurement range, see the specifications of each element (sections 6.15 and 6.16). * Measurement frequency range is limited by the element. * The display limit is 1.1 times the upper limit of the measurement range (2.2 MHz). Display: Error, 32-bit floating-point value: 0xFFFFFFE Accuracy Depends on the element Condition When the input signal level is 30% or more (60% or more when the crest factor is set to CF6 or CF6A) of the measurement range. However, 1) Input condition for 50% of the range or more • Twice the lower frequency limit above or less • Minimum current range 500 mA range (760901)(CF3) 5 mA range (760902)(CF3) Input resistance: 1.50, 6.67 mA range (760903)(CF3) • Input resistance: 1.50, 6.67 mA range (760903)(CF3) • Minimum eurrent probe input range 50 mV range (760901, 760902)(CF3) • Minimum current probe input range 50 mV range (760901, 760902)(CF3) • Minimum eurrent probe input range 50 mV range (760901, 760902)(CF3) • Minimum durrent probe input range 50 mV range (760903)(CF3) • Minimum eurrent probe input range 50 mV range (760903)(CF3) • J) Trequency filter setup conditions 0.1 Hz to 100 Hz: to = 10	Measured item	Measures the frequency of the voltage or current applied to all input elements.			
Reciprocal method Display resolution 99999 Minimum frequency 0.0001 Hz resolution 0.1 Hz ≤ f ≤ 2 MHz For the relationship between the data update interval and the measurement range, see the specifications of each element (sections 6.15 and 6.16). * Measurement frequency range is limited by the element. * The display limit is 1.1 times the upper limit of the measurement range (2.2 MHz). Display: Error, 32-bit floating-point value: 0xFFFFFFFE Accuracy Depends on the element Condition When the input signal level is 30% or more (60% or more when the crest factor is set to CF6 or CF6A) of the measurement range. However, 1) Input condition for 50% of the range or more * Twice the lower frequency limit above or less * Minimum current range 500 mA range (760901)(CF3) Input resistance: 1.50, 6.67 mA range (760903)(CF3) Input resistance: 1.50, 0.67 mA range (760903)(CF3) Input resistance: 1.50, 0.67 mA range (760903)(CF3) • Minimum external current sensor range 50 mV range (760901, 760902)(CF3) • Minimum external current sensor range 50 mV range (760903)(CF3) • Minimum external current sensor range 50 mV range (760903)(C	Measurement system	A/D data level trigger gate generation			
Display resolution 99999 Minimum frequency 0.0001 Hz resolution 0.1 Hz ≤ f ≤ 2 MHz Measurement range 0.1 Hz ≤ f ≤ 2 MHz For the relationship between the data update interval and the measurement range, see the specifications of each element (sections 6.15 and 6.16). * The display limit is 1.1 times the upper limit of the measurement range (2.2 MHz). Display: Error, 32-bit floating-point value: 0xFFFFFFE Accuracy Depends on the element Condition When the input signal level is 30% or more (60% or more when the crest factor is set to CF6 or CF6A) of the measurement range. However, 1) Input condition for 50% of the range or more • Twice the lower frequency limit above or less • Minimum current range 500 mA range (760902)(CF3) Input resistance: 10, 10 mA range (760903)(CF3) Input resistance: 1.50, 6.67 mA range (760903)(CF3) Input resistance: 1.50, 6.67 mA range (760903)(CF3) • Minimum current probe input range 50 mV range (760903)(CF3) • Minimum current probe input range 50 mV range (760903)(CF3) • Minimum current probe input range 50 mV range (760903)(CF3) • Minimum current probe input range 50 mV range (760903)(CF		Reciprocal method			
Minimum frequency resolution 0.0001 Hz Measurement range 0.1 Hz ≤ f ≤ 2 MHz For the relationship between the data update interval and the measurement range, see the specifications of each element (sections 6.15 and 6.16). * Measurement frequency range is limited by the element. * The display limit is 1.1 times the upper limit of the measurement range (2.2 MHz). Display: Error, 32-bit floating-point value: 0xFFFFFFE Accuracy Depends on the element Condition When the input signal level is 30% or more (60% or more when the crest factor is set to CF6 or CF6A) of the measurement range. However, 1) Input condition for 50% of the range or more • Twice the lower frequency limit above or less • Minimum current range 500 mA range (760902)(CF3) Input resistance: 15.0, 6.67 mA range (760903)(CF3) Input resistance: 15.0, 6.67 mA range (760903)(CF3) Input resistance: 15.0, 6.67 mA range (760903)(CF3) Minimum current probe input range 50 mV range (760902)(CF3) • Minimum current probe input range 50 mV range (760903)(CF3) • Minimum current probe input range 50 mV range (760903)(CF3) • Minimum current probe input range 50 mV range (760903)(CF3) • Minimum current probe input range 50 mV range (760903)(CF3) • So mV range (760903)(CF3) • Minimum current probe input range 50 mV range (760903)(CF3) • So mV range (760903)(CF3) • Minimum current probe input range 50 mV range (760903)(CF3) • Minimum current probe	Display resolution	99999			
resolution Measurement range 0.1 Hz ≤ f ≤ 2 MHz For the relationship between the data update interval and the measurement range, see the specifications of each element (sections 6.15 and 6.16). * Measurement frequency range is limited by the element. * The display limit is 1.1 times the upper limit of the measurement range (2.2 MHz). Display: Error, 32-bit floating-point value: 0xFFFFFFE Accuracy Depends on the element Condition When the input signal level is 30% or more (60% or more when the crest factor is set to CF6 or CF6A) of the measurement range. However, 1) Input condition for 50% of the range or more • Twice the lower frequency limit above or less • Minimum current range 500 mA range (760901)(CF3) 5 mA range (760902)(CF3) Input resistance: 1.5Ω, 6.67 mA range (760903)(CF3) Input resistance: 1.5Ω, 6.67 mA range (760903)(CF3) • Minimum external current sensor range 50 mV range (760901, 760902)(CF3) • Minimum external current sensor range 50 mV range (760903)(CF3) • Minimum external current sensor range 50 mV range (760903)(CF3) • Minimum external current sensor range 50 mV range (760903)(CF3) • Minimum external current sensor range 50 mV range (760903)(CF3) • Minimum external current sensor range 50 mV range (760903)(CF3) • Minimu external current	Minimum frequency	0.0001 Hz			
Measurement range 0.1 Hz ≤ f ≤ 2 MHz For the relationship between the data update interval and the measurement range, see the specifications of each element (sections 6.15 and 6.16). * Measurement frequency range is limited by the element. * The display limit is 1.1 times the upper limit of the measurement range (2.2 MHz). Display: Error, 32-bit floating-point value: 0xFFFFFFE Accuracy Depends on the element Condition When the input signal level is 30% or more (60% or more when the crest factor is set to CF6 or CF6A) of the measurement range. However, 1) Input condition for 50% of the range or more • Twice the lower frequency limit above or less • Minimum current range 500 mA range (760902)(CF3) Input resistance: 15Ω, 6.5 mA range (760903)(CF3) Input resistance: 15Ω, 6.5 mA range (760903)(CF3) Input resistance: 15Ω, 6.5 mA range (760903)(CF3) Inimum external current sensor range 50 mV range (760901, 760902)(CF3) • Minimum external current sensor range 50 mV range (760903)(CF3) • Minimum external current sensor range 50 mV range (760903)(CF3) • Minimum external current sensor range 50 mV range (760903)(CF3) • Minimum external current sensor range 50 mV range (760903)(CF3) • Minimum current probe input range<	resolution				
For the relationship between the data update interval and the measurement range, see the specifications of each element (sections 6.15 and 6.16). * Measurement frequency range is limited by the element. * The display limit is 1.1 times the upper limit of the measurement range (2.2 MHz). Display: Error, 32-bit floating-point value: 0xFFFFFFE Accuracy Depends on the element Condition When the input signal level is 30% or more (60% or more when the crest factor is set to CF6 or CF6A) of the measurement range. However, 1) Input condition for 50% of the range or more • Twice the lower frequency limit above or less • Minimum current range 500 mA range (760901)(CF3) Input resistance: 10, 10 mA range (760903)(CF3) Input resistance: 10, 10 mA range (760903)(CF3) Input resistance: 1.5Ω, 6.67 mA range (760903)(CF3) • Minimum current range 50 mV range (760903), CF3) • Minimum current probe input range 50 mV range (760903), CF3) • Minimum current probe input range 50 mV range (760903), CF3) • Minimum current probe input range 50 mV range (760903), CF3) • Minimum current probe input range 50 mV range (760903), CF3) • Minimum current probe input range 50 mV range (760903), CF3) • Minimum current probe input range 50 mV range (760903), CF3) • Minimum current probe input range	Measurement range	$0.1 \text{ Hz} \le f \le 2 \text{ MHz}$			
specifications of each element (sections 6.15 and 6.16). * Measurement frequency range is limited by the element. * The display limit is 1.1 times the upper limit of the measurement range (2.2 MHz). Display: Error, 32-bit floating-point value: 0xFFFFFE Accuracy Depends on the element Condition When the input signal level is 30% or more (60% or more when the crest factor is set to CF6 or CF6A) of the measurement range. However, 1) Input condition for 50% of the range or more • Twice the lower frequency limit above or less • Minimum current range 500 mA range (760901)(CF3) 5 mA range (760902)(CF3) Input resistance: 1.50, 6.67 mA range (760903)(CF3) • Minimum external current sensor range 50 mV range (760903)(CF3) • Minimum current probe input range 50 mV range (760903)(CF3) • Minimum current probe input range 50 mV range (760903)(CF3) • Minimum current probe input range 50 mV range (760903)(CF3) • Minimum current probe input range 50 mV range (760903)(CF3) • Minimum current probe input range 50 mV range (760903)(CF3) • Minimum current probe input range 50 mV range (760903)(CF3) • Minimum current probe input range 50 mV range (760903)(CF3) • Minimum current probe input range 50 mV range (760903)(CF3) • Prequen		For the relationship between the data update interval and the measurement range, see the			
 * Measurement frequency range is limited by the element. * The display limit is 1.1 times the upper limit of the measurement range (2.2 MHz). Display: Error, 32-bit floating-point value: 0xFFFFFFE Accuracy Depends on the element Condition When the input signal level is 30% or more (60% or more when the crest factor is set to CF6 or CF6A) of the measurement range. However, 1) Input condition for 50% of the range or more • Twice the lower frequency limit above or less • Minimum current range 500 mA range (760901)(CF3) 5 mA range (760902)(CF3) Input resistance: 1.50, 6.67 mA range (760903)(CF3) Input resistance: 1.50, 6.67 mA range (760903)(CF3) • Minimum external current sensor range 50 mV range (760901, 760902)(CF3) • Minimum current probe input range 50 mV range (760903)(CF3) • Minimum current probe input range 50 mV range (760903)(CF3) • S m V range (760903)(CF3) • Minimum current probe input range 50 mV range (760903)(CF3) • S mage (760903)(CF3) • Minimum current probe input range 50 mV range (760903)(CF3) • S mage (760903)(CF3) • Minimum current probe input range 50 mV range (760903)(CF3) • S mage (760903)(CF3) • S mage (760903)(CF3) • S mage (760903)(CF3) • S mage (760903)(CF3) • Minimum current probe input range 50 mV range (760903)(CF3) • S mage (760903)(CF3) • S mage (760903)(CF3) • Minimum current probe input range 50 mV range (760903)(CF3) • S mage (760903)(CF3) • S mage (760903)(CF3) • Minimum current probe input range 50 mV range (760903)(CF3) • S mage (760903)(CF3) • S mage (760903)(CF3) • Minimum current probe input range 50 mV range (760903)(CF3) • S mage (760903)(CF3)		specifications of each element (sections 6.15 and 6.16).			
* The display limit is 1.1 times the upper limit of the measurement range (2.2 MHz). Display: Error, 32-bit floating-point value: 0xFFFFFE Accuracy Depends on the element Condition When the input signal level is 30% or more (60% or more when the crest factor is set to CF6 or CF6A) of the measurement range. However, 1) Input condition for 50% of the range or more • Twice the lower frequency limit above or less • Minimum current range 500 mA range (760901)(CF3) 5 mA range (760902)(CF3) Input resistance: 1.0, 10 mA range (760903)(CF3) Input resistance: 1.0, 0.6.67 mA range (760903)(CF3) Input resistance: 1.5Ω, 6.67 mA range (760903)(CF3) • Minimum external current sensor range 50 mV range (760901, 760902)(CF3) • Minimum external current sensor range 50 mV range (760903)(CF3) • Minimum current probe input range 50 mV range (760903)(CF3) • Minimum current probe input range 50 mV range (760903)(CF3) • Minimum current probe input range 50 mV range (760903)(CF3) • Minimum current probe input range 50 mV range (760903)(CF3) • Minimum current probe input range 50 mV range (760903)(CF3) • Minimum current probe input range 50 mV range (760903)(CF3) • Minimum current probe input range 50 mV range (760903)(CF3) • Minimum current probe inpu		* Measurement frequency range is limited by the element.			
Display: Error, 32-bit floating-point value: 0xFFFFFE Accuracy Depends on the element Condition When the input signal level is 30% or more (60% or more when the crest factor is set to CF6 or CF6A) of the measurement range. However, 1) Input condition for 50% of the range or more • Twice the lower frequency limit above or less • Minimum current range 500 mA range (760901)(CF3) 5 mA range (760902)(CF3) Input resistance: 10, 10 mA range (760903)(CF3) Input resistance: 10, 10 mA range (760903)(CF3) • Minimum external current sensor range 50 mV range (760901, 760902)(CF3) • Minimum current probe input range 50 mV range (760903, 760902)(CF3) • Minimum external current sensor range 50 mV range (760903, 760902)(CF3) • Minimum current probe input range 50 mV range (760903, 760903)(CF3) • Minimum current probe input range 50 mV range (760903, 763) • Minimum current probe input range 50 mV range (760903, CF3) • Minimum current probe input range 50 mV range (760903, CF3) • Minimum current probe input range 50 mV range (760903, CF3) • Minimum current probe input range 50 mV range (760903, CF3) • Minimum current probe input range 50 mV range (760903, CF3) • Minimum curr		* The display limit is 1.1 times the upper limit of the measurement range (2.2 MHz).			
Accuracy Depends on the element Condition When the input signal level is 30% or more (60% or more when the crest factor is set to CF6 or CF6A) of the measurement range. However, 1) Input condition for 50% of the range or more • Twice the lower frequency limit above or less • Minimum current range 500 mA range (760901)(CF3) 5 mA range (760902)(CF3) Input resistance: 10, 10 mA range (760903)(CF3) Input resistance: 10, 10 mA range (760903)(CF3) • Minimum external current sensor range 50 mV range (760901, 760902)(CF3) • Minimum external current sensor range 50 mV range (760901, 760902)(CF3) • Minimum current probe input range 50 mV range (760903)(CF3) • Minimum current probe input range 50 mV range (760903)(CF3) • Minimum current probe input range 50 mV range (760903)(CF3) • Minimum current probe input range 50 mV range (760903)(CF3) • Minimum current probe input range 50 mV range (760903)(CF3) 2) Frequency filter setup conditions 0.1 Hz to 100 Hz: fc = 100 Hz 100 Hz 100 kHz: fc = 100 kHz 100 kHz Frequency detection signal Selectable range level setting HPF: ON: Auto HPF: OFF: Rectifier OFF: ±100% of range </td <td></td> <td>Display: Error, 32-bit floating-point value: 0xFFFFFFE</td>		Display: Error, 32-bit floating-point value: 0xFFFFFFE			
Condition When the input signal level is 30% or more (60% or more when the crest factor is set to CF6 or CF6A) of the measurement range. However, 1) Input condition for 50% of the range or more • Twice the lower frequency limit above or less • Minimum current range 500 mA range (760901)(CF3) 5 mA range (760902)(CF3) Input resistance: 1Ω, 10 mA range (760903)(CF3) Input resistance: 1.5Ω, 6.67 mA range (760903)(CF3) • Minimum external current sensor range 50 mV range (760901, 760902)(CF3) • Minimum external current sensor range 50 mV range (760903)(CF3) • Minimum current probe input range 50 mV range (760903)(CF3) • Minimum current probe input range 50 mV range (760903)(CF3) • Minimum current probe input range 50 mV range (760903)(CF3) • Minimum current probe input range 50 mV range (760903)(CF3) • Minimum current probe input range 50 mV range (760903)(CF3) • Minimum current probe input range 50 mV range (760903)(CF3) • J) Frequency filter setup conditions 0.1 Hz to 100 Hz: fc = 100 Hz 100 Hz to 1 kHz: fc = 1 00 kHz 100 kHz: fc = 100 kHz Frequency detection signal Selectable range level setting HPF: ON: Auto HPF: OFF: Rectifier OFF: ±100% of range <td>Accuracy</td> <td>Depends on the element</td>	Accuracy	Depends on the element			
CF6A) of the measurement range. However, 1) Input condition for 50% of the range or more • Twice the lower frequency limit above or less • Minimum current range 500 mA range (760901)(CF3) 5 mA range (760902)(CF3) Input resistance: 1.5, 0, 6.67 mA range (760903)(CF3) Input resistance: 1.5, 0, 6.67 mA range (760903)(CF3) • Minimum external current sensor range 50 mV range (760901, 760902)(CF3) • Minimum current probe input range 50 mV range (760903)(CF3) 2) Frequency filter setup conditions 0.1 Hz to 100 Hz: fc = 100 Hz 100 Hz to 1 kHz: fc = 1 N Hz 1kHz to 100 kHz: fc = 100 kHz Frequency detection signal level setting HPF: ON: Auto HPF: OFF: Rectifier OFF: ±100% of range Rectifier ON: 0% to ±100% of range	Condition	When the input signal level is 30% or more (60% or more when the crest factor is set to CF6 or			
However, 1) Input condition for 50% of the range or more • Twice the lower frequency limit above or less • Minimum current range 500 mA range (760901)(CF3) 5 mA range (760902)(CF3) Input resistance: 1Ω, 10 mA range (760903)(CF3) Input resistance: 1.5Ω, 6.67 mA range (760903)(CF3) Input resistance: 1.5Ω, 6.67 mA range (760903)(CF3) • Minimum external current sensor range 50 mV range (760901, 760902)(CF3) • Minimum current probe input range 50 mV range (760903)(CF3) • Minimum current probe input range 50 mV range (760903)(CF3) • Minimum current probe input range 50 mV range (760903)(CF3) • Minimum current probe input range 50 mV range (760903)(CF3) • Minimum current probe input range 50 mV range (760903)(CF3) • J) Frequency filter setup conditions 0.1 Hz to 100 Hz: fc = 100 Hz 100 Hz to 1 kHz: fc = 1 kHz 1kHz to 100 kHz: fc = 100 kHz Frequency detection signal level setting HPF: ON: Auto HPF: OFF: Rectifier OFF: ±100% of range Rectifier ON: 0% to ±100% of range		CF6A) of the measurement range.			
1) Input condition for 50% of the range or more • Twice the lower frequency limit above or less • Minimum current range 500 mA range (760901)(CF3) 5 mA range (760902)(CF3) Input resistance: 10, 10 mA range (760903)(CF3) Input resistance: 1.5Ω, 6.67 mA range (760903)(CF3) • Minimum external current sensor range 50 mV range (760901, 760902)(CF3) • Minimum current probe input range 50 mV range (760903)(CF3) • Minimum current probe input range 50 mV range (760903)(CF3) • Minimum current probe input range 50 mV range (760903)(CF3) • Minimum current probe input range 50 mV range (760903)(CF3) • Prequency filter setup conditions 0.1 Hz to 100 Hz: fc = 100 Hz 100 Hz to 1 kHz: fc = 1 kHz 10kHz to 100 kHz: fc = 100 kHz Frequency detection signal level setting HPF: ON: Auto HPF: OFF: Rectifier OFF: ±100% of range Rectifier ON: 0% to +100% of range		However,			
 Twice the lower frequency limit above or less Minimum current range 500 mA range (760901)(CF3) 5 mA range (760902)(CF3) Input resistance: 1Ω, 10 mA range (760903)(CF3) Input resistance: 1.5Ω, 6.67 mA range (760903)(CF3) Minimum external current sensor range 50 mV range (760901, 760902)(CF3) Minimum current probe input range 50 mV range (760903)(CF3) Prequency filter setup conditions 0.1 Hz to 100 Hz: fc = 100 Hz 100 Hz to 1 kHz: fc = 1 kHz 1kHz to 100 kHz: fc = 10 kHz Frequency detection signal Selectable range HPF: ON: Auto HPF: OFF: Rectifier OFF: ±100% of range Rectifier ON: 0% to ±100% of range 		1) Input condition for 50% of the range or more			
 Minimum current range 500 mA range (760901)(CF3) 5 mA range (760902)(CF3) Input resistance: 1Ω, 10 mA range (760903)(CF3) Input resistance: 1.5Ω, 6.67 mA range (760903)(CF3) Minimum external current sensor range 50 mV range (760901, 760902)(CF3) Minimum current probe input range 50 mV range (760903)(CF3) Prequency filter setup conditions 0.1 Hz to 100 Hz: fc = 100 Hz 100 Hz to 1 kHz: fc = 1 kHz 1kHz to 100 kHz: fc = 100 kHz Frequency detection signal level setting Selectable range HPF: ON: Auto HPF: OFF: Rectifier OFF: ±100% of range Rectifier ON: 0% to ±100% of range 		 Twice the lower frequency limit above or less 			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Minimum current range			
5 mA range (760902)(CF3) Input resistance: 1Ω, 10 mA range (760903)(CF3) Input resistance: 1.5Ω, 6.67 mA range (760903)(CF3) • Minimum external current sensor range 50 mV range (760901, 760902)(CF3) • Minimum current probe input range 50 mV range (760903)(CF3) • Minimum current probe input range 50 mV range (760903)(CF3) • Minimum current probe input range 50 mV range (760903)(CF3) 2) Frequency filter setup conditions 0.1 Hz to 100 Hz: fc = 100 Hz 100 Hz to 1 kHz: fc = 1 kHz 1kHz to 100 kHz: fc = 100 kHz Frequency detection signal level setting HPF: ON: Auto HPF: OFF: Rectifier OFF: ±100% of range Rectifier ON: 0% to +100% of range		500 mA range (760901)(CF3)			
Input resistance: 1Ω, 10 mA range (760903)(CF3) Input resistance: 1.5Ω, 6.67 mA range (760903)(CF3) • Minimum external current sensor range 50 mV range (760901, 760902)(CF3) • Minimum current probe input range 50 mV range (760903)(CF3) • Minimum current probe input range 50 mV range (760903)(CF3) • Minimum current probe input range 50 mV range (760903)(CF3) 2) Frequency filter setup conditions 0.1 Hz to 100 Hz: fc = 100 Hz 100 Hz to 1 kHz: fc = 1 kHz 1kHz to 100 kHz: fc = 100 kHz Frequency detection signal level setting HPF: ON: Auto HPF: OFF: Rectifier OFF: ±100% of range Rectifier ON: 0% to +100% of range		5 mA range (760902)(CF3)			
Input resistance: 1.5Ω, 6.67 mA range (760903)(CF3) • Minimum external current sensor range 50 mV range (760901, 760902)(CF3) • Minimum current probe input range 50 mV range (760903)(CF3) • Minimum current probe input range 50 mV range (760903)(CF3) 2) Frequency filter setup conditions 0.1 Hz to 100 Hz: fc = 100 Hz 100 Hz to 1 kHz: fc = 1 kHz 1kHz to 100 kHz: fc = 100 kHz Frequency detection signal level setting HPF: ON: Auto HPF: OFF: Rectifier OFF: ±100% of range Rectifier ON: 0% to +100% of range		Input resistance: 1Ω, 10 mA range (760903)(CF3)			
 Minimum external current sensor range 50 mV range (760901, 760902)(CF3) Minimum current probe input range 50 mV range (760903)(CF3) Prequency filter setup conditions 0.1 Hz to 100 Hz: fc = 100 Hz 100 Hz to 1 kHz: fc = 1 kHz 1kHz to 100 kHz: fc = 100 kHz Frequency detection signal level setting Selectable range HPF: ON: Auto HPF: OFF: Rectifier OFF: ±100% of range Rectifier ON: 0% to +100% of range 		Input resistance: 1.5Ω, 6.67 mA range (760903)(CF3)			
50 mV range (760901, 760902)(CF3) • Minimum current probe input range 50 mV range (760903)(CF3) 2) Frequency filter setup conditions 0.1 Hz to 100 Hz: fc = 100 Hz 100 Hz to 1 kHz: fc = 1 kHz 1kHz to 100 kHz: fc = 100 kHz Frequency detection signal level setting Selectable range HPF: ON: Auto HPF: OFF: Rectifier OFF: ±100% of range Rectifier ON: 0% to +100% of range		Minimum external current sensor range			
 Minimum current probe input range 50 mV range (760903)(CF3) 2) Frequency filter setup conditions 0.1 Hz to 100 Hz: fc = 100 Hz 100 Hz to 1 kHz: fc = 1 kHz 1kHz to 100 kHz: fc = 1 00 kHz Frequency detection signal level setting Selectable range HPF: ON: Auto HPF: OFF: Rectifier OFF: ±100% of range Rectifier ON: 0% to +100% of range 		50 mV range (760901, 760902)(CF3)			
50 mV range (760903)(CF3) 2) Frequency filter setup conditions 0.1 Hz to 100 Hz: fc = 100 Hz 100 Hz to 1 kHz: fc = 1 kHz 1kHz to 100 kHz: fc = 100 kHz Frequency detection signal level setting HPF: ON: Auto HPF: OFF: Rectifier OFF: ±100% of range Rectifier ON: 0% to +100% of range		Minimum current probe input range			
2) Frequency filter setup conditions 0.1 Hz to 100 Hz: fc = 100 Hz 100 Hz to 1 kHz: fc = 1 kHz 1kHz to 100 kHz: fc = 100 kHz Frequency detection signal level setting HPF: ON: Auto HPF: OFF: Rectifier OFF: ±100% of range Rectifier ON: 0% to +100% of range		50 mV range (760903)(CF3)			
0.1 Hz to 100 Hz: rc = 100 Hz 100 Hz to 1 kHz: fc = 1 kHz 100 Hz to 1 kHz: fc = 1 kHz 1kHz to 100 kHz: fc = 100 kHz Frequency detection signal Selectable range level setting HPF: ON: Auto HPF: OFF: Rectifier OFF: ±100% of range Rectifier ON: 0% to +100% of range		2) Frequency filter setup conditions			
INDUCTED FIRE: IC = 1 KHZ 1kHz to 100 kHz: IC = 1 KHZ 1kHz to 100 kHz: fc = 100 kHz Frequency detection signal Selectable range level setting HPF: ON: Auto HPF: OFF: Rectifier OFF: ±100% of range Rectifier ON: 0% to +100% of range		0.1 Hz to 100 Hz: tc = 100 Hz			
Frequency detection signal Selectable range level setting HPF: ON: Auto HPF: OFF: Rectifier OFF: ±100% of range Rectifier ON: 0% to +100% of range					
Frequency detection signal Selectable range level setting HPF: ON: Auto HPF: OFF: Rectifier OFF: ±100% of range Rectifier ON: 0% to +100% of range	En anno da ta atian ainm al				
HPF: OFF: Rectifier OFF: ±100% of range Rectifier ON: 0% to +100% of range	Frequency detection signal	Selectable range			
HPF: OFF: Rectifier OFF: ±100% of range Rectifier ON: 0% to +100% of range	ievei setting	HPF: UN: Auto			
Rectifier ON: 0% to +100% of range		HPF: OFF: Rectifier OFF: ±100% of range			
		Rectifier ON: 0% to +100% of range			

Harmonic Measurement Feature

Item	Specifications				
Measured item	All installed elements				
Method	PLL synchronization method				
Frequency range	Fundamental frequency: 0.1 Hz to 300 kHz				
	Analysis frequency: 0.1 Hz to 1.5 MHz				
PLL source	Select the input element's voltage or current or external clock.				
	Input level:		250		
	50% or more of t	the rated measu	urement range wh	en the crest factor is the bon the crest factor is	CE6 or CE6A
	The conditions in w	the frequency	filters are turned		CF0 01 CF0A.
	0.1 Hz < f < 100				
	$100 \text{ Hz} \le f < 1 \text{ kH}$	lz: 1 kHz			
	1 kHz ≤ f < 10 kH	lz: 10 kHz			
	10 kHz ≤ f < 100	kHz: 100 kHz			
Number of FFT points	Select 1024 or 819	2.			
Window function	Rectangular				
Anti-Aliasing Filter	Set using a line filte	er or harmonic f	ilter		
When the number of FFT po	ints is 1024				
	Fundamental	Sample rate	Window width	Upper limit of harmo	onic analysis*
	frequency			U, Ι, Ρ, Φ, ΦU, ΦΙ	Other measured values
	0.1 Hz to 3 kHz	f × 1024	1 wave	100th	100th
	3 kHz to 7.5 kHz	f × 512	2 waves	100th	100th
	7.5 kHz to 15 kHz	f × 256	4 waves	50th	50th
	15 kHz to 30 kHz	f × 128	8 waves	20th	20th
	30 kHz to 75 kHz	f × 64	16 waves	10th	10th
	75 kHz to 150 kHz	f × 32	32 waves	5th	5th
	* Harmonic analys	is is not execute	ed (disabled) whe	n the update interval i	s 10 ms.
When the number of FFT po	ints is 8192 (at 10 M	S/s)			
	Fundamental	Sample rate	Window width	Upper limit of harmo	onic analysis*
		6 4004		<u></u>	Other measured values
	0.5 Hz to 3 kHz	f × 1024	8 waves	500th harmonic	100th
	3 KHZ to 7.5 KHZ	f × 1024	8 waves	200th	100th
	7.5 kHz to 15 kHz	f × 512	16 waves	100th	100th
	15 KHZ to 30 KHZ	f × 256	32 waves	50th	50th
	30 kHz to 75 kHz	f × 128	64 waves	20th	20th
	75 KHZ to 150 KHZ	f × 64	128 waves	10th	10th
	150 KHz to 300 KHz	2 f × 32	256 waves	5th	5th
	The upper harmo	nic limit is 100	when the update i	nterval is 50 ms.	
	Further, harmoni	c analysis is no	t executed (disabi	ed) when the update	interval is 10 ms.
When the number of FFT po	ints is 8192 (at 5 MS	5/s)			
	Fundamental	Sample rate	Window width	Upper limit of harmo	onic analysis*
	frequency			U, I, Ρ, Φ, ΦU, ΦΙ	Other measured values
	0.5 Hz to 1.2 kHz	f × 1024	8 waves	500th harmonic	100th
	1.2 kHz to 3 kHz	f × 1024	8 waves	200th	100th
	3 kHz to 7.5 kHz	f × 512	16 waves	100th	100th
	7.5 kHz to 15 kHz	f × 256	32 waves	50th	50th
	15 kHz to 30 kHz	f × 128	64 waves	20th	20th
	30 kHz to 75 kHz	f × 64	128 waves	10th	10th
	75 kHz to 150 kHz	f × 32	256 waves	5th	5th
	* The upper harmonic limit is 100 when the update interval is 50 ms.				
	Further, harmoni	c analysis is no	, t executed (disabl	ed) when the update	interval is 10 ms.
		-	•		

6 Specifications

IEC Harmonic Measurement Feature (G7 option)

Item	Specifications			
Supported standards	IEC61000-4-7 Ed1.0/Ed2.0/Ed2.0 A1			
Target element	30A High Accuracy Eleme	ent (760901), 5	A High Accuracy	/ Element (760902)
Measured Item	Select one of the input ele	ements or Σ wi	ring units.	
Method	PLL synchronization meth	nod		
Frequency range	Fundamental frequency:	45 Hz to 66 Hz		
	Analysis frequency: 45 Hz	z to 10 kHz		
PLL source	Select the input element's	s voltage or cur	rent or external	clock.
	Input level:			
	50% or more of the rate	ed measureme	nt range when th	ne crest factor is CF3.
	100% or more of the ra	ted measurem	ent range when	the crest factor is CF6 or CF6A.
	Frequency filter: 100 Hz 0	NC		
Number of FFT points	32768			
Window function	Rectangular			
Window spacing	No gap, no overlap	No gap, no overlap		
Anti-aliasing filter	Set using a line filter (Butterworth 30 kHz: Ed2.0/E2.0A1, 20 kHz: Ed1.0)			
Interharmonic measurement	 Select the grouping function Type1, Type2, or none. (IEC 61000-4-7 Ed 2.0/Ed 2.0 A1) 			
	No grouping function. (IEC 61000-4-7 Ed 1.0)			
IEC61000-4-7 Ed 2.0/Ed 2.0	A1			
	Fundamental frequency	Sample rate	Window width	Upper limit of harmonic analysis
	45 Hz to 55 Hz	f*3276.8	10 waves	200th
	55 Hz to 66 Hz	f*2730.67	12 waves	170th
IEC61000-4-7 Ed 1.0				
	Fundamental frequency	Sample rate	Window width	Upper limit of harmonic analysis
	45 Hz to 66 Hz	f*2048	16 waves	120th
Data update interval	Depends on the PLL sour	се		
	Approx. 200 ms (Ed 2.0/	Ed 2.0 A1), appr	ox. 320 ms (Ed 1	.0) when the PLL source frequency is 50 Hz
	Approx. 200 ms (Ed 2.0/	Ed 2.0 A1), appr	ox. 267 ms (Ed 1	.0) when the PLL source frequency is 60 Hz

IEC Voltage Fluctuation/Flicker Measurement Function (G7 option)

Item	Specifications
Flicker meter class	F2
Applicable standards	IEC 61000-4-15 Ed 1.1/Ed 2.0

Normal Voltage Fluctuation/Flicker Measurement Mode

Item	Specifications	
Measured item	dc	Relative steady-state voltage change
	dmax	Maximum relative voltage change
	Tmax	Time during which the relative voltage change exceeds the threshold level in a single
		voltage change period
	Pst	Short-term flicker value
	Plt	Long-term flicker value
One observation period	30 s to	o 15 min
Number of observation	1 to 99	
periods		

"Measurement of dmax caused by manual switching" Mode

Item	Specifications
Measured item	dmax Maximum relative voltage change
One observation period	1 min
Number of observation periods	24 (outputs 22 average values excluding the maximum and minimum values)

Items Common to Both Measurement Modes

Item	Specifications
Target voltage/frequency	230 V/50 Hz, 230 V/60 Hz, 120 V/50 Hz, 120 V/60 Hz
Measurement target input	Voltage (no current measurement function)
Target element	30A High Accuracy Element (760901), 5A High Accuracy Element (760902)
Number of measurement	Up to three elements
elements	
Voltage input level	At least 50% of the range rating
Flicker scale	0.0001-6400 P.U. (20%) divided logarithmically into 1400
Display update	2 s (dc, dmax, Tmax)
	At the end of each observation period (Pst)
Communication output	dc, dmax, Tmax, Pst, Plt, instantaneous flicker sensation (Pinst), cumulative probability function
	(CPF)
External storage output	Screen image

Data Streaming Feature (DS option)

Item	Specifications
Waveform sampling	Select from 10 kS/s to 2 MS/s (1-2-5 steps, simple decimation), 1 MS/s maximum during integration
Waveform data to be	All inputs (U, I, Motor)
streamed	
Numeric data to be saved	All numeric data (normal data, harmonic data)
Data update interval	Operates in constant-interval update mode at an update interval of 50 ms, 100 ms, 200 ms, 500
	ms, or 1 s
Time data	IEEE1588 compatible
Data format	32-bit single precision floating point

6.8 Measurement Function Computation

Normal Measurement

For details about how the measurement function values are computed and determined, see appendix 1.

Item	Symbols and Meanings
Voltage (V)	Urms: true rms value, Umn: rectified mean value calibrated to the rms value, Urmn:
	current rectified mean value, Udc: simple average, Uac: AC component, Ufnd:
	fundamental component
Current (A)	Irms: true rms value, Imn: rectified mean value calibrated to the rms value, Irmn: current
	rectified mean value, ldc: simple average, lac: AC component, lfnd: fundamental
	component
Active power (W)	P
	Pfnd: fundamental component
Apparent power (VA)	S
	Sfnd: fundamental component
Reactive power (var)	Q
	Qfnd: fundamental component
Power factor	λ
	λfnd: fundamental component
Phase difference (°)	Φ
	Φfnd: fundamental component
Frequency (Hz)	fU (FreqU): voltage frequency, fl (FreqI): current frequency
	The fU and fl of elements 1 to 7 can be measured simultaneously.
	f2U (Freq2U): voltage frequency, f2I (Freq2I): the current frequency when the second
	frequency filter is applied
Corrected Power(W)	Pc
	Applicable standards
	IEC76-1 (1976), IEC76-1 (2011)
Voltage max. and min. (V)	U+pk: maximum voltage, U-pk: minimum voltage
Current max. and min. (A)	I+pk: maximum current, I-pk: minimum current
Power max. and min. (W)	P+pk: maximum power, P-pk: minimum power
Crest factor (peak-to-rms ratio)	CfU: voltage crest factor, CfI: current crest factor
Integration	ITime: integration time
	WP: sum of positive and negative watt hours
	WP+: sum of positive P (consumed watt hours)
	WP-: sum of negative P (watt hours returned to the power supply)
	q: sum of positive and negative ampere hours
	q+: sum of positive I (ampere hours)
	q–: sum of negative I (ampere hours)
	WS: volt-ampere hours
	WQ: var hours
	By using the current mode setting, you can select to integrate the ampere hours using
	Irms, Imn, Idc, Iac, or Irmn.
Voltage measurement range	RngU
Current measurement range	Rngl

Measurement Functions (Σ Functions) Determined for Each Wiring Unit (ΣA , ΣB , ΣC)

For details about how $\boldsymbol{\Sigma}$ function values are computed and determined, see appendix 1.

Item	Symbols and Meanings
Voltage (V)	Urms Σ : true rms value, Umn Σ : rectified mean value calibrated to the rms value, Urmn Σ : current
	rectified mean value, Udc Σ : simple average, Uac Σ : AC component
Current (A)	Irms Σ : true rms value, Imn Σ : rectified mean value calibrated to the rms value, Irmn Σ : current
	rectified mean value, $Idc\Sigma$: simple average, $Iac\Sigma$: AC component
Active power (W)	ΡΣ
Apparent power (VA)	SΣ
Reactive power (var)	QΣ
Corrected Power(W)	ΡcΣ
	Applicable standards
	IEC76-1 (1976), IEC76-1 (2011)
Integration	WPΣ: sum of positive and negative watt hours
	WP+ Σ : sum of positive P (consumed watt hours)
	WP– Σ : sum of negative P (watt hours returned to the power supply)
	$q\Sigma$: sum of positive and negative ampere hours
	q+Σ: sum of positive I (ampere hours)
	q–Σ: sum of negative I (ampere hours)
	WQ Σ : Integration of Q Σ
	WSΣ: Integration of SΣ
Power factor	λΣ
Phase difference (°)	ΦΣ

Harmonic Measurement Computation Feature

Measurement Functions Determined for Each Input Element

Item	Symbols and Meanings	
Voltage (V)	U (k): rms voltage value of harmonic order k ¹	U: total rms voltage ²
Current (A)	I (k): rms current value of harmonic order k	I: total rms current ²
Active power (W)	P (k): active power of harmonic order k	P: total active power ²
Apparent power (VA)	S (k): apparent power of harmonic order k	S: total apparent power ²
Reactive power (var)	Q (k): reactive power of harmonic order k	Q: total reactive power ²
Power factor	λ (k): power factor of harmonic order k	λ: total power factor ²
Phase difference (°)	Φ (k): phase difference between the voltage and c phase difference	urrent of harmonic order k, Φ: total
	ΦU (k): phase difference between harmonic volta U(1)	ge U(k) and the fundamental wave
	ΦI (k): phase difference between harmonic curren	t I(k) and the fundamental wave I(1)
Load circuit impedance (Ω)	Z (k): impedance of the load circuit in relation to h	armonic order k
Load circuit resistance and reactance (Ω)	Rs (k): resistance of the load circuit in relation to h inductor L, and capacitor C are connected	armonic order k when resistor R, in series
	Xs (k): reactance of the load circuit in relation to h	armonic order k when resistor R,
	inductor L, and capacitor C are connected	in series
	Rp (k): resistance of the load circuit in relation to h	narmonic order k when R, L, and C
	are connected in parallel	
	Xp (k): reactance of the load circuit in relation to h	armonic order k when R, L, and C
	are connected in parallel	
Fundamental component of voltage (V)	Ufnd: U (1)	
Fundamental component of current (A)	Ifnd: I (1)	
Fundamental active power (W)	Pfnd: P (1)	
Fundamental apparent power (VA)	Sfnd: S (1)	
Fundamental reactive power (var)	Qfnd: Q (1)	
Fundamental power factor	λfnd: λ (1)	
Phase difference between the	Φfnd: Φ (1)	
tundamental voltage and current (°)		
Harmonic distortion factor (%)	Undf (K): ratio of harmonic voltage $U(K)$ to $U(1)$ or	U
	Indf (K): ratio of harmonic current I(K) to I(1) or I	
T () () () () () () () () () (Phot (k): ratio of harmonic active power P(k) to P(1) or P
Iotal harmonic distortion (%)	Uthd: ratio of the total harmonic voltage to U(1) or	03
	Ithd: ratio of the total narmonic current to I(1) or I	
<u></u>	Pthd: ratio of the total harmonic active power to P	(1) or P ³
Telephone harmonic	Uthf: voltage telephone harmonic factor, Ithf: curre	ent telephone harmonic factor
Iactor		
Tolophono influence	Litif: voltago tolonhono influenco factor. Itif: curron	t tolophono influonco factor
factor	our voltage telephone initidence factor, fui: curren	
[applicable standard: IEEE Std 100		
(1996)]		
Harmonic voltage factor ⁴	hvr:harmonic voltage factor	
Harmonic current factor ⁴	hcr:harmonic current factor	
K-factor	Ratio of the squared sum weighted harmonic com	ponents to the squared sum of the
	narmonic currents	

1 Harmonic order k is an integer from 0 to the upper limit of harmonic analysis. The 0th order is the DC component. The upper limit is determined automatically according to the PLL source frequency. It can go up to the 500th harmonic order.

2 The total value is determined according to the equation on page 4 of the appendix from the fundamental wave (1st harmonic) and all harmonic components (2nd harmonic to the upper limit of harmonic analysis). The DC component can also be included.

3 Total harmonic values are determined from all harmonic components (the 2nd harmonic to the upper limit of harmonic analysis) according to the equations on page 5 of the appendix.

4 The expression may vary depending on the definitions in the standard. For details, see the corresponding standard.

Item	Symbols and Meanings	
Voltage (V)	UΣ (1): rms voltage of harmonic order 1	UΣ: total rms voltage ¹
Fundamental component of voltage (V)	UfndΣ	
Current (A)	I Σ (1): rms current of harmonic order 1	IΣ: total rms current ¹
Fundamental component of current (A)	lfndΣ	
Active power (W)	PΣ (1): active power of harmonic order 1	PΣ: total active power ¹
Fundamental active power (W)	PfndΣ	
Apparent power (VA)	$S\Sigma$ (1): apparent power of harmonic order 1	SΣ: total apparent power ¹
Fundamental apparent power (VA)	SfndΣ	
Reactive power (var)	$Q\Sigma$ (1): reactive power of harmonic order 1	QΣ: total reactive power ¹
Fundamental reactive power (var)	QfndΣ	
Power factor	$\lambda\Sigma$ (1): power factor of harmonic order 1	λΣ: total power factor ¹
Fundamental power factor	λfndΣ	
Phase difference (°)	ΦΣ	

Measurement Functions (Σ Functions) Determined for Each Wiring Unit (ΣΑ, ΣΒ, ΣC)

1 The total value is determined according to the equation on page 4 of the appendix from the fundamental wave (1st harmonic) and all harmonic components (2nd harmonic to the upper limit of harmonic analysis). The DC component can also be included.

Measurement Functions that Indicate Fundamental Voltage and Current Phase Differences between Input Elements

These measurement functions indicate the phase differences between the fundamental voltage U(1) of the smallest numbered input element in a wiring unit and the fundamental voltages U(1) or currents I(1) of other input elements. The following table indicates the measurement functions for a wiring unit that combines elements 1, 2, and 3.

Item	Symbols and Meanings
Phase angle U1-U2 (°)	ΦU1-U2: phase angle between U1 (1) and the fundamental voltage of element 2, U2 (1)
Phase angle U1-U3 (°)	ΦU1-U3: phase angle between U1 (1) and the fundamental voltage of element 3, U3 (1)
Phase angle U1-I1 (°)	ΦU1-I1: phase angle between U1 (1) and the fundamental current of element 1, I1 (1)
Phase angle U2-I2 (°)	ΦU2-I2: phase angle between U2 (1) and the fundamental current of element 2, I2 (1)
Phase angle U3-I3 (°)	ΦU3-I3: phase angle between U3 (1) and the fundamental current of element 3, I3 (1)
EAM1U1 to EAM1U7 (°),	Phase angles of the fundamental waves of U1 to I7 with the rising edge of the signal received
EAM1I1 to EAM1I7 (°)	through the Motor1 (MTR1) Z terminal of the motor evaluation function as the reference.
EAM3U1 to EAM3U7 (°),	Phase angles of the fundamental waves of U1 to I7 with the rising edge of the signal received
EAM3I1 to EAM3I7 (°)	through the Motor3 (MTR2) Z terminal of the motor evaluation function as the reference.

Motor Evaluation Function (Option)

Item	Symbols and Meanings
Motor rotating speed	Speed
Motor torque	Torque
Synchronous speed	SyncSp
Slip (%)	Slip
Motor output	Pm
Auxiliary input	AUX

Measurement Range

Item	Symbols and Meanings
Voltage measurement range	RngU
Current measurement range	Rngl
Speed measurement range	RngSpd
Torque measurement range	RngTrq
Aux measurement range	RngAux

6.9 Auxiliary I/O

External Clock Input Section

Item	Specifications
Input connector type	BNC
Input level	TTL
Sync signal input	Normal measurement: Frequency range: Same as the frequency measurement range
	Harmonic measurement: Frequency range: 0.1 Hz to 300 kHz
	* Input waveform: 50% duty ratio rectangular wave
Trigger input	Input logic: Negative logic, falling edge
	Minimum pulse width: 1 µs
	Trigger delay: Within (2 μs + 12 μs + phase correction time)

External Monitor

Item	Specifications
Input connector type	D-sub 15 pin (receptacle)
Output format	Analog RGB output
Output resolution	WXGA output, 1280 × 800 dots
	Approx. 60 Hz Vsync (66 MHz dot clock frequency)

Remote, D/A (Option)

Item	Specifications
Input connector type	Micro ribbon connector (Amphenol 57LE connector), 36-pin
Control signal	Integration
	RESET: EXT RESET
	START: EXT START
	STOP: EXT STOP
	BUSY: INTEG BUSY
	Updating Data
	HOLD: EXT HOLD
	SINGLE: EXT SINGLE
Input	0 to 5 V
Output	0 to 5 V

6.10 Peripheral Device Connection

USB

Item	Specifications
Connector type	Type A connector (receptacle)
Ports	2
Electrical and mechanical	Complies with USB Rev. 2.0
Supported transfer modes	HS (High Speed) mode (480 Mbps), FS (Full Speed) mode (12 Mbps), LS (Low Speed) mode (1.5 Mbps)
Compatible devices	Mass storage devices that comply with USB Mass Storage Class Ver. 1.1 Usable capacity: 8 TB, partition format: MBR/GPT, format type: FAT32/FAT16/exFAT 104 or 109 keyboards that comply with USB HID Class Ver. 1.1 Mouse devices that comply with USB HID Class Ver. 1.1
Power supply	5 V, 500 mA (each port) You cannot connect devices whose maximum current consumptions exceed 100 mA to two different ports on the instrument at the same time.

6.11 Computer Interface

GP-IB Interface

Item	Specifications
Input connector type	24-pin connector
Electrical and mechanical	Complies with IEEE St'd 488-1978 (JIS C 1901-1987)
Functional specifications	SH1, AH1, T6, L4, SR1, RL1, PP0, DC1, DT1, and C0
Protocol	Conforms to IEEE St'd 488.2-1992
Code	ISO (ASCII) code
Mode	Addressable mode
Address	0 to 30
Clear remote mode	Press UTILITY (LOCAL) to clear remote mode (except during Local Lockout).

Ethernet interface

Item	Specifications
Connector type	RJ-45 connector
Ports	1
Electrical and mechanical	IEEE802.3 compliant, Auto-MDIX
Transmission system	Ethernet1000Base-T/100BASE-TX/10BASE-T
Communication protocol	TCP/IP
Supported services	FTP server, DHCP, DNS, remote control (VXI-11, Socket), SNTP, FTP client, Modbus/TCP server, and web server

USB PC Interface

ltem	Specifications		
Connector type	Type B connector (receptacle)		
Ports	1		
Electrical and mechanical	Complies with USB 3.0		
Supported transfer modes	SS (SuperSpeed) mode (5 Gbps), HS (High Speed) mode (480 Mbps), FS (Full Speed) mode (12 Mbps)		
Supported protocols	USBTMC-USB488(USB Test and Measurement Class Ver. 1.0)		
PC system requirements	A PC with a USB port, running Windows 7, Windows 8.1, or Windows 10. A separate device driver is required to enable the connection with the PC.		

6.12 System Maintenance Processing

Alarm Generation and Operation

Item	Specifications		
Fan stop	Fan stop alarm indication		
	Emergency operation stop after about 60 seconds*		
Internal temperature error	Temperature error alarm indication		
	Emergency operation stop*		
* Emerger	ncy operation stop		
Stops	Stops the power supply for running the instrument		
Stops the power supply to elements, motor (/MTR1/MTR2), and D/A output (/DA20)			
Generates intermittent beeps, MENU key in the SETUP area blinks in red			
Contir	ntinues the fan operation		

6.13 General Specifications

Item	Specifications			
Warm-up time	Approx. 30 minutes			
Operating environment	Temperature	5°C to 40°C		
	Humidity	20% RH to 80% RH (no condensation)		
	Operating altitude	2000 m or less		
	Installation location	Indoor use		
Storage environment	Temperature	-25°C to 60°C (no condensation)		
0	Humidity	20% RH to 80% RH (no condensation)		
Rated supply voltage	100 VAC to 120 VAC, 220 V	VAC to 240 VAC		
Permitted supply voltage range	90 VAC to 132 VAC, 198 V	AC to 264 VAC		
Rated supply frequency	50 Hz/60 Hz			
Permitted supply frequency	48 Hz to 63 Hz			
range				
Maximum power consumption	560 VA			
Cooling method	Forced air cooling, air vents	s on the left, right, and top panels		
Installation orientation	Horizontal, tilted (using the	stand)		
External dimensions	177 mm (H) × 426 mm (W)	× 496 mm (D)		
	(excluding the handles and	protrusions)		
Weight	Approx, 12.5 kg (main unit only with /M1/MTR1/DA20 installed)			
Battery backup	Setup parameters and the	internal clock are backed up with a lithium battery.		
Safety standards ¹	Compliant standards EN 61010-1. EN 61010-2-030 EN 61010-031 EN 60825-1			
	Overvoltage category II ²			
	Measurement category (CAT II ³		
	Pollution degree 2 ⁴			
Emissions ¹	Compliant standards			
EN 61326-1 ClassA, EN 61326-2-1, EN 61000-3-2, EN 61000		61326-2-1, EN 61000-3-2, EN 61000-3-3		
	EMC Regulatory Arrange	ement in Australia and New Zealand EN 55011 Class A, Group 1		
	Korea Electromagnetic C	Korea Electromagnetic Conformity Standard (한국 전자파적합성기준)		
	This product is a Class A	(for industrial environment) product. Operation of this product in a		
	residential area may cau	se radio interference in which case the user will be required to correct		
	the interference. In addit	ion, when a measurement lead or probe is connected to an input		
	element or when the dev	ice under measurement is connected to the instrument, the emission		
	requirements may no longer be met. In such cases, the user will be required to take appropriate measures.			
	Cable conditions Current sensor connection terminals (760903) Use a dedicated cable (761956). EXT CLK_MEAS_START input terminals 			
	Use BNC cables ⁵			
	Motor evaluation function	on terminals AUX input terminals		
	 GP-IB interface connector Use a shielded GP-IB cable.⁵ 			
	 RGB output connector 			
	Use a shielded D-sub	15 pin cable. ⁵		
	 USB port (PC) 			
	Use a shielded USB c	able. ⁵		
	• USB port (for peripheral devices)			
	Use a shielded USB cable. ⁵			
	• Ethernet connector			
	Use a category 5 or better Ethernet cable (STP). ⁶			

Item	Specifications		
Immunity1	Compliant standards		
	EN 61326-1 Table 2 (for use in industrial locations)		
	EN 61326-2-1		
	When a measurement lead or probe is connected to an input element or when the device under measurement is connected to the instrument, the immunity requirements may no longer be met.		
	In such cases, the user will be required to take appropriate measures.		
	Influence in the immunity environment		
	Measurement input: within ±20% of range		
	(When the crest factor is set to 6, within $\pm 40\%$ of range.)		
	External current sensor input (760901, 760902): within ±300 mV		
	Current probe input (760903): within ±300 mV		
	D/A output: within $\pm 20\%$ of FS; FS = 5 V		
	Cable conditions		
	Same as the cable conditions for emission above.		
	Current probe input terminal (760903)		
	50Ω termination 700976		
Environmental standards ¹	EU RoHS Directive compliant		

- 1 Applies to products with CE marks. For information on other products, contact your nearest YOKOGAWA dealer.
- 2 The overvoltage category is a value used to define the transient overvoltage condition and includes the rated impulse withstand voltage. Overvoltage category II applies to electrical equipment that is powered through a fixed installation, such as a wall outlet wired to a distribution board.
- 3 This instrument is a measurement category II product. Do not use it for measurement category III or IV measurements. Measurement category O applies to measurement of other types of circuits that are not directly connected to a main power source.

Measurement Category II applies to electrical equipment that is powered through a fixed installation, such as a wall outlet wired to a distribution board, and to measurement performed on such wiring.

Measurement category III applies to measurement of facility circuits, such as distribution boards and circuit breakers. Measurement category IV applies to measurement of power source circuits, such as entrance cables to buildings and cable systems, for low-voltage installations.

- 4 Pollution Degree applies to the degree of adhesion of a solid, liquid, or gas that deteriorates withstand voltage or surface resistivity. Pollution Degree 2 applies to normal indoor atmospheres (with only non-conductive pollution).
- 5 Use cables of length 3 m or less.
- 6 Use cables of length 30 m or less.

Unless otherwise specified, tolerances are $\pm 3\%$ (however, tolerances are ± 0.3 mm when below 10 mm).

Item	Specifications			
Input terminal type	Voltage			
	Plug-in terminal (safety terminal)			
	Current			
	Direct input: Plug-in terminal (safety terminal)			
	External current sensor input: isolated BNC			
Input type	Voltage			
	Floating input through resistive voltage divider			
	Current			
	Floating input through shunt			
Measurement range	Voltage			
0	1.5 V/3 V/6 V/10 V/15 V/30 V/60 V/100 V/150 V/300 V/600 V/1000 V (crest factor CF3)			
	0 75 V/1 5 V/3 V/5 V/7 5 V/15 V/30 V/50 V/75 V/150 V/300 V/500 V (crest factor CE6/CE6A)			
	Current			
	Direct input			
	500 mA. 1 A. 2 A. 5 A. 10 A. 20 A. 30 A (crest factor CF3)			
	250 mA, 500 mA, 1 A, 2.5 A, 5 A, 10 A, 15 A (crest factor CF6/CF6A)			
	External current sensor input			
	50 mV, 100 mV, 200 mV, 500 mV, 1 V, 2 V, 5 V, 10 V (crest factor CF3)			
	25 mV, 50 mV, 100 mV, 250 mV, 500 mV, 1 V, 2.5 V, 5 V (crest factor CF6/CF6A)			
Input impedance	Voltage			
	Input resistance: 10 MQ \pm 1%, input capacitance: approx, 15 pF			
	Current			
	Direct input: 6.5 mO + 10% + approx 0.3 uH			
	External current sensor input: input resistance: $1 M\Omega \pm 1\%$ input capacitance: approx. 50 pF			
Instantaneous maximum				
allowable input	Peak value of 2.5 kV or RMS value of 1.5 kV, whichever is less			
(within 1 s)	Current			
	Direct input			
	Peak value of 150 A or rms value of 50 A, whichever is less.			
	External current sensor input			
	Peak value 10 times the range or 25 V. whichever is less			
Continuous maximum	Voltage			
allowable input	Peak value of 1.6 kV or RMS value of 1.5 kV, whichever is less			
	If the frequency of the input voltage exceeds 100 kHz.			
	(1200 – f) Vrms or less. f is the frequency of the input voltage in units of kHz.			
	Current			
	Direct input			
	Peak value of 90 A or rms value of 33 A, whichever is less.			
	External current sensor input			
	Peak value 5 times the range or 25 V, whichever is less			
Maximum rated voltage to	Voltage input terminal			
earth	1000 V CAT II			
(DC to 50/60Hz)	Current input terminal			
	1000 V CAT II			
	External current sensor input connector			
	1000 V CAT II			

Item	Specifications		
Influence of voltage to earth	When 1000 Vrms terminals shorted 50/60 Hz: ±0.01%	is applied between the input terminal and the WT5000 case with the voltage input , current input terminals open and external current sensor input terminals shorted. o of range or less.	
	Reference value for up to 200 kHz		
	Voltage: ±{(max	, ximum rated range)/(rated range) × 0.001 × f% of range} or less	
	Current:		
	Direct input:	±{(maximum rated range)/(rated range) × 0.001 × f% of range} or less	
	External curr	rent sensor input: ±{(maximum rated range)/(rated range) × 0.001 × f% of range}	
	Or less	% or greater. The unit of fig.kHz	
	The maximum	range rating in the equation is for a voltage of 1000 V direct current input of 30 A	
	and external cu	irrent sensor input of 10 V.	
A/D converter	Simultaneous cor	nversion of voltage and current inputs.	
	Resolution: 18	bits	
	Sample rate: 1	0 MS/s max.	
Measurement frequency bandwidth	DC, 0.1 Hz to 2 MHz		
Lower limit of measurement	t Sync source period average method		
frequency	Data update in	terval	
	10 ms	200 Hz	
	50 ms	45 Hz	
	100 ms	20 Hz	
	200 ms	10 Hz	
	500 ms	5 Hz	
	1 s	2 Hz	
	2 s	1 Hz	
	5 s	0.5 Hz	
	10 s	0.2 Hz	
	20 s	0.1 Hz	
	Digital filter average method		
	FAST:	100 Hz	
	MID:	10 Hz	
	SLOW:	1 Hz	
	VSLOW:	0.1 Hz	
Maximum display	140% of the rated voltage or current range (160% for the 1000 V range)		
	280% of the voltage and current range rating for CF6A (except 320% for the 500 V ran		
Minimum display	 Depending on the Urms, Uac, Irms Umn, Urmn, Imr When input level is 	measurement range, the following are the minimum values that are displayed: s, and lac: 0.3% (0.6% when the crest factor is set to 6) n, and Irmn: 2% (4% when the crest factor is set to 6) s lower the display shows zero if rounding to zero setting is ON otherwise.	
	measured value w	ill be shown. Current integration value q also depends on the current value.	

Accuracy

Item	Specifications
Accuracy (6 months)	Condition
	Temperature: 23°C ± 5°C
	Input waveform: Sine wave
	λ (power factor): 1
	Voltage to ground: 0 V
	Crest factor: CF3
	Line filter: OFF
	Sync source period average method
	Frequency filter: Used for signal frequencies at 1 kHz or less
	Sync source signal level: Same as the frequency measurement conditions
	Input range: DC 0% to ± 110% of range, AC 1% to 110% of range
	Defined using rms values for AC
	After the warm-up time has elapsed.
	Wired condition after zero-level compensation or measurement range change.
	The unit of f in the accuracy equations is kHz.

Item	Specifications	
	Voltage	
		+(0.02% of reading + 0.05% of range)
	0 1 Hz < f < 10 Hz	$\pm (0.03\% \text{ of reading} \pm 0.05\% \text{ of range})$
	10 Hz < f < 45 Hz	$\pm (0.03\% \text{ of reading} \pm 0.05\% \text{ of range})$
	$45 \text{ Hz} \le f \le 66 \text{ Hz}$	$\pm (0.01\% \text{ of reading} \pm 0.02\% \text{ of range})$
	66 Hz < f < 1 kHz	$\pm (0.03\% \text{ of reading} \pm 0.02\% \text{ of range})$
	1 kHz < f < 10 kHz	$\pm (0.100)$ of reading $\pm 0.05\%$ of range)
		Add $0.015 \times f \%$ of reading (10 V range or less)
	10 kHz < f ≤ 50 kHz	+(0.3% of reading + 0.1% of range)
	$50 \text{ kHz} < f \le 100 \text{ kHz}$	$\pm (0.6\% \text{ of reading} + 0.2\% \text{ of range})$
	100 kHz < f ≤ 500 kHz	$\pm \{(0.006 \times f)\% \text{ of reading } \pm 0.5\% \text{ of range}\}$
	$500 \text{ kHz} < f \le 1 \text{ MHz}$	$+\{(0, 022 \times f - 8)\}$ % of reading + 1% of range}
	Frequency bandwith	DC to 10 MHz (typical)
	Current	
		+(0.02% of reading + 0.05% of range)
	0 1 Hz < f < 10 Hz	$\pm (0.03\% \text{ of reading} \pm 0.05\% \text{ of range})$
	$10 \text{ Hz} \le f < 45 \text{ Hz}$	$\pm (0.03\% \text{ of reading} \pm 0.05\% \text{ of range})$
	$45 \text{ Hz} \le f \le 66 \text{ Hz}$	$\pm (0.00\%)$ of reading $\pm 0.02\%$ of range)
	$66 \text{ Hz} \le f \le 1 \text{ kHz}$	$\pm (0.03\% \text{ of reading} \pm 0.04\% \text{ of range})$
	$1 \text{ kHz} < f \le 10 \text{ kHz}$	$\pm (0.1\% \text{ of reading} \pm 0.05\% \text{ of range})$
	$10 \text{ kHz} < f \le 50 \text{ kHz}$	$\pm (0.3\% \text{ of reading} \pm 0.1\% \text{ of range})$
	$50 \text{ kHz} < f \le 100 \text{ kHz}$	$\pm (0.6\% \text{ of reading} \pm 0.2\% \text{ of range})$
	$100 \text{ kHz} < f \le 200 \text{ kHz}$	$+{(0.00725 \times f - 0.125)\% \text{ of reading } + 0.5\% \text{ of range}}$
	$200 \text{ kHz} < f \le 500 \text{ kHz}$	$+\{(0.00725 \times f - 0.125)\% \text{ of reading } + 0.5\% \text{ of range}\}$
	$500 \text{ kHz} < f \le 1 \text{ MHz}$	$+\{(0.022 \times f - 8)\% \text{ of reading } + 1\% \text{ of range}\}$
	Frequency bandwidth	Direct input: DC to 5 MHz (typical)
	,	External current sensor input: DC to 5 MHz (typical)
	Active power (power facto	or 1)
	DC	±(0.02% of reading + 0.05% of range)
	0.1 Hz ≤ f < 10 Hz	$\pm (0.08\% \text{ of reading} + 0.1\% \text{ of range})$
	10 Hz ≤ f < 30 Hz	$\pm (0.08\% \text{ of reading} + 0.1\% \text{ of range})$
	30 Hz ≤ f < 45 Hz	$\pm (0.05\% \text{ of reading} + 0.05\% \text{ of range})$
	45 Hz ≤ f ≤ 66 Hz	$\pm (0.01\% \text{ of reading} + 0.02\% \text{ of range})$
	$66 \text{ Hz} < f \le 1 \text{ kHz}$	$\pm (0.05\% \text{ of reading} + 0.05\% \text{ of range})$
	$1 \text{ kHz} < f \le 10 \text{ kHz}$	$\pm (0.15\% \text{ of reading} + 0.1\% \text{ of range})$
		Add 0.01 × f % of reading (10 V range or less).
	10 kHz < f ≤ 50 kHz	±(0.3% of reading + 0.2% of range)
	50 kHz < f ≤ 100 kHz	±(0.7% of reading + 0.3% of range)
	100 kHz < f ≤ 200 kHz	±{(0.008 × f)% of reading + 1% of range}
	200 kHz < f ≤ 500 kHz	±{(0.008 × f)% of reading + 1% of range}
	500 kHz < f ≤ 1 MHz	±{(0.048 × f - 20)% of reading + 1% of range}

• For the accuracy at 1 year, multiply the reading of the accuracy at 6 months by 1.5.

 For the direct current input range, add the following values to the accuracies listed above: DC current accuracy: 0.1 mA

DC power accuracy: (0.1 mA/rated value of the direct current input range) × 100% of range

• For the accuracies of waveform data functions Upk and Ipk:

Add the following values (reference values) to the accuracies listed above. The effective input range is within ±300% (±600% when the crest factor is set to CF6 or CF6A) of the range. Voltage input: { $\sqrt{(1.5/range)} + 0.5$ }% of range Direct current input range $\{\sqrt{(1/range)} + 0.5\}\%$ of range + 10 mA External current sensor input range $\{\sqrt{(0.01/range)} + 0.5\}\%$ of range (50 mV to 200 mV range) $\{\sqrt{(0.1/range)} + 0.5\}\%$ of range (500 mV to 10 V range) · Influence of temperature changes after zero-level compensation or range change Add the following values to the accuracies listed above. DC voltage accuracy: ±0.02% of range/°C (1.5 V to 10 V range) ±0.005% of range/°C (15 V to 1000 V range) Direct current input DC accuracy: ±0.1 mA/°C External current sensor input DC accuracy: ±50 µV/°C (50 mV to 200 mV range) ±200 µV/°C (0.5 V to 10 V range) For the DC power accuracy, add the voltage influence × I and the current influence × U. U is the voltage reading (V). I is the current reading (A). · Influence of self-generated heat caused by current input Add the following values to the current accuracy: For the power accuracy, add the voltage and the current influence. AC input signal

- AC input signal Current, active power, apparent power: $0.00002 \times l^{2}\%$ of reading
- DC input signal Current: 0.00002 × I²% of reading + 3 × I² μA Power: 0.00002 × I²% of reading + 3 × I² μA × U U is the voltage reading (V).
 I is the current reading (A).

Even if the current input decreases, the influence from self-generated heat continues until the temperature of the shunt resistor decreases.

Guaranteed accuracy ranges for frequency, voltage, and current

All accuracy figures for 0.1 Hz to 10 Hz are reference values. The voltage and power accuracy figures for 30 kHz to 100 kHz when the voltage exc

The voltage and power accuracy figures for 30 kHz to 100 kHz when the voltage exceeds 750 V are reference values.

The current and power accuracy figures for DC, 10 Hz to 45 Hz, and 400 Hz to 100 kHz when the current exceeds 20 A are reference values.

Influence of data update interval

Add the following value for signal sync period average 10 ms: 0.03% of reading 50 ms: 0.03% of reading 100 ms: 0.02% of reading

 Accuracy when the crest factor is set to CF6 or CF6A: The same as the accuracy when the crest factor is CF3 after doubling the range.

Item	Specifications		
Power factor (λ) influence	When $\lambda = 0$		
()	Apparent power reading × 0.02% in the range of 45 Hz to 66 Hz.		
	For other frequency ranges, see below. However, note that these figures are reference		
	values.		
	Apparent power reading × (0.02 + 0.05 × f)%		
	When $0 < \lambda < 1$		
	(Power reading) \times [(power reading error %) + (power range error %) \times (power range/indicated		
	apparent power value) + {tan $\omega \times (influence when \lambda = 0)$ %]		
	where ϕ is the phase angle between the voltage and current.		
	The unit of f in the accuracy equations is kHz.		
Temperature coefficient	±0.01% of reading/°C (5°C to 18°C or 28°C to 40°C)		
Influence of humidity	Add to the voltage and active power accuracies:		
	±0.00022 × HUM - 50 × f % of reading: f ≤ 40 kHz		
	±0.0087 × HUM - 50 % of reading: f > 40 kHz		
	Reference: Add to the power factor error.		
	When $\Lambda = 0$		
	Apparent power reading $\land 0.00002 \land \Pi \cup W - 50 \land 1\%$		
	(Power reading) x {(nower reading error %) + (nower range error %) x (nower range)		
	indicated apparent power value) + [tan $\omega \times$ (influence when $\lambda = 0)$ %].		
	······································		
	HUM: Relative humidity [%RH]		
	The unit of f in the accuracy equations is kHz.		
Effective input range	Udc, Idc: 0% to $\pm 130\%$ of the measurement range (excluding the 1000 V range)*		
	Udc 1000 V range: 0% to ±150%*		
	Urms, Irms: 1% to 130% of the measurement range*		
	Umn, Imn: 10% to 130% of the measurement range*		
	Ormn, Irmn: 10% to 130% of the measurement range"		
	DC measurement: 0% to +150% when the voltage measurement range is 1000 V: 0 to +130% otherwise*		
	AC measurement: 1% to 130%* of the voltage and current ranges: up to ±130%* of the power range		
	* The accuracy for 110% to 130% of the measurement range (excluding the 1000 V range) is		
	range error × 1.5.		
	If the input voltage exceeds 600 V, add 0.02% of reading.		
	However, the signal level for the signal sync period average must meet the input signal level for		
	frequency measurement.		
	When the crest factor is set to CF6 or CF6A, double the lower limit.		
Accuracy of apparent power S	Voltage accuracy + current accuracy		
Accuracy of reactive power Q	Accuracy of apparent power + $(\sqrt{(1.0002 - \lambda^2)} - \sqrt{(1 - \lambda^2)}) \times 100\%$ of range		
Accuracy of power factor A	$\pm [(x - x/1.0002) + [\cos \phi - \cos \{\phi + \sin ((initial content in content$		
	The voltage and current must be within their rated ranges		
Accuracy of phase difference O	$1 + 1[\omega - \cos^{-1}(\lambda/1, 0, 0, 0, 2)] + \sin^{-1}(influence from the power factor when \lambda = 0.0\%/10.031 deg + 1 digit$		
	The voltage and current must be within their rated ranges.		
Lead and lag detection	Phase difference: ±(5° to 175°)		
	Frequency: 20 Hz to 10 kHz		
	Condition: Sine wave		
	At least 50% of the measurement range (at least 100% for CF6 and CF6A)		
Line filter	Bessel, 5th order LPF, fc: 1 MHz		
	Voltage, current		
	up to TUU KHZ: Add (2U × T/TC)% OF reading Power		
	Lin to 100 kHz: Add (40 x f/fc)% of reading		
	op to roo hitz. Add (to " more of roading		
	For LPFs less than or equal to 100 kHz, see "Line filter" in section 6.7.		

Item	Specifications		
Frequency measurement	Frequency measurement range		
	Data update interval	Measurement range	
	10 ms	200 Hz ≤ f ≤ 2 MHz	
	50 ms	$45 \text{ Hz} \le f \le 2 \text{ MHz}$	
	100 ms	$20 \text{ Hz} \le f \le 2 \text{ MHz}$	
	200 ms	10 Hz \leq f \leq 2 MHz	
	500 ms	5 Hz \leq f \leq 2 MHz	
	1 s	$2 \text{ Hz} \le f \le 2 \text{ MHz}$	
	2 s	$1 \text{ Hz} \le f \le 2 \text{ MHz}$	
	5 s	0.5 Hz ≤ f ≤ 2 MHz	
	10 s	$0.2 \text{ Hz} \le f \le 2 \text{ MHz}$	
	20 s	$0.1 \text{ Hz} \le f \le 2 \text{ MHz}$	
	Accuracy: $\pm 0.06\%$ of reading ± 0.1 mHz		
	Conditions:		
	Input signal level:		
	Crest factor CF3: At least 30% of the measurement range		
	Crest factor CF6/CF6A: At least 60% of the measurement range		
	However, at least 50% of the range if the signal is less than or equal to twice the lower		
	measurement frequency		

Item	Specifications			
Harmonic measurement	PLL source input level			
	50% or more of the rated measurement range when the crest factor is CF3.			
	100% or more of the rated measurement range when the crest factor is CF6 or CF6A.			
	Accuracy			
	Add the following accuracy values to the normal measurement accuracy values.			
	When line filters are turned off			
	Frequency	Voltage, current		
	0.1 Hz ≤ f < 10 Hz	±(0.01% of reading + 0.03% of range)		
	10 Hz ≤ f < 45 Hz	±(0.01% of reading + 0.03% of range)		
	45 Hz ≤ f ≤ 66 Hz	±(0.01% of reading + 0.03% of range)		
	66 Hz < f ≤ 440 Hz	±(0.01% of reading + 0.03% of range)		
	440Hz < f ≤ 1 kHz	±(0.01% of reading + 0.03% of range)		
	1 kHz < f ≤ 10 kHz	±(0.01% of reading + 0.03% of range)		
	10 kHz < f ≤ 50 kHz	±(0.05% of reading + 0.1% of range)		
	50 kHz < f ≤ 100 kHz	±(0.1% of reading + 0.2% of range)		
	100 kHz < f ≤ 500 kHz	±(0.1% of reading + 0.5% of range)		
	500 kHz < f ≤ 1.5 MHz	±(0.5% of reading + 2% of range)		
	Frequency	Power		
	0.1 Hz ≤ f < 10 Hz	$\pm (0.02\% \text{ of reading} \pm 0.06\% \text{ of range})$		
	$10 \text{ Hz} \le f < 45 \text{ Hz}$	$\pm (0.02\% \text{ of reading} + 0.06\% \text{ of range})$		
	$45 \text{ Hz} \le f \le 66 \text{ Hz}$	$\pm (0.02\% \text{ of reading} + 0.06\% \text{ of range})$		
	$66 \text{ Hz} < f \le 440 \text{ Hz}$	+(0.02% of reading + 0.06% of range)		
	$440 \text{ Hz} < f \le 1 \text{ kHz}$	$\pm (0.02\% \text{ of reading} + 0.06\% \text{ of range})$		
	1 kHz < f ≤ 10 kHz	$\pm (0.02\% \text{ of reading} + 0.06\% \text{ of range})$		
	$10 \text{ kHz} < f \le 50 \text{ kHz}$	$\pm (0.1\% \text{ of reading} + 0.2\% \text{ of range})$		
	50 kHz < f \leq 100 kHz	$\pm (0.2\% \text{ of reading} + 0.4\% \text{ of range})$		
	$100 \text{ kHz} < f \le 500 \text{ kHz}$	$\pm (0.2\% \text{ of reading} + 1\% \text{ of range})$		
	500 kHz < f ≤ 1.5 MHz	\pm (1% of reading + 4% of range)		
	 Add the line filter influence to the accuracy values when the line filters are turned off. When the crest factor is set to CF3 When λ (the power factor) is 1 Power figures that exceed 10 kHz are reference values. For the voltage range, add 25 mV to the voltage accuracy and (25 mV/current range rating) × 100% of range to the power accuracy. For the direct current input range, add 20 mA to the current accuracy and (20 mA/current range rating) × 100% of range to the power accuracy. For the direct current sensor range, add 2 mV to the current accuracy and (2 mV/rated value of the external current sensor range, add 2 mV to the power accuracy. For the external current sensor range, add 2 mV to the current accuracy and (2 mV/rated value of the external current sensor range)×100% of range to the power accuracy. When the number of FFT points is 1024, add ±0.2% to the voltage and current range errors and ±0.4% to the power range error. Add (n/500)% of reading to the nth component of the voltage and current, and add (n/250)% of reading to the nth component of the power. The accuracy when the crest factor is CF6 or CF6A is the same as the accuracy when the crest factor is CF3 after doubling the measurement range. The guaranteed accuracy ranges for frequency, voltage, and current, are the same as the guaranteed ranges for normal measurement. The neighboring harmonic orders may be affected by the side lobes from the input harmonic order 			
	When FFT points is see When the frequency {[n/(m + 1)]/50}% of and current, and ad m th order of the pow When the frequency {[n/(m + 1)]/20}% of and current, and ad m th order of the pow	et to 8192 y of the PLL source is 2 Hz or greater, for n th order component input, add (the n th order reading) to the n + m th order and n – m th order of the voltage d {[n/(m + 1)]/25}% of (the n th order reading) to the n + m th order and n – y of the PLL source is less than 2 Hz, for n th order component input, add (the n th order reading) to the n + m th order and n – m th order of the voltage d {[n/(m + 1)]/10}% of (the n th order reading) to the n + m th order and n – yer.		

Item	Specifications			
	When FFT points is set to 1024			
	When the frequence ({n/(m + 1)}/50)% c and current, and a m th order of the po	When the frequency of the PLL source is 75 Hz or greater, for n th order component input, add $(\{n/(m + 1)\}/50)\%$ of (the n th order reading) to the n + m th order and n – m th order of the voltage and current, and add $(\{n/(m + 1)\}/25)\%$ of (the n th order reading) to the n + m th order and n – m th order of the power.		
	When the frequency of the PLL source is less than 75 Hz, for n th order component input, add (${n/(m + 1)}/{5}$)% of (the n th order reading) to the n + m th order and n – m th order of the voltage and current, and add (${n/(m + 1)}/{5}$)% of (the n th order reading) to the n + m th order and n – m th order of the power.			
Item	Specifications			
IEC Harmonic measurement	PLL source input level			
	50% or more of the ra	ated measurement range when the crest factor is CF3.		
	100% or more of the	rated measurement range when the crest factor is CF6 or CF6A.		
	Accuracy	·		
	Frequency	Voltage, current		
	45 Hz ≤ f ≤ 66 Hz	±(0.2% of reading + 0.04% of range)		
	66 Hz < f ≤ 440 Hz	±(0.2% of reading + 0.05% of range)		
	440Hz < f ≤ 1 kHz	±(0.2% of reading + 0.05% of range)		
	1 kHz < f ≤ 2.5 kHz	$\pm (0.3\% \text{ of reading} + 0.05\% \text{ of range})$		
	2.5 kHz < f ≤ 3.3 kHz	$\pm (0.4\% \text{ of reading} + 0.05\% \text{ of range})$		
	3.3 kHz < f ≤ 10 kHz	±(1% of reading + 0.05% of range)		
	Frequency	Power		
	45 Hz ≤ f ≤ 66 Hz	±(0.4% of reading + 0.05% of range)		
	66 Hz < f ≤ 440 Hz	±(0.4% of reading + 0.1% of range)		
	440Hz < f ≤ 1 kHz	±(0.4% of reading + 0.1% of range)		
	1 kHz < f ≤ 2.5 kHz	±(0.6% of reading + 0.1% of range)		
	2.5 kHz < f ≤ 3.3 kHz	$\pm (0.8\% \text{ of reading } + 0.1\% \text{ of range})$		
	$3.3 \text{ kHz} < f \le 10 \text{ kHz}$	±(2% of reading + 0.1% of range)		
	When the 30 kHz Butterworth line filter is on			
	When the crest factor	is set to CF3		
	• When λ (the power fac	ctor) is 1		
	 When group is off The neighboring harmonic orders may be affected by the side lobes from the input harmonic order. For nth order component input, add {[n/(m + 1)]/50}% of (the nth order reading) to the n + mth order and n – mth order of the voltage and current, and add {[n/(m + 1)]/25}% of (the nth order reading) to the n + mth order and n – mth order of the power. 			
	• The accuracy when the crest factor is CF6 or CF6A is the same as the accuracy when the crest factor is CF3 after doubling the measurement range.			
	 The guaranteed accuracy ranges for frequency, voltage, and current, are the same as the guaranteed ranges for normal measurement. 			
	• The guaranteed accuracy ranges for frequency, voltage, and current, are the same as the guaranteed ranges for normal measurement			
	 Influence of self-generated heat caused by current input is the same as with normal measurement 			
	The temperature coefficient is the same as with normal measurement.			
	Influence of humidity is the same as with normal measurement.			
	 Accuracy at 1 year is the same as with normal measurement. 			
	Frequency measurements are reference values.			

Item	Specifications
IEC voltage fluctuation and	Accuracy
flicker measurement	dc, dmax: ±4% (at dmax = 4%)
	Pst: ±5% (at Pst = 1 to 3), ±0.05 (at Pst = 0.2 to 1)
	Conditions for the accuracies above
	Ambient temperature: 23 to 1°C
	Line filter: 10 Hz ON
	Frequency filter: 1 kHz ON
	Frequency measurements are reference values.

Dimensions

Item	Specifications	
Dimensions	Approx. 145 mm (H) × 42 mm (W) × 297 mm (D)	
	* The depth includes the slide cover (293 mm if slide cover is excluded).	
Weight	Approx. 900 g	
Connection	50-pin B to B connector	

For general specifications, see section 6.13.

Item	Specifications
Input terminal type	Voltage
	Plug-in terminal (safety terminal)
	Current
	Direct input: Plug-in terminal (safety terminal)
	External current sensor input: isolated BNC
Input type	Voltage
	Floating input through resistive voltage divider
	Current
	Floating input through shunt
Measurement range	Voltage
	1.5 V/3 V/6 V/10 V/15 V/30 V/60 V/100 V/150 V/300 V/600 V/1000 V (crest factor CF3)
	0.75 V/1.5 V/3 V/5 V/7.5 V/15 V/30 V/50 V/75 V/150 V/300 V/500 V (crest factor CF6/CF6A)
	Current
	Direct input
	5 mA, 10 mA, 20 mA, 50 mA, 100 mA, 200 mA, 500 mA, 1 A, 2 A, 5 A (crest factor CF3)
	2.5 mA, 5 mA, 10 mA, 25 mA, 50 mA, 100 mA, 250 mA, 500 mA, 1 A, 2.5 A (crest factor CF6/CF6A)
	External current sensor input
	50 mV, 100 mV, 200 mV, 500 mV, 1 V, 2 V, 5 V, 10 V (crest factor CF3)
	25 mV, 50 mV, 100 mV, 250 mV, 500 mV, 1 V, 2.5 V, 5 V (crest factor CF6/CF6A)
Input impedance	Voltage
	Input resistance: 10 M Ω ± 1%, input capacitance: approx. 15 pF
	Current
	Direct input:
	$0.5 \ \Omega \pm 10\%$ + approx. 0.3 µH (200 mA range or less)
	0.11 Ω ± 10% + approx. 0.3 µH (500 mA range or more)
	External current sensor input: input resistance: 1 M Ω ± 1%, input capacitance: approx. 50 pF
Instantaneous maximum	Voltage
allowable input	Peak value of 2.5 kV or RMS value of 1.5 kV, whichever is less
(within 1 s)	Current
	Direct input
	Peak value of 30 A or rms value of 15 A, whichever is less.
	External current sensor input
	Peak value 10 times the range or 25 V, whichever is less
Continuous maximum	Voltage
allowable input	Peak value of 1.6 kV or RMS value of 1.5 kV, whichever is less
	If the frequency of the input voltage exceeds 100 kHz,
	(1200 – f) Vrms or less. f is the frequency of the input voltage in units of kHz.
	Current
	Direct input
	Peak value of 10 A or rms value of 7 A, whichever is less.
	External current sensor input
	Peak value 5 times the range or 25 V, whichever is less
Maximum rated voltage to	Voltage input terminal
earth	1000 V CAT II
(DC to 50/60Hz)	Current input terminal
	1000 V CAT II
	External current sensor input connector
	1000 V CAT II

Item	Specifications			
Influence of voltage to earth	arth When 1000 Vrms is applied between the input terminal and the WT5000 case with the vo terminals shorted, current input terminals open and external current sensor input termina 50/60 Hz: ±0.01% of range or less. ±0.01% of range + 0.5 µA or less			
	Reference value f	or up to 200 kHz		
	Voltage: ±{(max	ximum rated range)/(rated range) × 0.001 × f% of range} or less		
	Current:			
	Direct input: : External curr	±{(maximum rated range)/(rated range) × 0.001 × f% of range} or less ent sensor input: ±{(maximum rated range)/(rated range) × 0.001 × f% of range}		
	or less			
	However, 0.01%	6 or greater. The unit of f is kHz.		
	The maximum i and external cu	range rating in the equation is for a voltage of 1000 V, direct current input of 5 A, rrent sensor input of 10 V.		
A/D converter	Simultaneous con	version of voltage and current inputs.		
	Resolution: 18	bits		
	Sample rate: 10) MS/s max.		
Measurement frequency bandwidth	DC, 0.1 Hz to 2 M	Hz		
Lower limit of measurement	asurement Sync source period average method			
frequency	Data update int	erval		
	10 ms	200 Hz		
	50 ms	45 Hz		
	100 ms	20 Hz		
	200 ms	10 Hz		
	500 ms	5 Hz		
	1 s	2 Hz		
	2 s	1 Hz		
	5 s	0.5 Hz		
	10 s	0.2 Hz		
	20 s	0.1 Hz		
	Digital filter average method			
	FAST:	100 Hz		
	MID:	10 Hz		
	SLOW:	1 Hz		
	VSLOW:	0.1 Hz		
Maximum display	140% of the rated	voltage or current range (160% for the 1000 V range)		
	280% of the voltage	ge and current range rating for CF6A (except 320%) the 500 V range)		
Minimum display	Depending on the • Urms, Uac, Irms • Umn, Urmn, Imn	measurement range, the following are the minimum values that are displayed: , and Iac: 0.3% (0.6% when the crest factor is set to 6) , and Irmn: 2% (4% when the crest factor is set to 6)		
	When input level is measured value wi	lower than above, the display shows zero if rounding to zero setting is ON, otherwise Il be shown. Current integration value q also depends on the current value.		

Accuracy

Item	Specifications
Accuracy (6 months)	Condition
,	Temperature: 23°C ± 5°C
	Input waveform: Sine wave
	λ (power factor): 1
	Voltage to ground: 0 V
	Crest factor: CF3
	Line filter: OFF
	Sync source period average method
	Frequency filter: Used for signal frequencies at 1 kHz or less
	Sync source signal level: Same as the frequency measurement conditions
	Input range: DC 0% to ± 110% of range, AC 1% to 110% of range
	Defined using rms values for AC
	After the warm-up time has elapsed.
	Wired condition after zero-level compensation or measurement range change.
	The unit of f in the accuracy equations is kHz.

• Specifications

ltem

Specifications	
•	
Voltage	
DC	±(0.02% of reading + 0.05% of range)
0.1 Hz ≤ f < 10 Hz	±(0.03% of reading + 0.05% of range)
10 Hz ≤ f < 45 Hz	±(0.03% of reading + 0.05% of range)
45 Hz ≤ f ≤ 66 Hz	±(0.01% of reading + 0.02% of range)
66 Hz < f ≤ 1 kHz	±(0.03% of reading + 0.04% of range)
1 kHz < f ≤ 10 kHz	±(0.1% of reading + 0.05% of range)
	Add 0.015 × f % of reading (10 V range or less).
10 kHz < f ≤ 50 kHz	±(0.3% of reading + 0.1% of range)
50 kHz < f ≤ 100 kHz	±(0.6% of reading + 0.2% of range)
100 kHz < f ≤ 500 kHz	±{(0.006 × f)% of reading + 0.5% of range}
500 kHz < f ≤ 1 MHz	±{(0.022 × f-8)% of reading + 1% of range}
Frequency bandwith	DC to 10 MHz (typical)
Current	
DC	±(0.02% of reading + 0.05% of range)
0.1 Hz ≤ f < 10 Hz	±(0.03% of reading + 0.05% of range)
10 Hz ≤ f < 45 Hz	±(0.03% of reading + 0.05% of range)
45 Hz ≤ f ≤ 66 Hz	±(0.01% of reading + 0.02% of range)
	±0.5 µA*
	* Direct input only
66 Hz < f ≤ 1 kHz	±(0.03% of reading + 0.04% of range)
$1 \text{ kHz} < f \le 10 \text{ kHz}$	$\pm (0.1\% \text{ of reading} \pm 0.05\% \text{ of range})$
$10 \text{ kHz} < f \le 50 \text{ kHz}$	$\pm (0.3\% \text{ of reading} + 0.1\% \text{ of range})$
50 kHz < f ≤ 100 kHz	$\pm (0.6\% \text{ of reading} + 0.2\% \text{ of range})$
100 kHz < f ≤ 200 kHz	$\pm \{(0.00725 \times f - 0.125)\% \text{ of reading} \pm 0.5\% \text{ of range}\}$
200 kHz < t ≤ 500 kHz	$\pm \{(0.00725 \times f - 0.125)\% \text{ of reading} \pm 0.5\% \text{ of range}\}$
500 KHZ < 1 ≤ 1 MHZ	±{(0.022 × 1 - 8)% of reading + 1% of range}
Frequency bandwidth	External current sensor input: DC to 5 MHz (typical)
Active power (power facto	r 1)
DC	$\pm (0.02\% \text{ of reading} + 0.05\% \text{ of range})$
$0.1 \text{ Hz} \le f < 10 \text{ Hz}$	$\pm (0.08\% \text{ of reading} \pm 0.1\% \text{ of range})$
$10 \text{ Hz} \le 1 < 30 \text{ Hz}$	$\pm (0.08\% \text{ of reading} \pm 0.1\% \text{ of range})$
$30 \text{ Hz} \le 1 \le 45 \text{ Hz}$	$\pm (0.05\% \text{ of reading} \pm 0.05\% \text{ of range})$
$45 \text{ Hz} \le 1 \le 60 \text{ Hz}$	$\pm (0.01\% \text{ or reading} \pm 0.02\% \text{ or range})$
00 HZ < I S I KHZ	$\pm (0.05\% \text{ of reading} \pm 0.05\% \text{ of range})$
$1 \text{ KHz} < 1 \le 10 \text{ KHz}$	\pm (0.15% of reading + 0.1% of range) Add 0.01 × f % of reading (10 V range or less).
10 kHz < f ≤ 50 kHz	±(0.3% of reading + 0.2% of range)
50 kHz < f ≤ 100 kHz	±(0.7% of reading + 0.3% of range)
100 kHz < f ≤ 200 kHz	±{(0.008 × f)% of reading + 1% of range}
200 kHz < f ≤ 500 kHz	$\pm \{(0.008 \times f)\% \text{ of reading} + 1\% \text{ of range}\}$
500 kHz < f ≤ 1 MHz	±{(0.048 × f - 20)% of reading + 1% of range}

For the accuracy at 1 year, multiply the reading of the accuracy at 6 months by 1.5.

 For the direct current input range, add the following values to the accuracies listed above: DC current accuracy: 1 μA

DC power accuracy: (1 $\mu\text{A/rated}$ value of the direct input range) \times 100% of range

•

• DC input signal Current: $0.004 \times l^2$ % of reading + $6 \times l^2 \mu A$ Power: $0.004 \times l^2$ % of reading + $6 \times l^2 \mu A \times U$ U is the voltage reading (V).

I is the current reading (A).

Even if the current input decreases, the influence from self-generated heat continues until the temperature of the shunt resistor decreases.

 Guaranteed accuracy ranges for frequency, voltage, and current All accuracy figures for 0.1 Hz to 10 Hz are reference values. The voltage and power accuracy figures for 30 kHz to 100 kHz when the voltage exceeds 750 V are reference values.

Influence of data update interval

Add the following value for signal sync period average 10 ms: 0.03% of reading 50 ms: 0.03% of reading 100 ms: 0.02% of reading

 Accuracy when the crest factor is set to CF6 or CF6A: The same as the accuracy when the crest factor is CF3 after doubling the range.

Item	Specifications
Power factor (λ) influence	When $\lambda = 0$
	Apparent power reading × 0.02% in the range of 45 Hz to 66 Hz.
	For other frequency ranges, see below. However, note that these figures are reference
	values.
	Apparent power reading × (0.02 + 0.05 × f)%
	When $0 < \lambda < 1$
	(Power reading) × $[(power reading error %) + (power range error %) × (power range/indicated)$
	apparent power value) + {tan $\varphi \times (influence when \lambda = 0)\%$].
	where φ is the phase angle between the voltage and current.
	The unit of f in the accuracy equations is kHz.
Temperature coefficient	±0.01% of reading/°C (5°C to 18°C or 28°C to 40°C)
Influence of humidity	Add to the voltage and active power accuracies:
	$\pm 0.00022 \times \text{HUM} - 50 \times 1 \%$ of reading: $1 \le 40 \text{ kHz}$
	E0.0007 ^ [1001 - 30] % of reading. 1 > 40 Kitz
	When $\lambda = 0$
	Apparent power reading × 0.00002 × HUM - 50 × f%
	When 0 < λ < 1
	(Power reading) × {(power reading error %) + (power range error %) × (power range/
	indicated apparent power value) + [tan $\varphi \times$ (influence when $\lambda = 0)%$]},
	HUM: Relative numidity [%RH]
Effective input range	Lide lide: 0% to +130% of the measurement range (evoluting the 1000 V range)*
Ellective input range	Udc, 1000 V range: 0% to +150%*
	Urms, Irms: 1% to 130% of the measurement range*
	Umn, Imn: 10% to 130% of the measurement range*
	Urmn, Irmn: 10% to 130% of the measurement range*
	Power
	DC measurement: 0% to $\pm 150\%$ when the voltage measurement range is 1000 V; 0 to $\pm 130\%$ otherwise*
	AC measurement: 1% to 130%* of the voltage and current ranges; up to \pm 130%* of the power range
	* The accuracy for 110% to 130% of the measurement range (excluding the 1000 V range) is
	range error × 1.5.
	If the input voltage exceeds 600 V, add 0.02% of reading.
	frequency measurement
	When the crest factor is set to CF6 or CF6A, double the lower limit.
Accuracy of apparent power S	Voltage accuracy + current accuracy
Accuracy of reactive power Q	Accuracy of apparent power + $(\sqrt{(1.0002 - \lambda^2)} - \sqrt{(1 - \lambda^2)}) \times 100\%$ of range
Accuracy of power factor λ	$\pm [(\lambda - \lambda/1.0002) + \cos\varphi - \cos\{\varphi + \sin^{-1}((\text{influence from the power factor when } \lambda = 0)\%/100)\}] \pm 1 \text{ digit}$
	The voltage and current must be within their rated ranges.
Accuracy of phase difference Q	$f \pm [\phi - \cos^{-1}(\lambda/1.0002) + \sin^{-1}{((influence from the power factor when \lambda = 0)%/100}] \deg \pm 1 \operatorname{digit}$
	The voltage and current must be within their rated ranges
Lead and lag detection	Phase difference: +(5° to 175°)
	Frequency: 20 Hz to 10 kHz
	Condition: Sine wave
	At least 50% of the measurement range (at least 100% for CF6 and CF6A)
Line filter	Bessel, 5th order LPF, fc: 1 MHz
	Voltage, current
	Up to 100 kHz: Add (20 × f/fc)% of reading
	Power
	Up to TUU KHZ: Add (4U × 1/IC)% of reading
	For LPFs less than or equal to 100 kHz, see "Line filter" in section 6.7.
	• • •

Item	Specifications		
Frequency measurement	Frequency measurement range		
	Data update interval	Measurement range	
	10 ms	200 Hz ≤ f ≤ 2 MHz	
	50 ms	$45 \text{ Hz} \le f \le 2 \text{ MHz}$	
	100 ms	$20 \text{ Hz} \le f \le 2 \text{ MHz}$	
	200 ms	10 Hz \leq f \leq 2 MHz	
	500 ms	5 Hz \leq f \leq 2 MHz	
	1 s	$2 \text{ Hz} \le f \le 2 \text{ MHz}$	
	2 s	$1 \text{ Hz} \le f \le 2 \text{ MHz}$	
	5 s	0.5 Hz ≤ f ≤ 2 MHz	
	10 s	0.2 Hz ≤ f ≤ 2 MHz	
	20 s	$0.1 \text{ Hz} \le f \le 2 \text{ MHz}$	
	Accuracy: ±0.06% of re	eading ± 0.1 mHz	
	Conditions:	5	
	Input signal level:		
	Crest factor CF3: At least 30% of the measurement range		
	Crest factor CF6/CF6A: At least 60% of the measurement range		
	However, at least	50% of the range if the signal is less than or equal to twice the lower	
	measurement free	quency	
	Frequency filter		
	0.1 Hz ≤ f < 100 F	łz: 100 Hz	
	100 Hz ≤ f < 1 kH	z: 1 kHz	
	1 kHz ≤ f < 100 kH	Hz: 100 kHz	

Item	Specifications				
Harmonic measurement	PLL source input level				
	50% or more of the rated measurement range when the crest factor is CE3				
	100% or more of the rated measurement range when the crest factor is CE6 or CE6A				
	Add the following accuracy values to the normal measurement accuracy values				
	When line filters are turn	ned off			
	Frequency	Voltage, current			
	$0.1 \text{ Hz} \le f \le 10 \text{ Hz}$	$\pm (0.01\% \text{ of reading} \pm 0.03\% \text{ of range})$			
	$10 \text{ Hz} \le f \le 45 \text{ Hz}$	+(0.01% of reading + 0.03% of range)			
	$45 \text{ Hz} \le f \le 66 \text{ Hz}$	$\pm (0.01\% \text{ of reading} + 0.03\% \text{ of range})$			
	$66 \text{ Hz} < f \le 440 \text{ Hz}$	+(0.01% of reading + 0.03% of range)			
	440 Hz < f < 1 kHz	$\pm (0.01\% \text{ of reading} \pm 0.03\% \text{ of range})$			
	1 kHz < f < 10 kHz	$\pm (0.01\% \text{ of reading} \pm 0.03\% \text{ of range})$			
	10 kHz < f < 50 kHz	$\pm (0.05\% \text{ of reading} \pm 0.1\% \text{ of range})$			
	50 kHz < f < 100 kHz	$\pm (0.1\% \text{ of reading} \pm 0.2\% \text{ of range})$			
	$100 \text{ kHz} < f \le 500 \text{ kHz}$	\pm (0.1% of reading \pm 0.5% of range)			
	500 kHz < f < 1.5 MHz	$\pm (0.5\% \text{ of reading} + 2\% \text{ of range})$			
	Frequency	Power			
	1100000000000000000000000000000000000	$\pm (0.02\% \text{ of reading} \pm 0.06\% \text{ of range})$			
	10 Hz < f < 45 Hz	$\pm (0.02\% \text{ of reading} \pm 0.06\% \text{ of range})$			
	$45 \text{ Hz} \le f \le 66 \text{ Hz}$	$\pm (0.02\% \text{ of reading} \pm 0.06\% \text{ of range})$			
	40 Hz = 1 = 00 Hz 66 Hz < f < 440 Hz	$\pm (0.02\% \text{ of reading} \pm 0.06\% \text{ of range})$			
	440 Hz < f < 1 kHz	$\pm (0.02\% \text{ of reading} \pm 0.06\% \text{ of range})$			
	1 kHz < f < 10 kHz	$\pm (0.02\% \text{ of reading} \pm 0.06\% \text{ of range})$			
	10 kHz < f < 50 kHz	$\pm (0.02\%)$ of reading $\pm 0.2\%$ of range)			
	50 kHz < f < 100 kHz	$\pm (0.1\% \text{ of reading} + 0.2\% \text{ of range})$			
	100 kHz < f < 500 kHz	$\pm (0.2\% \text{ of reading} \pm 1\% \text{ of range})$			
	500 kHz < f < 1.5 MHz	$\pm (1\% \text{ of reading} + 4\% \text{ of range})$			
	 When line filters are turr 	ned on			
	Add the line filter influe	nce to the accuracy values when the line filters are turned off.			
	When the crest factor is	set to CF3			
	• When λ (the power factor) is 1				
	• Power figures that exce	d 10 kHz are reference values.			
	 For the voltage range, a 	dd 25 mV to the voltage accuracy and (25 mV/current range rating) ×			
	100% of range to the power accuracy.				
	• For the direct current input range, add 200 μA to the current accuracy and (200 μA/current range				
	rating) × 100% of range to the power accuracy.				
	 For the external current sensor range, add 2 mV to the current accuracy and (2 mV/rated value of the external current sensor range)×100% of range to the power accuracy. 				
	• When the number of FFT points is 1024, add ±0.2% to the voltage and current range errors and				
	±0.4% to the power range error.				
	 Add (n/500)% of reading to the nth component of the voltage and current, and add (n/250)% of 				
	reading to the n th component of the power.				
	 The accuracy when the 	crest factor is CF6 or CF6A is the same as the accuracy when the crest			
	factor is CF3 after doub	ling the measurement range.			
	The guaranteed accuracy	cy ranges for frequency, voltage, and current, are the same as the			
	guaranteed ranges for n	normal measurement.			
	 The neighboring harmor 	nic orders may be affected by the side lobes from the input harmonic order.			
	When FFT points is se	t to 8192			
	When the frequency	of the PLL source is 2 Hz or greater, for n th order component input. add			
	{[n/(m + 1)]/50}% of	(the n th order reading) to the $n + m^{th}$ order and $n - m^{th}$ order of the voltage			
	and current, and add	$\frac{1}{4} \{ [n/(m + 1)]/25 \} \%$ of (the n th order reading) to the n + m th order and n –			
	m th order of the pow	er.			
	When the frequency {[n/(m + 1)]/20}% of	of the PLL source is less than 2 Hz, for n^{th} order component input, add (the n^{th} order reading) to the $n + m^{th}$ order and $n - m^{th}$ order of the voltage			

[[n/(m + 1)]/20]% of (the nth order reading) to the n + mth order and n - mth order of the voltag and current, and add [[n/(m + 1)]/10]% of (the nth order reading) to the n + mth order and n - mth order of the power.

Item	Specifications				
	When FFT points is s	et to 1024			
	When the frequence	When the frequency of the PLL source is 75 Hz or greater, for n th order component input, add			
	$({n/(m + 1)}/{50})\%$ of (the n th order reading) to the n + m th order and n – m th order of the voltage				
	and current and a	and current and add $(I_n/(m + 1))/(25)\%$ of the n th order reading to the n + m th order and n -			
	m th order of the po	wer			
		wor.			
	When the frequenc	v of the PLL source is less than 75 Hz for n^{th} order component input add (ln/l)			
	$(m \pm 1)$ /5)% of (th	y of the r EE source is less than 75 Hz, for H^{-1} order component input, and ((1))			
		$\frac{1}{2}$ order reading) to the fit in order and fit in order order or the voltage and $\frac{1}{2}$			
	current, and add (2	(n/(m + 1))/5)% or (the n° order reading) to the n + m° order and n – m°			
	order of the power.				
Item	Specifications				
IEC Harmonic measureme	ent PLL source input level				
	50% or more of the r	ated measurement range when the crest factor is CE3			
	100% or more of the	rated measurement range when the crest factor is CE6 or CE6A			
	Accuracy	Vales as summer t			
	Frequency				
	$45 \text{ Hz} \le 1 \le 66 \text{ Hz}$	$\pm (0.2\% \text{ of reading} + 0.04\% \text{ of range})$			
	66 Hz < f ≤ 440 Hz	±(0.2% of reading + 0.05% of range)			
	440Hz < f ≤ 1 kHz	±(0.2% of reading + 0.05% of range)			
	1 kHz < f ≤ 2.5 kHz	$\pm (0.3\% \text{ of reading} + 0.05\% \text{ of range})$			
	2.5 kHz < f ≤ 3.3 kHz	$\pm (0.4\% \text{ of reading} + 0.05\% \text{ of range})$			
	3 3 kHz < f < 10 kHz	+(1% of reading + 0.05% of range)			
	Frequency	Power			
	45 Hz ≤ f ≤ 66 Hz	$\pm(0.4\%$ of reading + 0.05% of range)			
	66 Hz < f ≤ 440 Hz	$\pm (0.4\% \text{ of reading } + 0.1\% \text{ of range})$			
	440Hz < f < 1 kHz	+(0.4% of reading + 0.1% of range)			
	1 kHz < f < 2.5 kHz	$\pm (0.6\% \text{ of reading} + 0.1\% \text{ of range})$			
	$25 \mu \mu \tau < f < 2.2 \mu \mu \tau$	$\pm (0.8\% \text{ of reading} \pm 0.1\% \text{ of range})$			
	2.3 KHZ $< 1 \le 3.3$ KHZ	$\pm (0.0\%)$ of reading $\pm 0.1\%$ of range)			
	3.3 KHZ < T ≤ 10 KHZ	$\pm (2\% \text{ of reading } + 0.1\% \text{ of range})$			
		and the line of the state of th			
	• When the 30 kHz Butt	erworth line filter is on			
	When the crest factor	is set to CF3			
	 When λ (the power fac 	ctor) is 1			
	 When group is off 				
	 The neighboring harm 	onic orders may be affected by the side lobes from the input harmonic order.			
	For n th order compon	For n th order component input, add {[n/(m + 1)]/50}% of (the n th order reading) to the n + m th			
	order and n – m th ord	er of the voltage and current, and add {[n/(m + 1)]/25}% of (the n th order			
	reading) to the n + m ^t	reading) to the n + m th order and n – m th order of the power.			
	 The accuracy when th 	e crest factor is CF6 or CF6A is the same as the accuracy when the crest			
	factor is CF3 after dou	bling the measurement range.			
	 The guaranteed accur 	acy ranges for frequency, voltage, and current, are the same as the			
	guaranteed ranges for	normal measurement.			
	 Influence of self-gener 	ated heat caused by current input is the same as with normal measurement.			
	The temperature coeff	The temperature coefficient is the same as with normal measurement			
	Influence of humidity is the same as with normal measurement				
	Accuracy at 1 year is t	Accuracy at 1 year is the same as with normal measurement			
	Frequency measurem	ents are reference values			
	i requency measurem				

Item	Specifications
IEC voltage fluctuation and	Accuracy
flicker measurement	dc, dmax: ±4% (at dmax = 4%)
	Pst: ±5% (at Pst = 1 to 3), ±0.05 (at Pst = 0.2 to 1)
	Conditions for the accuracies above
	Ambient temperature: 23 to 1°C
	• Line filter: 10 Hz ON
	Frequency filter: 1 kHz ON
	Frequency measurements are reference values.

Dimensions

Item	Specifications	
Dimensions	Approx. 145 mm (H) × 42 mm (W) × 297 mm (D)	
	* The depth includes the slide cover (293 mm if slide cover is excluded).	
Weight	Approx. 720 g	
Connection	50-pin B to B connector	

For general specifications, see section 6.13.

6.17 760903 Current Sensor Element Specifications

Item	Specifications	Specifications			
Output terminal type	Sensor power: D-sub 9-pin socket				
	Probe power: Dedicated connector				
Output voltage	Sensor power: ±15 V				
	Probe power: ±12 V, but output is off when Terminal is set to Sensor				
Output current	Sensor power: 1.8 A				
	Probe power: 0.8 A, but output is off when Terminal is set to Sensor				
	Total output when multiple elements are used				
	Sensor power: 8 A				
	Probe power supply: The total absolute value of the positive and negative currents of the power				
	supply is included in the positive sensor power supply current.				
Input terminal type	Voltage				
	Plug-in terminal (safety terminal)				
	Current				
	Sensor input: D-sub 9-pin socket				
	Probe input: BNC connector				
Input type	Voltage				
	Floating input through resistive voltage divider				
	Current				
	Sensor input: Input through shunt				
	Probe input	Input through res	istive voltage o		
D-sub 9 pin specifications	connection terminal are shown below.				
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				
	760903		CT1000A	example	
	Pin No.	Signal	Pin No.	Signal	
	1	RETURN	1	OUTPUT RETURN	
	2	N.C.	2	(DON'T USE)	
	3	GND (ST)	3	GND STATUS	
	4	GND	4	0 V	
	5	V-	5	-15 V DC	
	6	INPUT	6	OUTPUT	
	7	CT-ID	7	(DON'T USE)	
	8	ST	8	NORMAL OP STATUS	
	9	V+	9	+15 V DC	
	The connector shell of the current sensor connection terminal is connected to the WT5000 case. GND (pin 4) and GND (ST) (pin 3) of the current sensor connection terminal are connected to the WT5000 case inside the 760903.				
	The sensor cab	The sensor cable (sold separately) is a straight cable.			
6.17 760903 Current Sensor Element Specification

Item	Specifications					
Measurement range	Voltage					
	1.5/3/6/10/15/30/60/100/150/300/600/1000 V (crest factor CF3)					
	0.75/1.5/3/5/7.5/15/30/50/75/150/300/500 V crest factor CF6/CF6A)					
	Current					
	Sensor input					
	 Input resistance: 1 Ω 					
	10 mA, 25 mA, 50 mA, 100 mA, 250 mA, 500 mA, 1 A (crest factor CF3)					
	5 mA, 12.5 mA, 25 mA, 50 mA, 125 mA, 250 mA, 500 mA (crest factor CF6/CF6A)					
	 Input resistance: 1.5 Ω 					
	6.67 mA, 16.7 mA, 33.3 mA, 66.7 mA, 167 mA, 333 mA, 667 mA (crest factor CF3)					
	3.33 mA, 8.33 mA, 16.7 mA, 33.3 mA, 83.3 mA, 167 mA, 333 mA (crest factor CF6/CF6A)					
	 Input resistance: 5 Ω 					
	5 mA, 10 mA, 20 mA, 50 mA, 100 mA, 200mA (crest factor CF3)					
	2.5 mA, 5 mA, 10 mA, 25 mA, 50 mA, 100mA (crest factor CF6/CF6A)					
	 Input resistance: 10 Ω 					
	5 mA, 10 mA, 25 mA, 50 mA, 100 mA (crest factor CF3)					
	2.5 mA, 5 mA, 12.5 mA, 25 mA, 50 mA (crest factor CF6/CF6A)					
	Probe input					
	50 mV, 100 mV, 200 mV, 500 mV, 1 V, 2 V, 5 V, 10 V (crest factor CF3)					
	25 mV, 50 mV, 100 mV, 250 mV, 500 mV, 1 V, 2.5 V, 5 V (crest factor CF6/CF6A)					
Instrument loss	Voltage					
Innutimpodonoo	Input resistance: 10 MO2 \pm 1%, input capacitance: approx. 15 pF					
input impedance	Current Sensor input:					
	$\frac{1}{1000} = \frac{1000}{1000} =$					
	Input resistance: 150 Approx $150 + approx 0.2 \mu H$					
	Input resistance: 5.0 Approx. 5.0 + approx. 0.2 μ H					
	Input resistance: 10.0 Approx $10.0 + approx 0.2 \mu H$					
	Probe input: Input resistance: $1 M\Omega \pm 1\%$ input capacitance: approx. 50 pF					
Instantaneous maximum	Voltage					
allowable input	Peak value of 2.5 kV or rms value of 1.5 kV, whichever is less					
	(within 1 s)					
	Current					
	Sensor input:					
	Input resistance: 1 Ω					
	Peak value of 1.8 A or rms value of 1.2 A, whichever is less.					
	Input resistance: 1.5 Ω					
	Peak value of 1.2 A or rms value of 0.84 A, whichever is less.					
	Input resistance: 5 Ω					
	Peak value of 0.36 A or rms value of 0.25 A, whichever is less.					
	Input resistance: 10 Ω					
	Peak value of 0.18 A or rms value of 0.12 A, whichever is less.					
	(with in 0.1 s)					
	Probe input:					
	Peak value at 10 times the range or 25 V, whichever is less					
	(with in 0.1 s)					

Item	Specifications				
allowable input	Voltage				
anowable input	reak value of 1.0 KV	or this value of 1.5 KV, whichever is less			
	If the frequency of the input voltage exceeds 100 kHz,				
	(1200–f) Vrms or less. f is the frequency of the input voltage in units of kHz.				
	Current				
	Sensor input:				
	Input resistance: 1	Ω			
	Peak value of 1.	5 A or rms value of 1.1 A, whichever is less.			
	Input resistance: 1	50			
	Peak value of 1	0 A or rms value of 0 73 A whichever is less			
	Input resistance: 5				
		24 or rmo value of 0.22 A whichover is less			
	Peak value of 0.	5 A OF THIS VALUE OF 0.22 A, WHICHEVELTS IESS.			
	Input resistance: 1				
	Peak value of 0.	15 A or rms value of 0.11 A, whichever is less.			
	Probe input:				
	Peak value at 5 tin	nes the range or rms value of 25 V, whichever is less			
Maximum rated voltage to	Voltage input terminal				
earth (DC to 50/60 Hz)	1000 V CAT II				
Influence of voltage to earth	1000 Vrms is applied be	etween an input terminal and WT5000 with the voltage input terminals			
	shorted.				
	50/60 Hz ⁻ +0.01% of ra	nge or less			
	Poforonco voluos un to	200 64-2			
	voltage: ±{(maximum	i rated range//(rated range) × 0.001 × 1% of range} or less			
	However, 0.01% or g	reater.			
	The maximum range	rating in the equation is 1000 V.			
	The unit of f in the ec	juations is kHz.			
A/D converter	Simultaneous conversion	on of voltage and current inputs.			
	Resolution: 18 bits				
	Sample rate: 10 MS/	s max.			
Measurement frequency	DC. 0.1 Hz to 2 MHz				
bandwidth	- , -				
Lower limit of measurement	Sync source period ave	erade method			
frequency	Data undate interval				
liequelley		200 11-			
	10 ms				
	50 ms	45 HZ			
	100 ms	20 Hz			
	200 ms	10 Hz			
	500 ms	5 Hz			
	1 s	2 Hz			
	2 s	1 Hz			
	5 s	0.5 Hz			
	10 s	0.2 Hz			
	20 6	0.1 Hz			
	20 3	0.1112			
	Divited filter evenesses and	All and			
	Digital filter average me				
	FAST:	100 Hz			
	MID:	10 Hz			
	SLOW:	1 Hz			
	VSLOW:	0.1 Hz			
Maximum display	140% of the rated volta	ge or current range			
	160% only for the 1000 V range				
	105% only for the maximum rated range of the current sensor input				
	280% of the voltage and current range rating for CE6A				
	200% of the voltage and current range rating for CP0A				
		ovinum concer input ronge			
	210 % only for the m	aximum sensor input range			
Minimum display	Depending on the meas	surement range, the following are the minimum values that are displayed: las: 0.2% (0.6% when the error factor is set to 0.2%			
	• Urms, Uac, Irms, and	IRU: U.570 (U.570 WHEN THE CREST FACTOR IS SET TO 5)			
	When input level is lower than above the display shows zero if rounding to zero setting is ON otherwise				
	measured value will be e	hown Current integration value g also depends on the current value			
	measured value will be a				

Accuracy

Item	Specifications						
Accuracy (6 months)	Conditions						
Accuracy (0 months)	$Tomporature: 22^{\circ}C + 5^{\circ}C$						
	Humidity: 30 to 75%RH						
	Input waveform: Sine wave						
	λ (power factor): 1						
	Voltage to ground: 0 V						
	Crest factor: CF3						
	Line filter: OFF	ما					
	Frequency filter: Used for signal	u frequencies at 1 kHz or less					
	Svnc source signal level: Same a	as the frequency measurement conditions					
	Input range: DC 0% to ± 110% of ra	ange, AC 1% to 110% of range					
	Defined using rms values for AC						
	After the warm-up time has elapsed	d.					
	Wired condition after zero-level con	npensation or measurement range change.					
	The unit of this ine accuracy equality						
	Voltaga						
		$\pm (0.02\% \text{ of reading} \pm 0.05\% \text{ of range})$					
		$\pm (0.02\% \text{ of reading } + 0.05\% \text{ of range})$					
		$\pm (0.03\% \text{ of reading} \pm 0.03\% \text{ of range})$					
		$\pm (0.05\% \text{ of reading} \pm 0.05\% \text{ of range})$					
	45 HZ ST S 66 HZ	$\pm (0.01\% \text{ of reading} + 0.02\% \text{ of range})$					
	$66 \text{ Hz} < f \le 1 \text{ kHz}$	\pm (0.03% of reading + 0.03% of range)					
	1 kHz < f ≤ 10 kHz	\pm (0.1% of reading + 0.05% of range)					
		Add $0.015 \times f$ % of reading (10 V range or less).					
	10 kHz < f ≤ 50 kHz	± (0.3% of reading + 0.1% of range)					
	50 kHz < f ≤ 100 kHz	\pm (0.6% of reading + 0.2% of range)					
	100 kHz < f ≤ 500 kHz	± {(0.006 × f) % of reading + 0.5% of range}					
	500 kHz < f ≤ 1 MHz	± {(0.022 × f-8) % of reading + 1% of range}					
	Frequency bandwidth	DC to 10 MHz (Typical)					
	Current						
	DC	\pm (0.02% of reading + 0.05% of range)					
	0.1 Hz ≤ f < 10 Hz	\pm (0.03% of reading + 0.05% of range)					
	10 Hz ≤ f < 45 Hz	± (0.03% of reading + 0.03% of range)					
	45 Hz ≤ f ≤ 66 Hz	± (0.01% of reading + 0.02% of range)					
	66 Hz < f ≤ 1 kHz	± (0.03% of reading + 0.03% of range)					
	1 kHz < f ≤ 10 kHz	± (0.1% of reading + 0.05% of range)					
	10 kHz < f ≤ 50 kHz	\pm (0.3% of reading + 0.1% of range)					
	50 kHz < f ≤ 100 kHz	± (0.6% of reading + 0.2% of range)					
	100 kHz < f ≤ 200 kHz	± {(0.00725 × f − 0.125)% of reading + 0.5% of range}					
	200 kHz < f ≤ 500 kHz	± {(0.00725 × f − 0.125)% of reading + 0.5% of range}					
	500 kHz < f ≤ 1 MHz	± {(0.022 × f − 8)% of reading + 1% of range}					
	Frequency bandwidth	Sensor input: DC to 5 MHz (typical)					
		Probe input: DC to 5 MHz (typical)					
	Active power (power factor 1)	1/(0.020) of reading $1/(0.020)$ of reads					
		$\pm (0.02\% \text{ or reading} + 0.05\% \text{ or range})$					
	$0.1 \Pi Z \le 1 \le 10 \Pi Z$	$\pm (0.06\% \text{ of reading} \pm 0.04\% \text{ of range})$					
	$10 \text{ Hz} \le 1 \le 30 \text{ Hz}$	$\pm (0.04\% \text{ or reading} \pm 0.04\% \text{ or range})$					
	30 HZ ST < 45 HZ	$\pm (0.04\% \text{ of reading} \pm 0.04\% \text{ of range})$					
	45 Hz ≤ t ≤ 66 Hz	$\pm (0.01\%$ of reading + 0.02% of range)					
	66 Hz < f ≤ 1 kHz	±(0.04% of reading + 0.04% of range)					
	1 kHz < f ≤ 10 kHz	±(0.15% of reading + 0.1% of range)					
		Add 0.01 × f % of reading (10 V range or less).					
	10 kHz < f ≤ 50 kHz	$\pm (0.3\% \text{ of reading} + 0.2\% \text{ of range})$					
	50 kHz < f ≤ 100 kHz	±(0.7% of reading + 0.3% of range)					
	100 kHz < f ≤ 200 kHz	±{(0.008 × f)% of reading + 1% of range}					
	200 kHz < f ≤ 500 kHz	±{(0.008 × f)% of reading + 1% of range}					
	500 kHz < f ≤ 1 MHz	±{(0.048 × f-20)% of reading + 1% of range}					

- For the current sensor input range, add the following values to the accuracies listed above:
 - Input resistance: 1 Ω
 - DC current accuracy: 24 µA

DC power accuracy: (24 μ A/rated value of the sensor input range) × 100% of range Input resistance: 1.5 Ω

DC current accuracy: 15 µA

DC power accuracy: (15 µA/rated value of the sensor input range) × 100% of range

Current and power accuracies (45 Hz ≤ f ≤ 66 Hz, 6.67 mA/16.7 mA/33.3 mA range): 0.01% of reading Input resistance: 5 Ω

DC current accuracy: 4 µA

DC power accuracy: (4 μ A/rated value of the sensor input range) × 100% of range Current and power accuracies (45 Hz ≤ f ≤ 66 Hz, 5 mA/10 mA range): 0.01 % of reading Input resistance: 10 Ω

DC current accuracy: 1 µA

DC power accuracy: (1 µA/rated value of the sensor input range) × 100% of range Current and power accuracies (45 Hz ≤ f ≤ 66 Hz, 5 mA/10 mA range): 0.01 % of reading The rated value of the sensor input range is a range rated value selected with a Input resistance setting, with scaling set to off.

- For the probe input range, add the following values to the accuracies listed above: Current and power accuracies (45 Hz ≤ f ≤ 66 Hz, 50 mV range): 0.01 % of reading Current and power accuracies (45 Hz ≤ f ≤ 66 Hz, 100 mV range): 0.005 % of reading
- For the accuracies of waveform data functions Upk and Ipk: Add the following values (reference values) to the accuracies listed above. The effective input range is within ±300% (±600% when the crest factor is set to CF6 or CF6A) of the range.

```
Voltage input: {\sqrt{(1.5/range)} + 0.5}% of range
Sensor input:
  Input resistance: 1 Ω
      \{\sqrt{(0.06/range)} + 0.5\}\% of range (100 mA range or less)
      \{\sqrt{(0.3/range)} + 0.5\}\% of range (250 mA range or more)
  Input resistance: 1.5 Ω
      \{\sqrt{(0.06/range)} + 0.5\}\% of range (66.7 mA range or less)
      \{\sqrt{(0.3/range)} + 0.5\}\% of range (167 mA range or more)
  Input resistance: 5 Ω
      \{\sqrt{(0.06/range)} + 0.5\}\% of range (20 mA range or less)
      \{\sqrt{(0.3/range)} + 0.5\}\% of range (50 mA range or more)
  Input resistance: 10 Ω
      \{\sqrt{(0.06/range)} + 0.5\}\% of range (10 mA range or less)
      \{\sqrt{(0.3/range)} + 0.5\}\% of range (25 mA range or more)
Probe input:
  \{\sqrt{(0.01/range)} + 0.5\}\% of range (50 mV to 200 mV range)
  \{\sqrt{(0.1/range)} + 0.5\}\% of range (500 mV to 10 V range)
```

6.17 760903 Current Sensor Element Specification

	0
Add the following values to the accuracies listed above.	
 DC voltage accuracy: ±0.02% of range/°C (1.5 V to 10 V range) 	
±0.005% of range/°C (15 V to 1000 V range)	
Sensor input DC accuracy:	
Input resistance: 1 Ω	
±0.06% of range/°C (10 mA to 50 mA range)	
±0.02% of range/°C (100 mA to 1A range)	
Input resistance: 1.5 Ω	
±0.06% of range/°C (6.67 mA to 33.3 mA range)	
±0.02% of range/°C (66.7 mA to 667 mA range)	
Input resistance: 5 Ω	
±0.04% of range/°C (5 mA to 20 mA range)	
±0.02% of range/°C (50 mA to 200 mA range)	
Input resistance: 10 Ω	
±0.03% of range/°C (5 mA to 10 mA range)	
±0.02% of range/°C (20 mA to 100 mA range)	
 Probe input DC accuracy: ±50 μV/°C (50 mV to 200 mV range) 	
±200 μV/°C(0.5 V to 10 V range)	
For the DC power accuracy, add the voltage influence × I and the curren	it influence ×
U is the voltage reading (V). I is the current reading (A).	
Influence of self-generated heat caused by current input	
Add the following values to the current and power accuracies:	

Influence of temperature changes after zero-level compensation or range change

10	dd the following values to the current and power accu					
	Input resistance 1 Ω:	± 0.1 × I ² [% of reading]				
	Input resistance 1.5 Ω:	± 0.15× I ² [% of reading]				
	Input resistance 5 Ω:	± 0.5 × I ² [% of reading]				
	Input resistance 10 Ω:	± 1.0 × I ² [% of reading]				
	I is the CT's secondary current reading (A).					

Even if the current input decreases, the influence from self-generated heat continues until the temperature of the shunt resistor decreases.

- Guaranteed accuracy ranges for frequency, voltage, and current All accuracy figures for 0.1 Hz to 10 Hz are reference values. The voltage and power accuracy figures for 30 kHz to 100 kHz when the voltage exceeds 750 V are reference values.
- Influence of data update interval Add the following value for signal sync period average. 10 ms: 0.03% of reading 50 ms: 0.03% of reading 100 ms:0.02% of reading
- Accuracy when the crest factor is set to CF6 or CF6A The same as the accuracy when the crest factor is CF3 after doubling the range.

U.

Item	Specifications
Power factor (λ) influence	When $\lambda = 0$
	±Apparent power reading × 0.02% in the range of 45 Hz to 66 Hz.
	For other frequency ranges, see below. However, note that these figures are reference values.
	±Apparent power reading × (0.02 + 0.05 × f)%
	When $0 < \lambda < 1$
	(Power reading) x (power reading error %) + (power range error %) x (power range/indicated
	(Fower reading) + [(power reading error ∞) + (power range error ∞) + (power range/indicated apparent power value) + /tap α x (influence when $\lambda = 0.0\%$]
	where φ is the phase angle between the voltage and current
	The unit of f in the accuracy equations is kHz.
Accuracy at 1 year	1.5 times the accuracy at 6 months
Temperature coefficient	At 5°C to 18°C or 28°C to 40°C, add the following value to the voltage measurement accuracy.
	±0.01% of reading/°C
	At 5°C to 18° C or 28° C to 40° C, add the following value to the current and power measurement accuracy
	When the input resistance is 10 0 or 5 0
	$\pm 0.01\%$ of reading/°C
	$\pm 0.3 \mu A^{\circ}C$ (for DC measurement values)
	When the input resistance is 1.5Ω or 1Ω
	±0.01% of reading/°C
	±3 μA/°C (for DC measurement values)
Influence of humidity	Add to the voltage and active power accuracies:
	±0.00022 × HUM - 50 × f % of reading: f ≤ 40 kHz
	±0.0087 × HUM - 50 % of reading: f > 40 kHz
	Reference: Add to the power factor error.
	When $\lambda = 0$
	Apparent power reading × 0.00002 × HUM - 50 × f%
	When $0 < \lambda < 1$
	(Power reading) × [(power reading error %) + (power range error %) × (power range/indicated
	apparent power value) + {tan $\varphi \times$ (influence when $\lambda = 0)\%$ }]
	HI IM: Polotivo humidity (%PH)
	The unit of f in the accuracy equations is kHz
Effective input range	Udc. Idc: 0% to ±130% of the measurement range (excluding the 1000 V range)*
1 0	Udc 1000 V range: 0% to ±150%*
	Urms, Irms: 1% to 130% of the measurement range*
	Umn, Imn: 10% to 130% of the measurement range*
	Urmn, Irmn: 10% to 130% of the measurement range*
	Power
	DC measurement: 0% to ±150% when the voltage measurement range is 1000 V; 0 to ±130% otherwise*
	AC measurement: 1% to 130%* of the voltage and current ranges; up to ±130%* of the power range
	* The accuracy for 110% to 130% of the measurement range (excluding the 1000 V range) is range
	error × 1.5.
	If the input voltage exceeds 600 V, add 0.02% of reading.
	However, the signal level for the sync source period average method must meet the input signal
	When the creet factor is set to CE6 or CE6A, double the lower limit
Accuracy of apparent power	
S	Voltage accuracy - current accuracy
Accuracy of reactive power	Accuracy of apparent power + ($\sqrt{(1.0002 - \lambda^2)} - \sqrt{(1 - \lambda^2)}$) × 100% of range
Q	
Accuracy of power factor λ	$\pm [(\lambda - \lambda/1.0002) + \cos\varphi - \cos\{\varphi + \sin^{-1}((\text{influence from the power factor when } \lambda = 0)\%/100)\}] \pm 1 \text{ digit}$
	The voltage and current must be within their rated ranges
Accuracy of phase difference	$\pm t[\phi - \cos^{-1}(\lambda/1.0002)] + \sin^{-1}{(influence from the power factor when \lambda = 0.0\%/100} dea \pm 1 diait$
φ	
	The voltage and current must be within their rated ranges.
Lead and lag detection	Phase difference: ±(5° to 175°)
-	Frequency: 20 Hz to 10 kHz
	Condition: Sine wave
	At least 50% of the measurement range (at least 100% for CF6 and CF6A)

6.17 760903 Current Sensor Element Specification

Item	Specifications					
Line filter	Bessel, 5th order LP	PF, cutoff frequency fc: 1 MHz				
	,					
	 When the advance 	d line filter setting is off				
	When the line filter is on, add the following to the voltage, current, and active power accuracies.					
	Voltage, curren	t				
	f ≤ (fc/10): ± ((20 × f/fc) % of reading				
	Active power					
	f ≤ (fc/10): ± ((40 × f/fc) % of reading				
	For the filter speci	fications for fc less than or equal to 100 kHz, see "Line filter" in section 6.7.				
	When the advance When the anti-alia power accuracies	d line filter setting is on asing filter function (AAF) is on, add the following to the voltage, current, active				
	' Voltage, curren f ≤ (fc/10): ± (t (20 × f/fc) % of reading				
	Active power					
	f ≤ (fc/10): ± ((40 × f/fc) % of reading				
	For the filter speci	fications for fc less than or equal to 100 kHz, see "Line filter" in section 6.7.				
	When the high fre active power accu	quency rejection function (HFR) is on, add the following to the voltage, current, iracies.				
	However, if the AA precedence.	AF is set to ON simultaneously, the accuracy addition of the AAF takes				
	Current					
	50 kHz ≤ f ≤ 10	0 kHz: ± (0.006 × f–0.1) % of reading				
	100 kHz <f 30<="" th="" ≤=""><th>0 kHz: ± (0.035 × f–2.0) % of reading</th></f>	0 kHz: ± (0.035 × f–2.0) % of reading				
	300 kHz <f %="" (0.040="" 500="" f+2.0)="" khz:="" of="" reading<="" th="" ±="" ×="" ≤=""></f>					
	Active power (power factor 1)					
	10 kHz ≤ f ≤ 50 kHz: ± (0.005 × f-0.05) % of reading					
	50 kHz ≤ f ≤ 100 kHz: ± (0.013 × f–0.3) % of reading					
	$100 \text{ kHz} \le 500 \text{ kHz} \pm (0.050 \times \text{f} - 3.0) \%$ of reading					
	Influence of power factor (λ)					
	Λ =0: ± (0.01 × 1) % of apparent power reading					
	However, be aware that these figures are reference values.					
Frequency measurement	I ne unit of ic and t in the accuracy equations is KHZ.					
r requency measurement	Data undata interval	Measurement range				
		200 Hz < f < 2 MHz				
	TO IIIS					
	50 ms	45 HZ ST SZ MHZ				
	100 ms	$20 \text{ Hz} \le 1 \le 2 \text{ MHz}$				
	200 ms	$10 \text{ Hz} \le 1 \le 2 \text{ MHz}$				
	500 ms	$5 \text{ Hz} \le f \le 2 \text{ MHz}$				
	1 s	$2 \text{ Hz} \le f \le 2 \text{ MHz}$				
	2 s	$1 \text{ Hz} \le f \le 2 \text{ MHz}$				
	5 s	$0.5 \text{ Hz} \le f \le 2 \text{ MHz}$				
	10 s	$0.2 \text{ Hz} \le f \le 2 \text{ MHz}$				
	20 s	$0.1 \text{ Hz} \le f \le 2 \text{ MHz}$				
	Accuracy: ±0.06% o	f reading \pm 0.1 mHz				
	Conditions:					
	Input signal level:					
	Crest factor CF	3: At least 30% of the measurement range				
	Crest factor CF	6/CF6A: At least 60% of the measurement range				
	However, at lea	ist 50% of the range if the signal is less than or equal to twice the lower				
	measurement fi	requency				
	Frequency filter					
	0.1 Hz ≤ f < 100) Hz: 100 Hz				
	100 Hz ≤ f < 1 k	KHZ: 1 KHZ				
	1 kHz ≤ f < 100	kHz: 100 kHz				

Item	Specifications				
Harmonic measurement	PLL source input level				
	50% or more of the rated measurement range when the crest factor is CF3.				
	100% or more of the ra	ated measurement range when the crest factor is CF6 or CF6A.			
	Accuracy				
	Add the following accu	racy values to the normal measurement accuracy values.			
	 When line filters are turn 	ned off			
	Frequency	Voltage, current			
	0.1 Hz ≤ f < 10 Hz	$\pm (0.01\% \text{ of reading} + 0.03\% \text{ of range})$			
	10 Hz ≤ f < 45 Hz	$\pm (0.01\% \text{ of reading} + 0.03\% \text{ of range})$			
	45 Hz ≤ f ≤ 66 Hz	\pm (0.01% of reading + 0.03% of range)			
	66 Hz < f ≤ 440 Hz	$\pm (0.01\% \text{ of reading} + 0.03\% \text{ of range})$			
	440 Hz < f ≤ 1 kHz	$\pm (0.01\% \text{ of reading} + 0.03\% \text{ of range})$			
	$1 \text{ kHz} < f \le 10 \text{ kHz}$	$\pm (0.01\% \text{ of reading} + 0.03\% \text{ of range})$			
	10 kHz < f ≤ 50 kHz	$\pm (0.05\% \text{ of reading} + 0.1\% \text{ of range})$			
	50 kHz < t ≤ 100 kHz	$\pm (0.1\% \text{ of reading} + 0.2\% \text{ of range})$			
	100 kHz < t ≤ 500 kHz	$\pm (0.1\% \text{ of reading} + 0.5\% \text{ of range})$			
	500 KHZ < T ≤ 1.5 MHZ	±(0.5% of reading + 2% of range)			
	Fraguanay	Power			
		$\frac{1}{10000000000000000000000000000000000$			
	$0.1 \Pi Z \ge 1 \le 10 \Pi Z$	$\pm (0.02\% \text{ of reading} \pm 0.06\% \text{ of range})$			
	10 ⊓Z ≤ I < 40 ⊓Z 45 Uz < f < 66 Uz	$\pm (0.02\% \text{ of reading} \pm 0.06\% \text{ of range})$			
	$43 HZ \le 1 \le 00 HZ$	$\pm (0.02\% \text{ of reading} \pm 0.06\% \text{ of range})$			
	440 Hz < f < 1 kHz	$\pm (0.02\% \text{ of reading} \pm 0.06\% \text{ of range})$			
	1 kHz < f < 10 kHz	$\pm (0.02\% \text{ of reading} \pm 0.06\% \text{ of range})$			
	10 kHz < f < 50 kHz	$\pm (0.02\% \text{ of reading} \pm 0.2\% \text{ of range})$			
	50 kHz < f < 100 kHz	$\pm (0.2\% \text{ of reading} \pm 0.4\% \text{ of range})$			
	100 kHz < f < 500 kHz	$\pm (0.2\% \text{ of reading} \pm 1\% \text{ of range})$			
	$500 \text{ kHz} < f \le 1.5 \text{ MHz}$	$\pm (1\% \text{ of reading} + 4\% \text{ of range})$			
	 When line filters are turned on Add the line filter influence to the accuracy values when the line filters are turned off. When the crest factor is set to CF3 When λ (the power factor) is 1 Power figures that exceed 10 kHz are reference values. For the voltage range, add 25 mV to the voltage accuracy and (25 mV/current range rating) × 100% of range to the power accuracy. For the current sensor input range, add 200 µA to the current accuracy and (200 µA/current range rating) × 100% of range to the power accuracy. For the probe input range, add 2 mV to the current accuracy and (2 mV/rated value of the probe input range)×100% of range to the power accuracy. When the number of FFT points is 1024, add ±0.2% to the voltage and current range errors and ±0.4% to the power range error. Add (n/500)% of reading to the nth component of the voltage and current, and add (n/250)% of reading to the nth component of the power. The accuracy when the crest factor is CF6 or CF6A is the same as the accuracy when the crest factor is CF3 after doubling the measurement range. The guaranteed accuracy ranges for frequency, voltage, and current, are the same as the guaranteed ranges for normal measurement. The neighboring harmonic orders may be affected by the side lobes from the input harmonic order 				
	When FFT points is se When the frequency {[n/(m+1)]/50}% of (t and current, and add order of the power.	It to 8192 of the PLL source is 2 Hz or greater, for n th order component input, add the n th order reading) to the n + m th order and n – m th order of the voltage d {[n/(m+1)]/25}% of (the n th order reading) to the n + m th order and n – m th			

6 Specifications

6.17 760903 Current Sensor Element Specification

Item	Specifications				
	When FFT points is set to 1024				
	When the frequency of the PLL source is 75 Hz or greater, for n th order component input, add $({n/(m+1)}/50)\%$ of (the n th order reading) to the n + m th order and n – m th order of the voltage and current, and add $({n/(m+1)}/25)\%$ of (the n th order reading) to the n + m th order and n – m th order of the power.				
	When the frequency of the PLL source is less than 75 Hz, for n th order component input, add $({n/(m+1)}/5)\%$ of (the n th order reading) to the n + m th order and n – m th order of the voltage and current, and add $(2{n/(m+1)}/5)\%$ of (the n th order reading) to the n + m th order and n – m th order of the power.				
Notes	Limitations when used in combination with the CT1000				
	Use within the following ambient temperature derating.				
	CT ambient temperature 45°C or more: Primary current 900 Apk or less				
	CT ambient temperature 45°C or less: Follows the CT1000 specifications				
	Restrictions when used in combination with the 10 m sensor cable 761956				
	CT2000A primary current: 2100 Apk or less				

Dimensions

Item	Specifications		
Dimensions Approx. 145 mm (H) × 42 mm (W) × 298 mm (D)			
	* The depth includes the slide cover (295 mm if slide cover is excluded).		
Weight	Approx. 740 g		
Connection 50-pin B to B connector			

For general specifications, see section 6.13.

<u>Appendix</u>

Appendix 1 Symbols and Determination of Measurement Functions

Measurement Functions Used in Normal Measurement

						()	Table 1/4)
Measurement Function		Formula For information about the symbols in the equations, see the notes provided 3 pages later.					
True rms value: Urms Rectified mean value Voltage calibrated to the rms value: Umn		Urms	Umn	Udc	Urmn	Uac	Ufnd*
U [V]	Simple average: Udc Rectified mean value: Urmn AC component: Uac Fundamental component: Ufnd	$\sqrt{\text{AVG}[u(n)^2]}$	$\frac{\pi}{2\sqrt{2}} AVG[u(n)]$	AVG[u(n)]	AVG[u(n)]	$\sqrt{\text{RMS}^2\text{-}\text{DC}^2}$	U(1)
	True rms value: Irms Rectified mean value	Irms	Imn	ldc	Irmn	lac	lfnd*
Current I [A]	calibrated to the rms value: Imn Simple average: Idc Rectified mean value: Imn AC component: Iac Fundamental component: Ifnd	$\sqrt{AVG[i(n)^2]}$	$\frac{\pi}{2\sqrt{2}} AVG[i(n)]$	AVG[i(n)]	AVG[i(n)]	$\sqrt{\text{RMS}^2 - \text{DC}^2}$	l(1)
	Active power P [W]		AVO	G[u(n) • i(n)]			
Funda	mental active power Pfnd[W]			P(1)*			
Apparent	power S [VA] TYPE1, TYPE2	Select fro	om Urms • Irms, Umr	n • Imn, Udc	• Idc, Umn • Ir	rms, Urmn • Irm	in.
	TYPE3		١	$\sqrt{P^2 + Q^2}$			
Fundan	nental apparent power Sfnd[VA]			S(1)*			
Reactive	power Q [var] TYPE1, TYPE2		s is ₋ 1 for a lead r	$\sqrt{S^2 - P^2}$	for a lag phas	2	
	TYPE3	s is -1 for a lead phase and 1 for a lag phase.					
		$\sum_{k=\min}^{n} \mathbf{Q}(k)$					
		Q (k) = Ur (k) \cdot Ij (k) – Uj (k) \cdot Ir (k) Ur(k) and Ir(k) are the real number components of U(k) and I(k). Uj(k) and Ij(k) are the imaginary components of U(k) and I(k). This is valid only when harmonics are being measured correctly.					
Fundan	nental reactive power Qfnd[var]	Q(1)*					
	Power factor λ	P s					
Funda	mental power factor	λ(1)*					
Pha	se difference Φ [°]	a cos-1 (P)					
		$s \cdot \cos^{-1}(\overline{s})$					
		 The phase angle can be switched between lead (D)/lag (G) display and 360° display. s, which determines the signs for lead and lag, varies depending on the phase difference polarity setting as follows. When the phase difference polarity is set to Lead(-)/Lag(+) Lead: -1, Lag: 1 When the phase difference polarity is set to Lead(+)/Lag(-) Lead: 1, Lag: -1 					
Fundamental phase difference		Φ(1)*					
Voltage frequency: fU (FreqU) [Hz] Current frequency: fl (Freql) [Hz]		The voltage frequency (fU) and current frequency (fl) are measured by detecting the cross points. The fU and fl of all elements can be measured simultaneously.					
Voltage frequency: f2U(Freq2U) [Hz] Current frequency: f2l (Freq2l) [Hz]		Frequency when the second frequency filter of voltage frequency (fU) and current frequency (fI) is connected					

* This is valid only when harmonics are being measured correctly.

			(Table 2/4)		
Measurement Function		Formula			
Measurement i unction		For information about the symbols in the equations, see th	e notes provided 2 pages later.		
		TYPE1: IEC76-1 (1976), IEEE C57.12.90-2010	TYPE2:IEC76-1(2011)		
Corrected Power Pc [W]		$\frac{P}{P1 + P2 \left(\frac{Urms}{Umn}\right)^2}$ P1 P2	$P\left(1 + \frac{Umn - Urms}{Umn}\right)$		
		P1, P2: coefficients defined in the applicable standards	d		
IV	laximum voltage: U + pk [v]	The maximum u(n) for every data up	date		
IN N		The minimum u(n) for every data upo			
	Minimum ourrent: L nk [A]	The minimum i(n) for every data upo			
- N	Initiation Current. I - pk [A]	The maximum u(n) si(n) for every data upo			
IV	laximum power: P + pk [W]	The minimum u(n) • I(n) for every data	update		
N N	Voltago crost factor:		Ink		
	CfU Current crest factor: Cfl	Voltage crest factor CfU = Upk UrmsCurrent crestUpk = U + pk or U - pk Ipk = I + p whichever is largerIpk = whichever	t factor Cfl = <u>Ipk</u> Irms bk or I – pk :hever is larger		
	Integration time [h:m:s] ITime	Time from integration start to integrat	ion stop		
		When the watt-hour integration method for each polarity	v is Charge/Discharge		
	WP Watt hours WP+ [Wh] WP-	$\left[\frac{1}{N}\sum_{n=1}^{N} \{u(n) \cdot i(n)\}\right]$. ITime			
		N is the integration time sampling count. The unit of ITime is hours. WP is the sum of positive and negative watt hours. WP+ is the sum of the above equations for all iterations where $u(n) \cdot i(n)$ is positive. WP- is the sum of the above equations for all iterations where $u(n) \cdot i(n)$ is negative.			
		When the watt-hour integration method for each polarity is Sold/Bought			
		$\left[\frac{1}{N}\sum_{n=1}^{N} \{u(n) \cdot i(n)\}\right]$ ITime			
n		N is the integration time sampling count. The unit of ITime is hours. WP is the sum of positive and negative watt hours. WP+ is the sum of the positive power values at each data update interval. WP- is the sum of the negative power values at each data update interval.			
ntegratic	rms, mean,	$\frac{1}{N}\sum_{n=1}^{N}I(n) \cdot ITime$			
1	Ampere hours r-mean,	I(n) is the n th measured current value			
	ac ac	N is the number of data updates. The unit of ITime is hours			
	q+dc	$\frac{1}{N}\sum_{n=1}^{N}i(n) \cdot ITime$			
		i(n) is the n [≞] sampled data of the current signal. N is the number of data samples. The unit of lTime is hours.			
		q is the sum of i(n)'s positive and negative ampere hours. q+ is the sum of the above equations for all iterations where i(n) is positive. q– is the sum of the above equations for all iterations where i(n) is negative.			
	Apparent energy WS[VAh]	$\frac{1}{N}\sum_{n=1}^{N}S(n) \cdot ITime$			
	-	S(n) is the n th measured apparent power value. N is the The unit of ITime is hours.	e number of data updates.		
	Reactive energy WQ[varh]	$\frac{1}{N}\sum_{n=1}^{N} Q(n) \cdot Time$			
		Q(n) is the n th measured reactive power value. N is the The unit of ITime is hours.	e number of data updates.		

	(Table 3/4)
Measurement Function	Formula For information about the symbols in the equations, see the notes provided 2 pages later.
Voltage measurement range RngU [V]	Present voltage range
Current measurement range Rngl [A]	Present current range

Me	Ieasurement Function For information about the symbols in the equations, see the notes provided 1 pages later.						
	Wiring	system	Single-phase three-wire	Three-phase three-wire	Three-phase three- three-voltage three-	ee-wire with current method	Three-phase four-wire 3P4W
			1P3W	3P3W	3P3W(3V3A)	3P3W(3V3AR)	
		er than Udc	(U1 +	U2) / 2		(U1 + U2 + U3) / 3	
		Udc			(U1 + U2 + U3) / 3	((U1 + U2 + U3) / 3
	IΣ [A]		(11 + 1	2) / 2		(1 + 2 + 3) / 3	.
	ΡΣ [W]			P1+I	P2	–P1 + P2	P1 + P2 + P3
	SΣ [VA]	TYPE1, TYPE2	S1 + S2	$\frac{\sqrt{3}}{2}(S1 + S2)$	$\frac{\sqrt{3}}{3}$ (S1 -	+ S2 + S3)	S1 + S2 + S3
ŝuo		TYPE3		√P	$\Sigma^2 + Q\Sigma^2$		
ncti		TYPE1		Q	1 + Q2	-Q1 + Q2	Q1 + Q2 + Q3
Σtu	QΣ [var]	TYPE2		√s	Σ ² - ΡΣ ²		
		TYPE3		Q	1 + Q2	-Q1 + Q2	Q1 + Q2 + Q3
	ΡcΣ [W]			Pc	1 + Pc2	-Pc1 + Pc2	Pc1 + Pc2 + Pc3
		WPΣ		WP1 + WP2		-WP1 + WP2	WP1 + WP2 + WP3
	WPΣ [Wh] WP+Σ	When the watt-	hour integration	method for each polarity	/ is Charge/Discharge	
	V		WP+1	WP+1 + WP+2		-WP-1 + WP+2	WP+1 + WP+2 + WP+3
			When the watt-hour integration method for each polarity is Sold/Bought WP+Σ is the sum of the positive active power WPΣ values at each data update interval.				
		WP–Σ	When the watt-	hour integration	method for each polarity	/ is Charge/Discharge	
	WP-1 + WP-		+ WP–2		-WP+1 + WP-2	WP-1 + WP-2 + WP-3	
When the watt-hour integration method for each polar WP-Σ is the sum of the negative active power		arity is Sold/Bought r WPΣ values at each	data update interval.				
		qΣ		q1	l + q2		q1 + q2 + q3
	qΣ [Ah]	q+Σ		q+1	l + q+2		q+1 + q+2 + q+3
		q–Σ		q–1	l + q–2		q_1 + q_2 + q_3
WQE [varh] $\frac{1}{N} \sum_{n=1}^{N} QE(n) \cdot Time$ QE(n) is the n th reactive power Σ function. N is the number of data updates The unit of ITime is hours. WSE [VAh] $\frac{1}{N} \sum_{n=1}^{N} SE(n) \cdot Time $ SE(n) is the n th apparent power Σ function. N is the number of data updates The unit of ITime is hours.			ta updates.				
			ta updates.				
	λΣ				<u>ΡΣ</u> SΣ		
Φ Σ [°]				COS	$5^{-1}\left(\frac{P\Sigma}{S\Sigma}\right)$		

(Table 4/4)

Note_

- u(n) denotes instantaneous voltage.
- i(n) denotes instantaneous current.
- n denotes the nth measurement period. The measurement period is determined by the sync source setting.
- AVG[] denotes the simple average of the item in brackets determined over the data measurement period. The data measurement period is determined by the sync source setting.
- PΣ denotes the active power of wiring unit Σ. Input elements are assigned to wiring unit Σ differently
 depending on the number of input elements that are installed in the instrument and the selected wiring
 system pattern.
- The numbers 1, 2, and 3 used in the equations for UrmsΣ, UmnΣ, UrmnΣ, UdcΣ, UacΣ, IrmsΣ, ImnΣ, IrmnΣ, IdcΣ, IacΣ, PΣ, SΣ, QΣ, PcΣ, WPΣ, and qΣ indicate the case when input elements 1, 2, and 3 are set to the wiring system shown in the table.
- On this instrument, S, Q, λ , and Φ are derived through the computation of the measured values of voltage, current, and active power. (However, when Type 3 is selected, Q is calculated directly from the sampled data.) Therefore, for distorted signal input, the value obtained on the instrument may differ from that obtained on other instruments that use a different method.
- For Q [var], when the current leads the voltage, the Q value is displayed as a negative value; when the current lags the voltage, the Q value is displayed as a positive value. The value of QΣ may be negative, because it is calculated from the Q of each element with the signs included.

Measurement Functions Used in Harmonic Measurement

				(Table 1/6
			Formula	
Measurement Function	Numbers and	d Characters		
measurement runction	dc (when k = 0)	1 (when k = 1)	k (when k = 1 to max)	lotal value (lotal) (No parentheses)
Voltage U()[V]	U(dc) =Ur(0)	U(k) =	$\sqrt{\mathrm{Ur}(\mathrm{k})^2 + \mathrm{Uj}(\mathrm{k})^2}$	$U = \sqrt{\sum_{k=\min}^{\max} U(k)^2}$
Current I()[A]	l(dc) = lr(0)	l(k) =	$\sqrt{\ln(k)^2 + \ln(k)^2}$	$I = \sqrt{\sum_{k=\min}^{\max} I(k)^2}$
Active power P() [W]	$P(dc) = Ur(0) \cdot Ir(0)$	P(k) = Ur(l	<) · Ir(k) + Uj(k) · Ij(k)	$\mathbf{P} = \sum_{k=\min}^{\max} \mathbf{P}(k)$
Apparent power S()[VA] (TYPE3) ^{*1}	S(dc) = P(dc)	S(k) =√	$P(k)^2 + Q(k)^2$	$S = \sqrt{P^2 + Q^2}$
Reactive power Q()[var] (TYPE3) ^{*1}	Q(dc) = 0	Q(k) = {Ur(k) ∙ lj(k) – Uj(k) ∙ lr(k)}	$\mathbf{Q} = \sum_{k=\min}^{\max} \mathbf{Q}(k)$
Power factor λ ()	$\lambda(dc) = \frac{P(dc)}{S(dc)}$	λ($k) = \frac{P(k)}{S(k)}$	$\lambda = \frac{P}{S}$
Phase difference $\Phi()$ [°]	_	Φ(k) =	$= \tan^{-1} \left\{ \frac{\mathbf{Q}(\mathbf{k})}{\mathbf{P}(\mathbf{k})} \right\} \cdot \mathrm{pol}^{*2}$	$\Phi = \tan^{-1}\left(\frac{Q}{P}\right) \cdot \operatorname{pol}^{*2}$
Phase difference with U(1) ^{*3} ΦU() [°]	_	—	_	ΦU(k) = The phase difference between U(k) and U(1)
Phase difference with I(1) ^{*3} ΦI()[°]	_	—	_	ΦI(k) = The phase difference between I(k) and I(1)
Impedance of the load circuit Z() [Ω]	$Z(dc) = \left \frac{U(dc)}{I(dc)} \right $	Z(I	$\mathbf{k} = \left \frac{\mathbf{U}(\mathbf{k})}{\mathbf{I}(\mathbf{k})} \right $	_
Series resistance of the load circuit Rs() [Ω]	$Rs(dc) = \frac{P(dc)}{I(dc)^2}$	Rs	$\mathbf{k} = \frac{\mathbf{P}(\mathbf{k})}{\mathbf{I}(\mathbf{k})^2}$	_
Series reactance of the load circuit Xs() [Ω]	Xs(dc) = 0	Xs	$(k) = \frac{Q(k)}{I(k)^2}$	_
Parallel resistance of the load circuit Rp() [Ω] (= 1/G)	$Rp(dc) = \frac{U(dc)^2}{P(dc)}$	Rp	$\Phi(k) = \frac{U(k)^2}{P(k)}$	_
Parallel reactance of the load circuit Xp() [Ω] (= 1/B)	Xp(dc) = Error	Хр	$(k) = \frac{U(k)^2}{Q(k)}$	_

(Continued on next page)

- *1 For details on the types of S and Q expressions, see "Apparent Power, Reactive Power, and Corrected Power Equations (Formula)" in chapter 8, "Computation," of the Features Guide, IM WT5000-01EN.
- *2 Depending on the polarity setting of the phase difference, pol will be as follows:
 - When the phase difference polarity is Lead (–)/Lag (+): 1
 - When the phase difference polarity is Lead(+)/Lag(-): -1
- *3 The signs for lead and lag of phase differences ΦU() and Φl() are fixed to positive (+) and negative (-), respectively.

Note_

- k denotes a harmonic order, r denotes the real part, and j denotes the imaginary part.
- U(k), Ur(k), Uj(k), I(k), Ir(k), and Ij(k) are expressed using rms values.
- The minimum harmonic order is denoted by min. min can be set to either 0 (the dc component) or 1 (the fundamental component).
- The upper limit of harmonic analysis is denoted by max. max is either an automatically determined value or the specified maximum measured harmonic order, whichever is smaller.

App-5

		(Table 2/6)		
	Formula			
	The numbers and characters in the parentheses are			
Measurement Function	dc (when k = 0) or	r k (when k = 1 to max).		
	When the Denominator of the	When the Denominator of the		
	Distortion Factor Equation Is	Distortion Factor Equation Is the		
	the lotal value (lotal)	Fundamental Wave (Fundamental)		
Harmonic voltage distortion	U(k) 100	U(k) 100		
	U(Total) ^{*2}	<u>U(1)</u>		
Harmonic current distortion				
factor	<u> </u>	<u>I(k)</u> . 100		
lhdf() [%]	l(Total) ^{*2}	I(1)		
distortion factor	$\frac{P(k)}{100}$	<u>P(k)</u> , 100		
Phdf() [%]	P(Total) ²	P(1)		
	max	max		
Total harmonic distortion	$\sqrt{\sum_{i=1}^{n}}$	$1/\sum_{i=1}^{max} 1/(i)^2$		
of voltage		k=2		
Uthd [%]	U(Total) ^{*2} • 100	U(1) · 100		
	max	max		
Total harmonic distortion of	$1/\sum (k)^2 $	$1/\sum I(k)^2$		
	$\frac{\sqrt{k=2}}{100}$, 100	$\frac{\sqrt{k=2}}{100}$		
	l(Total)*2	l(1)		
Total harmonic active newer				
distortion	P(k)	P(k)		
Pthd [%]	$\frac{k=2}{D(T_{c}+c_{1})^{*2}}$ • 100	$\left \frac{\kappa = 2}{\Gamma(4)} \right \cdot 100$		
	P(10tal) -			
Voltage telephone hermonic factor Lithf [9/1	1 $\sum_{n=1}^{\infty} (1 - 1)^{n}$	1 $\sum_{i=1}^{max} (1)$		
Current telephone harmonic factor 0th [%]	Uthf = $\frac{1}{U(Total)^{*2}} \bigvee_{k} \sum_{k} \{\lambda(k) \cdot U(k)\}^2 \cdot 100$	Ithf= $\frac{1}{ (\text{Total})^{*2}} \sqrt{\sum_{i=1}^{k} \lambda(k) \cdot I(k)}^2 \cdot 100$		
[,.]	k = 1	k = 1		
	A(K). coefficient defined in the app			
Voltago tolonhono influenco factor Utif	$\sum_{i=1}^{max} (\nabla_i (\tau_i) + i (\tau_i))^2$	$1 \sqrt{\sum_{i=1}^{max} (T_i)^2}$		
Current telephone influence factor Itif	$U(Total)^{*2} \bigvee_{k=4} \{T(k) \cdot U(k)\}^{-1}$	$I(I = \frac{1}{ (Total)^{2}} \sqrt{\sum_{k=1}^{\infty} \{I(k) \cdot I(k)\}^{2}}$		
	T(k): coefficient defined in the appli	cable standard (IFEE Std 100 (1992))		
Harmonic voltage factor hvf [%] ^{*1}	$hyf = \frac{1}{\sqrt{1-1}} \sqrt{\frac{1}{\sqrt{1-1}}} \frac{U(k)^2}{1-1}$, 100	hcf = $\frac{1}{\sqrt{1-\frac{1}{2}}} \sqrt{\frac{1}{\sqrt{1-\frac{1}{2}}}} \cdot 100$		
Harmonic current factor hcf [%]	$U(Total)^{*2} \bigvee_{k=2}^{2} k$	$I(Total)^{*2} \bigvee_{k=2}^{2} k$		
	max	2		
	$\sum \{l(k)^2 \cdot k\}$	' }		
K-factor	K-factor = $\frac{k=1}{max}$			
	$\sum_{k=1}^{\infty} (k)^2 ^2$			
	k=1			

⁽Continued on next page)

*1 The expression varies depending on the definitions in the standard. For more details, see the standard (IEC34-1: 1996).

*2 U(Total) =
$$\sqrt{\sum_{k=\min}^{\max} U(k)^2}$$
, I(Total) = $\sqrt{\sum_{k=\min}^{\max} I(k)^2}$, P(Total) = $\sum_{k=\min}^{\max} P(k)$
Note

- k denotes a harmonic order, r denotes the real part, and j denotes the imaginary part.
- The minimum harmonic order is denoted by min.
- The upper limit of harmonic analysis is denoted by max. max is either an automatically determined value or the specified maximum measured harmonic order, whichever is smaller.

		(Table 3/6)
Measurement Function	Formula	
Frequency of PLL source 1 FreqPLL1[Hz]	Frequency of the PLL source of harmonic group 1 (PLL source 1)	
Frequency of PLL source 2 FreqPLL2[Hz]	Frequency of the PLL source of harmonic group 2 (PLL source 2)	

						(Table 4/6)
Me	asurement Function			Form	ula	
	Wiring system	Viring system Single-phase three-wire	Three-phase	Three-phase three-wire with three-voltage three-current method		Three-phase four-wire
		1P3W	3P3W	3P3W(3V3A)	3P3W(3V3AR)	3P4W
	UΣ¹ [V]	(U1 + U2) / 2			(U1 + U2 + U3) / 3	
	UfndΣ² [V]	(Ufnd1 + Ufnd2) / 2		(U	fnd1 + Ufnd2 + Ufnd3)	/ 3
	ΙΣ¹ [A]	(11 +	12) / 2		(1 + 2 + 3) / 3	
	lfndΣ² [A]	(Ifnd1 + Ifnd2) / 2			(lfnd1 + fndl2 + lfnd3) / 3	
	ΡΣ¹ [W]		P1 + P2	2	–P1 + P2	P1 + P2 + P3
6	PfndΣ² [W]		Pfnd1 + Pf	fnd2	-Pfnd1 + Pfnd2	Pfnd1 + Pfnd2 + Pfnd3
ction	SΣ ¹ [VA] (TYPE3) ³	$\sqrt{P\Sigma^2 + Q\Sigma^2}$				
∑ fun	SfndΣ ² [VA] (TYPE3) ³	$\sqrt{Pfnd\Sigma^2 + Qfnd\Sigma^2}$				
	QΣ¹ [var] (TYPE3)³	Q1 + Q2			-Q1 + Q2	Q1 + Q2 + Q3
	QfndΣ ² [var] (TYPE3) ³		Qfnd1 + Q	fnd2	–Qfnd1 + Qfnd2	Qfnd1 + Qfnd2 + Qfnd3
	λΣ1	<u>ΡΣ</u> SΣ				
	λfndΣ²	<u>PfndΣ</u> SfndΣ			- -	

1 Only the total value and the fundamental wave (1st harmonic) are computed.

2 Only the fundamental wave (1st harmonic) is computed.

3 For details on the types of SΣ and QΣ expressions, see "Apparent Power, Reactive Power, and Corrected Power Equations (Formula)" in chapter 8, "Computation," of the Features Guide, IM WT5000-01EN.

Note.

The numbers 1, 2, and 3 used in the equations for U Σ , I Σ , P Σ , S Σ , and Q Σ , indicate the case when input elements 1, 2, and 3 are set to the wiring system shown in the table.

	(Table 5/6)
Measurement Function	Formula
ΦU1-U2(°)	Phase angle between U1(1) and the fundamental voltage of element 2, U2(1)
ΦU1-U3(°)	Phase angle between U1(1) and the fundamental voltage of element 3, U3(1)
ΦU1-I1(°)	Phase angle between U1(1) and the fundamental current of element 1, I1(1)
ΦU2-I2(°)	Phase angle between U2(1) and the fundamental current of element 2, I2(1)
ΦU3-I3(°)	Phase angle between U3(1) and the fundamental current of element 3, I3(1)

Note_

• The numbers 1, 2, and 3 used in the equations indicate the case when input elements 1, 2, and 3 are set to the wiring system shown in the table.

• The signs for phase difference lead and lag can be selected with the phase difference polarity setting.

- When the phase difference polarity is set to $\mbox{Lead}(\mbox{-})/\mbox{Lag}(\mbox{+})$

- Lead: negative (-), lag: positive (+) (output value: 0 to 360°)
- When the phase difference polarity is set to $\mbox{Lead}(\mbox{+})/\mbox{Lag}(\mbox{-})$

Lead: negative (+), lag: positive (-) (output value: ±180°)

		(Table 6/6)
Measurement Function	F	ormula
EaM1U1 to EaM1U7 (°) EaM1I1 to EaM1I7 (°)	Phase angles of the fundamental waves of U1 the signal received through the Motor1 (MTR? evaluation function as the reference.	I to I7 with the falling edge of 1) Z terminal of the motor
	EaM1U* = tan ⁻¹	$EaM1I^* = tan^{-1} \frac{Ir(1)}{I_j(1)} - B$
	Ur(1): real part of the fundamental voltage Uj(1): imaginary part of the fundamental voltage B: offset	Ir(1): real part of the fundamental current Ij(1): imaginary part of the fundamental current B: offset
EaM3U1 to EaM3U7 (°) EaM3I1 to EaM3I7 (°)	Phase angles of the fundamental waves of U1 the signal received through the Motor3 (MTR2 evaluation function as the reference.	I to I7 with the falling edge of 2) Z terminal of the motor
	EaM1U* = tan ⁻¹	$EaM1I^* = tan^{-1} \frac{Ir(1)}{I_j(1)} - B$
	Ur(1): real part of the fundamental voltage Uj(1): imaginary part of the fundamental voltage B: offset	Ir(1): real part of the fundamental current Ij(1): imaginary part of the fundamental current B: offset

Note_

The electrical angle lead and lag signs are positive and negative, respectively. The signs do not change depending on the phase difference polarity setting.

The electrical angle lead and lag signs are fixed to positive (+) and negative (-), respectively.

When delta computation is set to DELTA->STAR

Item	Symbols and Meanings	Formula
Fundamental component of delta harmonic voltage DELTAU1F DELTAU2F DELTAU3F DELTAUSIGF	Fundamental voltage wave of each phase computed in a three-phase three-wire (3V3A or 3V3AR) system and the fundamental voltage wave of the wiring unit	DELTAU1F = $\sqrt{\Delta URrfnd^2 + \Delta URjfnd^2}$ DELTAU2F = $\sqrt{\Delta USrfnd^2 + \Delta USjfnd^2}$ DELTAU3F = $\sqrt{\Delta UTrfnd^2 + \Delta UTjfnd^2}$ DELTAUSIGF = (DELTAU1F + DELTAU2F + DELTAU3F) / 3
Fundamental component of delta harmonic power DELTAP1F DELTAP2F DELTAP3F DELTAPSIGF	Fundamental power wave of each phase computed in a three-phase three-wire (3V3A or 3V3AR) system and the fundamental power waveform of the wiring unit	DELTAP1F = ΔURrfnd • I1rfnd + ΔURjfnd • I1jfnd DELTAP2F = ΔUSrfnd • I2rfnd + ΔUSfndj • I2jfnd DELTAP3F = ΔUTrfnd • I3rfnd + ΔUTjfnd • I3jfnd DELTAUSIGF = DELTAP1F + DELTAP2F + DELTAP3F

 Δ URrfnd, Δ URjfnd, Δ USrfnd, Δ USjfnd, Δ UTrfnd, and Δ UTjfnd in the above equations are the real part (r) and the imaginary part (j) of the fundamental wave (first harmonic) of each phase voltage used in the equations.

ltem	3V3A Wiring	3V3AR Wiring
ΔURrfnd	$U1rfnd - \frac{(U1rfnd + U2rfnd)}{3}$	—U1rfnd — (—U1rfnd + U2rfnd) 3
ΔURjfnd	U1jfnd — <u>(U1jfnd + U2jfnd)</u> 3	$-U1_{jfnd} - \frac{(-U1_{jfnd} + U2_{jfnd})}{3}$
∆USrfnd	$\frac{\text{(U1rfnd + U2rfnd)}}{3}$	U2rfnd — (—U1rfnd + U2rfnd) 3
∆USjfnd	U2rfnd — <u>(U1jfnd + U2jfnd)</u> 3	U2rfnd — (—U1jfnd + U2jfnd) 3
ΔUTrfnd	<u>(U1rfnd + U2rfnd)</u> 3	(—U1rfnd + U2rfnd) 3
∆UTjfnd	<u>(U1jfnd + U2jfnd)</u> 3	(—U1jfnd + U2jfnd) 3

Item	Symbols and Meanings	Formula
Fundamental component of delta harmonic voltage DELTAU1F DELTAU2F DELTAU3F DELTAUSIGF	Fundamental waveform of each line voltage computed in a three-phase four-wire system and the fundamental voltage wave of the wiring unit	DELTAU1F = $\sqrt{(U1rfnd - U2rfnd)^2 + (U1jfnd - U2jfnd)^2}$ DELTAU2F = $\sqrt{(U2rfnd - U3rfnd)^2 + (U2jfnd - U3jfnd)^2}$ DELTAU3F = $\sqrt{(U3rfnd - U1rfnd)^2 + (U3jfnd - U1jfnd)^2}$ DELTAUSIGF = (DELTAU1F + DELTAU2F + DELTAU3F) / 3
Fundamental component of delta harmonic power DELTAP1F DELTAP2F DELTAP3F DELTAPSIGF	_	_

When delta computation is set to STAR->DELTA

The equations used in the delta harmonic calculation function assume the following:

- U1rfnd to U3rfnd, U1jfnd to U3jfnd, I1rfnd to I3rfnd, I1jfnd to I3jfnd represent the real parts (r) and the imaginary parts (j) of the fundamental waves (first harmonics) of the harmonic FFT computation results.
- If the wiring unit is composed of elements 1 to 3, U1rfnd, U1jfnd, I1rfnd, and I1jfnd are the FFT computation data of element 1; U2rfnd, U2jfnd, I2rfnd, and I2jfnd are the FFT computation data of element 2; and U3rfnd, U3jfnd, I3rfnd, and I3jfnd are the FFT computation data of element 3.
 If the wiring unit is composed of elements other than the above, replace the numbers (1, 2, 3) accordingly.
- The number (1, 2, 3) in the measurement functions of Delta harmonic computation, such as the "1" in DELTAU1F, is part of the measurement function symbol, and has nothing to do with the element.

Other restrictions

- Normal measurement mode is the only measurement mode that can be used for executing delta harmonic computation.
- Only the delta computation settings Delta>Star and Start>Delta can be used for executing Delta harmonic computation.
- Delta harmonic computation is output with the user-defined function.
- Delta harmonic computation is not executed on ΣC.

Measurement Functions Used in the IEC Harmonic Measurement (Option)

	Forr	mula
Measurement Function	When the frequency of the measured item is 50 Hz	When the frequency of the measured item is 60 Hz
Rms value of the harmonic subgroup of the voltage U()[V]	$\sqrt{\sum_{i=-1}^{1} u}$	J(k+i) ²
Rms value of the harmonic subgroup of the current I()[A]	$\sqrt{\sum_{i=-1}^{1} l(k+i)^2}$	
Rms value of the harmonic group of the voltage U()[V]	$\sqrt{\frac{U(k-5)^2}{2} + \sum_{i=-4}^{4} U(k+i)^2 + \frac{U(k+5)^2}{2}}$	$\sqrt{\frac{-U(k-6)^2}{2} + \sum_{i=-5}^{5} U(k+i)^2 + \frac{U(k+6)^2}{2}}$
Rms value of the harmonic group of the current I()[A]	$\sqrt{\frac{l(k-5)^2}{2} + \sum_{i=-4}^{4} l(k+i)^2 + \frac{l(k+5)^2}{2}}$	$\sqrt{\frac{l(k-6)^2}{2} + \sum_{i=-5}^{5} l(k+i)^2 + \frac{l(k+6)^2}{2}}$

Note_

k is the interharmonic order at 5 Hz steps. For 50 Hz, k = 10, 20, 30... For 60 Hz, k = 12, 24, 36... The displayed orders are $\frac{k}{10}$ for 50 Hz and $\frac{k}{12}$ for 60 Hz.

However, if the 1st order is displayed, the measurement functions are calculated from k, regardless of the grouping setting.

Delta Computation Measurement Functions

Computed results are determined by substituting all of the sampled data in the table into the equations for voltage U and current I.* The sync source used in delta computation is the same source as the source of the first input element (the input element with the smallest number) in the wiring unit that is subject to delta computation.

	,			(Table 1/2)
Measurement Function	Delta Computation Type	Symbols and Meanings The computation mode for ΔU1 to Δ ΔI can be set to rms, mean, dc, r-m	ΔU3, ΔUΣ, and ean, or ac.	Substituted Sampled Data u (t), i (t)
Voltage [V]	Difference	Computed differential voltage	∆U1[Udiff]	u1—u2
	3P3W→3V3A	Unmeasured line voltage computed in a three-phase three-wire system	ΔU1[Urs]	u1—u2
	Delta→Star	Phase voltage computed in a three-phase three-wire (3V3A)	∆U1[Ur]	$u1 - \frac{(u1 + u2)}{3}$
		system	∆U2[Us]	$u2-\frac{(u1+u2)}{3}$
			∆U3[Ut]	$-\frac{(u1 + u2)}{3}$
		Phase voltage computed in a three-phase three-wire (3V3AR)	∆U1[Ur]	$-u1-\frac{(-u1 + u2)}{3}$
		system	∆U2[Us]	$u2-\frac{(-u1 + u2)}{3}$
			∆U3[Ut]	$-\frac{(u1 + u2)}{3}$
		Wiring unit voltage $\Delta U \Sigma = \frac{(\Delta U 1 + \Delta U 2 + \Delta U 3)}{3}$	ΔυΣ[υΣ]	_
	Star→Delta	Line voltage calculated in a	∆U1[Urs]	u1—u2
		tinee-phase tour-wire system	∆U2[Ust]	u2—u3
			∆U3[Utr]	u3—u1
		Wiring unit voltage ΔUΣ= $\frac{(\Delta U1 + \Delta U2 + \Delta U3)}{3}$	ΔυΣ[υΣ]	_
Current [A]	Difference	Computed differential current	∆l[ldiff]	i1—i2
	3P3W→3V3A	Unmeasured phase current	ΔI[It]	—i1—i2
	Delta→Star	Neutral line current	ΔI[In]	i1 + i2 + i3
	Star→Delta	Neutral line current	∆l[ln]	i1 + i2 + i3

(Continued on next page)

		1		(Table 2/2
Measurement Function	Delta Computation Type	Symbols and Meanings The computation mode for $\Delta U1$ to and ΔI can be set to rms, mean, do or ac.	ο ΔU3, ΔUΣ, c, r-mean,	Substituted Sampled Data u (t), i (t)
Power [W]	Difference	-	_	—
	3P3W→3V3A	_	_	—
	Delta→Star	Phase power computed in a three-phase three-wire (3V3A)	ΔP1[Pr]	$\left\{u1-\frac{(u1+u2)}{3}\right\}\cdot i1$
		Phase power computed in a three-phase three-wire (3V3AR)	ΔP2[Ps]	$\left\{u2-\frac{(u1+u2)}{3}\right\}\cdot i2$
			ΔP3[Pt]	$\left\{-\frac{(u1+u2)}{3}\right\} \cdot i3$
			ΔP1[Pr]	$\left\{-u1-\frac{(-u1+u2)}{3}\right\}\cdot i1$
		system	ΔP2[Ps]	$\left\{u2-\frac{(-u1+u2)}{3}\right\}\cdot i2$
			ΔP3[Pt]	$\left\{-\frac{(-u1+u2)}{3}\right\} \cdot i3$
		Wiring unit power ΔΡΣ=ΔΡ1 + ΔΡ2 + ΔΡ3	ΔΡΣ[ΡΣ]	-
	Star→Delta	_	_	_

For the 3P3W \rightarrow 3V3A computation, it is assumed that i1 + i2 + i3 = 0.

For the Delta \rightarrow Star computation, it is assumed that the center of the delta connection is computed as the center of the star connection.

* The equations for voltage U and current I listed in "Symbols and Determination of Measurement Functions"

Note.

- u1, u2, and u3 represent the sampled voltage data of elements 1, 2, and 3, respectively. i1, i2, and i3 represent the sampled current data of elements 1, 2, and 3, respectively.
- The numbers (1, 2, and 3) that are attached to delta computation measurement function symbols have no relation to the element numbers.
- For details on the rms, mean, dc, rmean, and ac equations of delta computation mode, see page 1 of the appendix.
- We recommend that you set the measurement range and scaling (conversion ratios and coefficients) of the elements that are undergoing delta computation as closely as possible. Using different measurement ranges or scaling causes the measurement resolutions of the sampled data to be different. This results in errors.

Measurement Functions Used in the Motor Evaluation Function (Option)

Measurement Function	Methods of Determination and Equation
P.4.4	When the input signal from the revolution sensor is DC voltage (an analog signal): S(AX + B - NULL) S: scaling factor A: slope of the input signal X: input voltage from the revolution sensor B: offset NULL: null value
Rotating speed	When the input signal from the revolution sensor is the number of pulses: $S\left(\frac{X}{N} - NULL\right)$ S: scaling factor X: number of input pulses from the revolution sensor per minute N: number of pulses per revolution NULL: null value
	When the input signal from the torque meter is DC voltage (an analog signal): S(AX + B - NULL) S: scaling factor A: slope of the input signal X: input voltage from the torque meter B: offset NULL: null value
Torque Torque	When the input signal from the torque meter is a pulse signal: S(AX + B – NULL)
	S: scaling factor A: torque pulse coefficient X: pulse frequency B: torque pulse offset NULL: null value The instrument computes the torque pulse coefficient and torque pulse offset from torque values (the unit is N•m) at the upper and lower frequency limits. Normally use a scaling factor of 1. If you are using a unit other than N•m, set the unit conversion ratio.
	120 • the frequency of the frequency measurement source (Hz)
Synchronous speed SyncSp	 Number of motor poles The unit of synchronous speed is fixed to min⁻¹ or rpm. Normally use the voltage or current supplied by the motor as the frequency measurement source. If you use any other signals, the synchronous speed may not be computed correctly.
Slip Slip [%]	SyncSp – Speed SyncSp
Motor Output Pm	$\frac{2\pi \cdot \text{Speed} \cdot \text{Torque}}{60} \cdot \text{Scaling coefficient}$ When the unit of speed is min – 1 or rpm, the unit of torque is N•m, and the scaling factor is 1, the unit of motor output Pm is W.

Use the efficiency equation and the user-defined functions to set the motor efficiency and total efficiency.

Note_

- The sign of the rotating speed is as follows:
- When the MTR configuration is single motor (revolution signal: pulse), the sign of the rotating speed is
 determined by the A-phase pulse applied to Ch B/Ch F and the B-phase pulse applied to Ch C/Ch G. At
 the rising edge of the A-phase pulse, when the B-phase pulse level is low, the speed is positive. When the
 pulse level is high, the speed is negative.

- When the MTR configuration is single motor (revolution signal: analog), the sign of the rotating speed is determined by the signal applied to Ch C/Ch G.
- When the MTR configuration is double motor, the sign of the revolution signal is always positive.

Measurement Functions for Auxiliary Input (Option)

Measurement Function	Methods of Determination and Equation				
AUX1 to 8	 When the input signal is DC voltage (an analog signal): S(AX + B - NULL) S: scaling factor A: slope of the external signal X: average value of the external signal's input voltage B: offset NULL: null value 				
	When the input signal is a pulse signal: S(AX + B – NULL) S: scaling factor A: pulse coefficient X: pulse frequency B: offset NULL: null value				

Measuring Range

Measurement Function	Description
RngU [V]	Voltage measurement range
Rngl [A]	Current measurement range
RngSpd [V]	Speed measurement range
RngTrq [V]	Torque measurement range
RngAux [V]	Aux measurement range

Timestamp

Measurement Function	Description
TS Date	Date of the update interval start time YYYY/MM/DD
TS Time	Time of the update the interval start time hh:mm:ss
TS Subsec	Fractions of seconds of the update interval start time [µsec]

Appendix 2 Power Basics (Power, harmonics, and AC RLC circuits)

This section explains the basics of power, harmonics, and AC RLC circuits.

Power

Electrical energy can be converted into other forms of energy and used. For example, it can be converted into the heat in an electric heater, the torque in a motor, or the light in a fluorescent or mercury lamp. In these kinds of examples, the work that electricity performs in a given period of time (or the electrical energy expended) is referred to as electric power. The unit of electric power is watts (W). 1 watt is equivalent to 1 joule of work performed in 1 second.

DC Power

The DC power P (in watts) is determined by multiplying the applied voltage U (in volts) by the current I (in amps).

P = UI [W]

In the example below, the amount of electrical energy determined by the equation above is retrieved from the power supply and consumed by resistance R (in ohms) every second.

Alternating Current

Normally, the power supplied by power companies is alternating current with sinusoidal waveforms. The magnitude of alternating current can be expressed using values such as instantaneous, maximum, rms, and mean values. Normally, it is expressed using rms values.

The instantaneous value i of a sinusoidal alternating current is expressed by Imsin ω t (where Im is the amplitude of the current, ω is the angular velocity defined as $\omega = 2\pi f$, and f is the frequency of the sinusoidal alternating current). The thermal action of this alternating current is proportional to i², and varies as shown in the figure below.*

* Thermal action is the phenomenon in which electric energy is converted to heat energy when a current flows through a resistance.

The rms value (effective value) is the DC value that generates the same thermal action as the alternating current. With I as the DC value that produces the same thermal action as the alternating current:

I=
$$\sqrt{\text{The mean of i}^2 \text{ over one period}} = \sqrt{\frac{1}{2\pi}} \int_0^{2\pi} i d\omega t = \frac{Im}{\sqrt{2}}$$

Because this value corresponds to the root mean square of the instantaneous values over 1 period, the effective value is normally denoted using the abbreviation "rms."

To determine the mean value, the average is taken over 1 period of absolute values, because simply taking the average over 1 period of the sine wave results in a value of zero. With Imn as the mean value of the instantaneous current i (which is equal to Imsinut):

Imm = The mean of
$$|i|$$
 over one period = $\frac{1}{2\pi} \int_{0}^{2\pi} |i| d\omega t = \frac{2}{\pi} I_{m}$

These relationships also apply to sinusoidal voltages.

The maximum value, rms value, and mean value of a sinusoidal alternating current are related as shown below. The crest factor and form factor are used to define the tendency of an AC waveform.

Crest factor = $\frac{\text{Maximum value}}{\text{Rms value}}$ Form factor = $\frac{\text{Rms value}}{\text{Mean value}}$

Phasor Display of Alternating Current

In general, instantaneous voltage and current values are expressed using the equations listed below.

Voltage: u = Umsinωt

Current: i = Imsin ($\omega t - \Phi$)

The time offset between the voltage and current is called the phase difference, and Φ is the phase angle. The time offset is mainly caused by the load that the power is supplied to. In general, the phase difference is zero when the load is purely resistive. The current lags the voltage when the load is inductive (is coiled). The current leads the voltage when the load is capacitive.

A phasor display is used to clearly convey the magnitude and phase relationships between the voltage and current.

In phasor display, the voltage and current are expressed using the following equations.

- Voltage: Ue^{j0}
- Current: le-jΦ

(Euler's formula $e^{j\Phi} = \cos\Phi + j \sin\Phi$ j: complex number)

In this manual, phasor magnitudes U and I represent rms values.

A positive phase angle is represented by a counterclockwise angle with respect to the vertical axis.

When the current lags the voltage When the current leads the voltage

Three-Phase AC Wiring

Generally three-phase AC power lines are connected in star wiring configurations or delta wiring configurations.

Phasor Display of Three-Phase Alternating Current

In typical three-phase AC power, the voltage of each phase is offset by 120°. The figure on the left below illustrates this relationship in a phasor diagram. The voltage of each phase is called the phase voltage, and the voltage between each phase is called the line voltage.

If a power supply or load is connected in a delta wiring configuration and no neutral line is present, the phase voltage cannot be measured. In this case, the line voltage is measured. Sometimes the line voltage is also measured when measuring three-phase AC power using two single-phase wattmeters (the two-wattmeter method).

If the magnitude of each phase voltage is equal and each phase is offset by 120°, the magnitude of the line voltage is $\sqrt{3}$ times the magnitude of the phase voltage, and the line voltage phase is offset by 30° (the figure on the right above).

Below is a phasor diagram of the relationship between the phase voltages and line currents of a threephase AC voltage when the current lags the voltage by Φ° .

AC Power

AC power cannot be determined as easily as DC power, because of the phase difference between the voltage and current caused by load.

Instantaneous Power

If the instantaneous voltage $u = Umsin\omega t$ and the instantaneous current $i = Imsin(\omega t - \Phi)$, the instantaneous AC power p is as follows:

 $p = u \times i = U_m sin\omega t \times I_m sin(\omega t - \Phi) = UIcos\Phi - UIcos(2\omega t - \Phi)$

U and I represent the rms voltage and rms current, respectively.

p is the sum of the time-independent term, UIcos Φ , and the AC component term of the voltage or current at twice the frequency, $-UIcos(2\omega t - \Phi)$.

Active Power P

The true power that a device consumes is called active power P (or effective power). It is the mean of the instantaneous power values described above over 1 period.

P=UlcosΦ [W]

Active power is the power that a device consumes.

Apparent Power S

In alternating electrical current, not all of the power calculated by the product of voltage and current, UI, is consumed. The product of U and I is called the apparent power. It is expressed as S.

S = UI [VA]

The unit of apparent power is the volt-ampere (VA). The apparent power is used to express the electrical capacity of a device that runs on AC electricity.

Reactive Power Q

Of the apparent power, the power that is not consumed by the device and goes back and forth between the power supply and the load is called reactive power Q. If current I lags voltage U by Φ , current I can be broken down into a component in the same direction as voltage U, Icos Φ , and a perpendicular component, Isin Φ . Active power P, which is equal to UIcos Φ , is the product of voltage U and the current component Icos Φ . Reactive power is the product of voltage U and the current component Isin Φ , and its unit is the var.

 $Q = UIsin\Phi$ [var]

Power Factor λ

 $cos\Phi$ in the active power equation indicates the portion of the apparent power that becomes active power and is called the power factor λ .

The relationship between S, the apparent power, P, the active power, and Q, the reactive power is as follows:

 $S^2 = P^2 + Q^2$

App Appendix

Influence of Phase Difference Φ

Even if the voltage and current are the same, the active power varies depending on the phase difference Φ . The section above the horizontal axis in the figure below represents positive power (power supplied to the load), and the section below the horizontal axis represents negative power (power fed back from the load). The difference between the positive and negative powers is the active power consumed by the load. As the phase difference between the voltage and current increases, the negative power increases. At $\Phi = \pi/2$, the positive and negative powers are equal, and the load consumes no power.

When the phase difference between voltage and current is 0

When the phase difference between voltage and current is Φ

When phase difference between voltage and current is $\frac{\pi}{2}$

The positive and negative powers are the same.

Harmonics

Harmonics refer to all sine waves whose frequency is an integer multiple of the fundamental wave (normally a 50 Hz or 60 Hz sinusoidal power line signal) except for the fundamental wave itself. The input currents that flow through the power rectification circuits, phase control circuits, and other circuits used in various kinds of electrical equipment generate harmonic currents and voltages in power lines. When the fundamental wave and harmonic waves are combined, waveforms become distorted, and interference sometimes occurs in equipment connected to the power line.

Terminology

The terminology related to harmonics is described below.

• Fundamental wave (fundamental component)

The sine wave with the longest period among the different sine waves contained in a periodic complex wave. Or the sine wave that has the fundamental frequency within the components of the complex wave.

Fundamental frequency

The frequency corresponding to the longest period in a periodic complex wave. The frequency of the fundamental wave.

· Distorted wave

A wave that differs from the fundamental wave.

Higher harmonic

A sine wave with a frequency that is an integer multiple (twice or more) of the fundamental frequency.

Harmonic component

A waveform component with a frequency that is an integer multiple (twice or more) of the fundamental frequency.

Harmonic distortion factor

The ratio of the rms value of the specified nth order harmonic contained in the distorted wave to the rms value of the fundamental wave (or all signals).

• Harmonic order

The integer ratio of the harmonic frequency with respect to the fundamental frequency.

Total harmonic distortion
 The ratio of the rms value of all harmonics to the rms value of the fundamental wave (or all signals).

Interference Caused by Harmonics

Some of the effects of harmonics on electrical devices and equipment are explained in the list below.

- Synchronization capacitors and series reactors Harmonic current reduces circuit impedance. This causes excessive current flow, which can result in vibration, humming, overheat, or burnout.
- Cable

Harmonic current flow through the neutral line of a three-phase four-wire system will cause the neutral line to overheat.

- Voltage transformers Harmonics cause magnetostrictive noise in the iron core and increase iron and copper loss.
- Circuit breakers and fuses Excessive harmonic current can cause erroneous operation and blow fuses.
- Communication cables
 The electromagnetic induction caused by harmonics creates noise voltage.
- Control devices
 Harmonic distortion of control signals can lead to erroneous operation.
- Audio visual devices

Harmonics can cause degradation of performance and service life, noise-related video flickering, and damaged parts.

AC RLC Circuits

Resistance

The current i when an AC voltage whose instantaneous value $u = U_m \sin\omega t$ is applied to load resistance R [Ω] is expressed by the equation below. I_m denotes the amplitude of the current.

$$i = \frac{U_m}{R} \sin\omega t = I_m \sin\omega t$$

Expressed using rms values, the equation is I = U/R.

There is no phase difference between the current flowing through a resistive circuit and the voltage.

Inductance

The current i when an AC voltage whose instantaneous value $u = U_m \sin\omega t$ is applied to a coil load of inductance L [H] is expressed by the equation below.

$$i = \frac{U_m}{X_L} sin\left(\omega t - \frac{\pi}{2}\right) = I_m sin\left(\omega t - \frac{\pi}{2}\right)$$

Expressed using rms values, the equation is $I = U/X_L$. X_L is called inductive reactance and is defined as $X_L = \omega L$. The unit of inductive reactance is Ω .

Inductance works to counter current changes (increase or decrease), and causes the current to lag the voltage.

Capacitance

The current i when an AC voltage whose instantaneous value $u = U_m sin\omega t$ is applied to capacitance C [F] is expressed by the equation below.

$$i = \frac{U_m}{X_c} \sin\left(\omega t + \frac{\pi}{2}\right) = I_m \sin\left(\omega t + \frac{\pi}{2}\right)$$

Expressed using rms values, the equation is I = U/X_C. X_C is called capacitive reactance and is defined as $X_C = 1/\omega C$. The unit of capacitive reactance is Ω .

When the polarity of the voltage changes, the largest charging current with the same polarity as the voltage flows through the capacitor. When the voltage decreases, discharge current with the opposite polarity of the voltage flows. Thus, the current phase leads the voltage.

Series RLC Circuits

The equations below express the voltage relationships when resistance $R_S [\Omega]$, inductance L [H], and capacitance C [F] are connected in series.

$$U = \sqrt{(U_{Rs})^{2} + (U_{L} - U_{C})^{2}} = \sqrt{(IRs)^{2} + (IX_{L} - IX_{C})^{2}}$$

$$= I\sqrt{(Rs)^{2} + (X_{L} - X_{C})^{2}} = I\sqrt{RS^{2} + XS^{2}}$$

$$I = \frac{U}{\sqrt{RS^{2} + XS^{2}}}, \quad \Phi = \tan^{-1}\frac{X_{S}}{Rs}$$

$$\underbrace{\bigcup_{URs} \bigcup_{UL} \bigcup_{UC} \bigcup_{U} \bigcup_{Rs} \bigcup_{UL} \bigcup_{UC} \bigcup_{U} \bigcup_{Rs} \bigcup_{U} \bigcup_{UC} \bigcup_{U} \bigcup_{U} \bigcup_{Rs} \bigcup_{U} \bigcup$$

The relationship between resistance R_S , reactance X_S , and impedance Z is expressed by the equations below.

 $X_{\rm S} = X_{\rm L} - X_{\rm C}$ $Z = \sqrt{RS^2 + XS^2}$

Parallel RLC Circuits

The equations below express the current relationships when resistance $R_P[\Omega]$, inductance L [H], and capacitance C [F] are connected in parallel.

The relationship between resistance R_P , reactance X_P , and impedance Z is expressed by the equations below.

$$X_{P} = \frac{X_{L}X_{C}}{X_{C} - X_{L}}$$
$$Z = \frac{R_{P}X_{P}}{\sqrt{R_{P}^{2} + X_{P}^{2}}}$$

IM WT5000-03EN

Appendix 3 How to Make Accurate Measurements

Effects of Power Loss

By wiring a circuit to match the load, you can minimize the effects of power loss on measurement accuracy. We will discuss the wiring of the DC power supply (SOURCE) and a load resistance (LOAD) below.

When the Measured Current Is Relatively Large

Connect the voltage measurement circuit between the current measurement circuit and the load. The current measurement circuit measures the sum of i_L and i_V . i_L is the current flowing through the load of the circuit under measurement, and i_V is the current flowing through the voltage measurement circuit. Because the current flowing through the circuit under measurement is i_L , only i_V reduces measurement accuracy. The input resistance of the voltage measurement circuit of the instrument is approximately 10 M Ω . For 1000 V input i_V is approximately 0.1 mA (1000 V/10 M Ω). If the load current i_L is 1 A or more (the load resistance is 200 Ω or less), the effect of i_V on the measurement accuracy is 0.01% or less. If the input voltage is 100 V and the current is 1 A, i_V = 0.01 mA (100 V/10 M Ω), so the effect of i_V on the measurement accuracy is 0.001% (0.01 mA/1 A).

As a reference, the relationships between the voltages and currents that produce effects of 0.01%, 0.001%, and 0.0001% are shown in the figure below.

When the Measured Current Is Relatively Small

Connect the current measurement circuit between the voltage measurement circuit and the load. In this case, the voltage measurement circuit measures the sum of e_L and e_I . e_L is the load voltage, and e_I is the voltage drop across the current measurement circuit. Only e_I reduces measurement accuracy. The input resistance of the current measurement circuit of the instrument is approximately 0.6 Ω for the 5 A input terminals and approximately 5.5 m Ω for the 30 A input terminals. If the load resistance is 1 k Ω , the effect on the measurement accuracy is approximately 0.06% (0.6 Ω /1 k Ω) for the 5 A input terminals and approximately 0.00055% (5.5 m Ω /1 k Ω) for the 30 A input terminals.

Effects of Stray Capacitance

The effects of stray capacitance on measurement accuracy can be minimized by connecting the instrument's current input terminal to the side of the power supply (SOURCE) that is closest to its earth potential.

The internal structure of the instrument is explained below.

In the 760901 and 760902, the voltage and current measurement circuits are each enclosed in shielded cases. In the 760903, the voltage measurement circuit is enclosed in a shielded case. These shielded cases are contained within an outer case. The shielded case of the voltage measurement circuit is connected to the positive and negative voltage input terminals, and the shielded case of the current measurement circuit is connected to the positive and negative current input terminals. Because the outer case is insulated from the shielded cases, there is stray capacitance, which is expressed as Cs. Cs is approximately 40 pF. The current generated by stray capacitance Cs causes errors.

As an example, we will consider the case when the outer case and one side of the power supply are grounded. In this case, there are two conceivable current flows, i_L and i_{Cs} . i_L is the load current, and i_{Cs} is the current that flows through the stray capacitance. i_L flows through the current measurement circuit, then through the load, and returns to the power supply (shown with a dotted line). i_{Cs} flows through the current measurement circuit, the stray capacitance, and the earth ground of the outer case, and then returns to the power supply (shown with a dot-dash line).

Therefore, the current measurement circuit ends up measuring the sum of i_L and i_{Cs} , even if the objective is just to measure i_L . Only i_{Cs} reduces measurement accuracy. If the voltage applied to Cs is V_{Cs} (common mode voltage), i_{Cs} can be found using the equation shown below. Because the phase of i_{Cs} is ahead of the voltage by 90°, the effect of i_{Cs} on the measurement accuracy increases as the power factor gets smaller.

Because the instrument measures high frequencies, the effects of i_{Cs} cannot be ignored. If you connect the instrument's current input terminal to the side of the power supply (SOURCE) that is close to its earth potential, the instrument's current measurement circuit positive and negative terminals are close to the earth potential, so V_{Cs} becomes approximately zero and very little i_{Cs} flows. This reduces the effect on measurement accuracy.

Appendix 4 Power Range

The following tables show the ranges of the active power (unit: W) when the voltage ranges and current ranges of the elements making up a wiring unit are the same. The same ranges are set for apparent power (unit: VA) and reactive power (unit: var). Just read the unit as VA or var. The number of displayed digits (display resolution) is six for numbers up to 600000 and five digits for larger numbers.

760901, 760902 When the Crest Factor Is Set to CF3 Active Power Range of Each Element

Current Range		Voltage Range [V]					
[A]	1.50000	3.00000	6.00000	10.0000	15.0000	30.0000	
5.00000m	7.5000 mW	15.0000 mW	30.0000 mW	50.0000 mW	75.000 mW	150.000 mW	
10.0000m	15.0000 mW	30.0000 mW	60.0000 mW	100.000 mW	150.000 mW	300.000 mW	
20.0000m	30.0000 mW	60.0000 mW	120.000 mW	200.000 mW	300.000 mW	600.000 mW	
50.0000m	75.000 mW	150.000 mW	300.000 mW	500.000 mW	0.75000 W	1.50000 W	
100.000m	150.000 mW	300.000 mW	600.000 mW	1.00000 W	1.50000 W	3.00000 W	
200.000m	300.000 mW	600.000 mW	1.20000 W	2.00000 W	3.00000 W	6.00000 W	
500.000m	0.75000 W	1.50000 W	3.00000 W	5.00000 W	7.5000 W	15.0000 W	
1.00000	1.50000 W	3.00000 W	6.00000 W	10.0000 W	15.0000 W	30.0000 W	
2.00000	3.00000 W	6.00000 W	12.0000 W	20.0000 W	30.0000 W	60.0000 W	
5.00000	7.5000 W	15.0000 W	30.0000 W	50.0000 W	75.000 W	150.000 W	
10.0000	15.0000 W	30.0000 W	60.0000 W	100.000 W	150.000 W	300.000 W	
20.0000	30.0000 W	60.0000 W	120.000 W	200.000 W	300.000 W	600.000 W	
30.0000	45.0000 W	90.000 W	180.000 W	300.000 W	450.000 W	0.90000 kW	

Current Range	Voltage Range [V]					
[A]	60.0000	100.000	150.000	300.000	600.000	1000.00
5.0000m	300.000 mW	500.000 mW	750.00 mW	1.50000 W	3.00000 W	5.00000 W
10.0000m	600.000 mW	1.00000 W	1.50000 W	3.00000 W	6.00000 W	10.0000 W
20.0000m	1.20000 W	2.00000 W	3.00000 W	6.00000 W	12.0000 W	20.0000 W
50.0000m	3.00000 W	5.00000 W	7.5000 W	15.0000 W	30.0000 W	50.0000 W
100.000m	6.00000 W	10.0000 W	15.0000 W	30.0000 W	60.000 W	100.000 W
200.000m	12.0000 W	20.0000 W	30.0000 W	60.000 W	120.000 W	200.000 W
500.000m	30.0000 W	50.0000 W	75.000 W	150.000 W	300.000 W	500.000 W
1.00000	60.0000 W	100.000 W	150.000 W	300.000 W	600.000 W	1.00000 kW
2.00000	120.000 W	200.000 W	300.000 W	600.000 W	1.20000 kW	2.00000 kW
5.00000	300.000 W	500.000 W	0.75000 kW	1.50000 kW	3.00000 kW	5.00000 kW
10.0000	600.000 W	1.00000 kW	1.50000 kW	3.00000 kW	6.00000 kW	10.0000 kW
20.0000	1.20000 kW	2.00000 kW	3.00000 kW	6.00000 kW	12.0000 kW	20.0000 kW
30.0000	1.80000 kW	3.00000 kW	4.50000 kW	9.0000 kW	18.0000 kW	30.0000 kW

Active Power Range of a Wiring Unit with a 1P3W, 3P3W, 3P3W (3V3A), or 3P3W (3V3AR) Wiring System

Current Range		Voltage Range [V]					
[A]	1.50000	3.00000	6.00000	10.0000	15.0000	30.0000	
5.0000m	15.0000 mW	30.0000 mW	60.0000 mW	100.0000 mW	150.000 mW	300.000 mW	
10.000m	30.0000 mW	60.0000 mW	120.0000 mW	200.000 mW	300.000 mW	600.000 mW	
20.0000m	60.0000 mW	120.0000 mW	240.000 mW	400.000 mW	600.000 mW	1200.000 mW	
50.0000m	150.000 mW	300.000 mW	600.000 mW	1000.000 mW	1.50000 W	3.00000 W	
100.000m	300.000 mW	600.000 mW	1200.000 mW	2.00000 W	3.00000 W	6.00000 W	
200.000m	600.000 mW	1200.000 mW	2.40000 W	4.00000 W	6.00000 W	12.00000 W	
500.000m	1.50000 W	3.00000 W	6.00000 W	10.00000 W	15.0000 W	30.0000 W	
1.00000	3.00000 W	6.00000 W	12.00000 W	20.0000 W	30.0000 W	60.0000 W	
2.00000	6.00000 W	12.00000 W	24.0000 W	40.0000 W	60.000 W	120.0000 W	
5.00000	15.0000 W	30.0000 W	60.0000 W	100.0000 W	150.000 W	300.000 W	
10.0000	30.0000 W	60.0000 W	120.0000 W	200.000 W	300.000 W	600.000 W	
20.0000	60.0000 W	120.0000 W	240.000 W	400.000 W	600.000 W	1200.000 W	
30.0000	90.0000 W	180.000 W	360.000 W	600.000 W	900.000 W	1.80000 kW	

Appendix 4 Power Range

Current Range	Voltage Range [V]					
[A]	60.000	100.000	150.000	300.000	600.000	1000.00
5.00000m	600.000 mW	1000.000 mW	1.50000 W	3.00000 W	6.00000 W	10.00000 W
10.0000m	1200.000 mW	2.00000 W	3.00000 W	6.00000 W	12.00000 W	20.0000 W
20.0000m	2.40000 W	4.00000 W	6.00000 W	12.00000 W	24.0000 W	40.0000 W
50.0000m	6.00000 W	10.00000 W	15.0000 W	30.0000 W	60.0000 W	100.0000 W
100.000m	12.00000 W	20.0000 W	30.0000 W	60.0000 W	120.0000 W	200.000 W
200.000m	24.0000 W	40.0000 W	60.0000 W	120.0000 W	240.000 W	400.000 W
500.000m	60.0000 W	100.0000 W	150.000 W	300.000 W	600.000 W	1000.000 W
1.00000	120.0000 W	200.000 W	300.000 W	600.000 W	1200.000 W	2.00000 kW
2.00000	240.000 W	400.000 W	600.000 W	1200.000 W	2.40000 kW	4.00000 kW
5.00000	600.000 W	1000.000 W	1.50000 kW	3.00000 kW	6.00000 kW	10.00000 kW
10.0000	1200.000 W	2.00000 kW	3.00000 kW	6.00000 kW	12.00000 kW	20.0000 kW
20.0000	2.40000 kW	4.00000 kW	6.00000 kW	12.00000 kW	24.0000 kW	40.0000 kW
30.0000	3.60000 kW	6.00000 kW	9.00000 kW	18.0000 kW	36.0000 kW	60.0000 kW

Active Power Range of a Wiring Unit with a 3P4W Wiring System

Current	Voltage Range [V]					
Range						
[A]	1.50000	3.00000	6.00000	10.0000	15.0000	30.0000
5.00000m	22.5000 mW	45.0000 mW	90.0000 mW	150.0000 mW	225.000 mW	450.000 mW
10.0000m	45.0000 mW	90.0000 mW	180.0000 mW	300.000 mW	450.000 mW	900.000 mW
20.0000m	90.0000 mW	180.0000 mW	360.000 mW	600.000 mW	900.000 mW	1800.000 mW
50.0000m	225.000 mW	450.000 mW	900.000 mW	1500.000 mW	2.25000 W	4.50000 W
100.000m	450.000 mW	900.000 mW	1800.000 mW	3.00000 W	4.50000 W	9.00000 W
200.000m	900.000 mW	1800.000 mW	3.60000 W	6.00000 W	9.00000 W	18.00000 W
500.000m	2.25000 W	4.50000 W	9.00000 W	15.00000 W	22.5000 W	45.0000 W
1.00000	4.50000 W	9.00000 W	18.00000 W	30.0000 W	45.0000 W	90.0000 W
2.00000	9.00000 W	18.00000 W	36.0000 W	60.0000 W	90.0000 W	180.0000 W
5.00000	22.5000 W	45.0000 W	90.0000 W	150.0000 W	225.000 W	450.000 W
10.0000	45.0000 W	90.0000 W	180.0000 W	300.000 W	450.000 W	900.000 W
20.0000	90.0000 W	180.0000 W	360.000 W	600.000 W	900.000 W	1800.000 W
30.0000	135.0000 W	270.000 W	540.000 W	900.000 W	1350.000 W	2.70000 kW

Current	Voltage Range [V]					
Range						
[A]	60.0000	100.000	150.000	300.000	600.000	1000.00
5.00000m	900.000 mW	1500.000 mW	2.25000 W	4.50000 W	9.00000 W	15.00000 W
10.0000m	1800.000 mW	3.00000 W	4.50000 W	9.00000 W	18.00000 W	30.0000 W
20.0000m	3.60000 W	6.00000 W	9.00000 W	18.00000 W	36.0000 W	60.0000 W
50.0000m	9.00000 W	15.00000 W	22.5000 W	45.0000 W	90.0000 W	150.0000 W
100.000m	18.00000 W	30.0000 W	45.0000 W	90.0000 W	180.0000 W	300.000 W
200.000m	36.0000 W	60.0000 W	90.0000 W	180.0000 W	360.000 W	600.000 W
500.000m	90.0000 W	150.0000 W	225.000 W	450.000 W	900.000 W	1500.000 W
1.00000	180.0000 W	300.000 W	450.000 W	900.000 W	1800.000 W	3.00000 kW
2.00000	360.000 W	600.000 W	900.000 W	1800.000 W	3.60000 kW	6.00000 kW
5.00000	900.000 W	1500.000 W	2.25000 kW	4.50000 kW	9.00000 kW	15.00000 kW
10.0000	1800.000 W	3.00000 kW	4.50000 kW	9.00000 kW	18.00000 kW	30.0000 kW
20.0000	3.60000 kW	6.00000 kW	9.00000 kW	18.00000 kW	36.0000 kW	60.0000 kW
30.0000	5.40000 kW	9.00000 kW	13.50000 kW	27.0000 kW	54.0000 kW	90.0000 kW

When the Crest Factor Is Set to CF6 or CF6A Active Power Range of Each Element

Current Range	Voltage Range [V]					
[A]	0.75000	1.50000	3.00000	5.00000	7.5000	15.0000
2.50000m	1.87500 mW	3.75000 mW	7.5000 mW	12.5000 mW	18.7500 mW	37.5000 mW
5.00000m	3.75000 mW	7.5000 mW	15.0000 mW	25.0000 mW	37.5000 mW	75.000 mW
10.0000m	7.5000 mW	15.0000 mW	30.0000 mW	50.0000 mW	75.000 mW	150.000 mW
25.0000m	18.7500 mW	37.5000 mW	75.000 mW	125.000 mW	187.500 mW	375.000 mW
50.0000m	37.5000 mW	75.000 mW	150.000 mW	250.000 mW	375.000 mW	0.75000 W
100.000m	75.000 mW	150.000 mW	300.000 mW	500.000 mW	0.75000 W	1.50000 W
250.000m	187.500 mW	375.000 mW	0.75000 W	1.25000 W	1.87500 W	3.75000 W
500.000m	375.000 mW	0.75000 W	1.50000 W	2.50000 W	3.75000 W	7.5000 W
1.00000	0.75000 W	1.50000 W	3.00000 W	5.00000 W	7.5000 W	15.0000 W
2.50000	1.87500 W	3.75000 W	7.5000 W	12.5000 W	18.7500 W	37.5000 W
5.00000	3.75000 W	7.5000 W	15.0000 W	25.0000 W	37.5000 W	75.000 W
10.0000	7.5000 W	15.0000 W	30.0000 W	50.0000 W	75.000 W	150.000 W
15.0000	11.2500 W	22.5000 W	45.0000 W	75.000 W	112.500 W	225.000 W

Current	Voltage Range [V]					
Range						
[A]	30.0000	50.0000	75.000	150.000	300.000	500.000
2.50000m	75.000 mW	125.000 mW	187.500 mW	375.000 mW	0.75000 W	1.25000 W
5.00000m	150.000 mW	250.000 mW	375.000 mW	0.75000 W	1.50000 W	2.50000 W
10.0000m	300.000 mW	500.000 mW	0.75000 W	1.50000 W	3.00000 W	5.00000 W
25.0000m	0.75000 W	1.25000 W	1.87500 W	3.75000 W	7.5000 W	12.5000 W
50.0000m	1.50000 W	2.50000 W	3.75000 W	7.5000 W	15.0000 W	25.0000 W
100.000m	3.00000 W	5.00000 W	7.5000 W	15.0000 W	30.0000 W	50.0000 W
250.000m	7.5000 W	12.5000 W	18.7500 W	37.5000 W	75.000 W	125.000 W
500.000m	15.0000 W	25.0000 W	37.5000 W	75.000 W	150.000 W	250.000 W
1.00000	30.0000 W	50.0000 W	75.000 W	150.000 W	300.000 W	500.000 W
2.50000	75.000 W	125.000 W	187.500 W	375.000 W	0.75000 kW	1.25000 kW
5.00000	150.000 W	250.000 W	375.000 W	0.75000 kW	1.50000 kW	2.50000 kW
10.0000	300.000 W	500.000 W	0.75000 kW	1.50000 kW	3.00000 kW	5.00000 kW
15.0000	450.000 W	0.75000 kW	1.12500 kW	2.25000 kW	4.50000 kW	7.5000 kW

Active Power Range of a Wiring Unit with a 1P3W, 3P3W, 3P3W (3V3A), or 3P3W (3V3AR) Wiring System

Current	Voltage Range [V]					
Range						
[A]	0.75000	1.50000	3.00000	5.00000	7.5000	15.0000
2.50000m	3.75000 mW	7.50000 mW	15.0000 mW	25.0000 mW	37.5000 mW	75.0000 mW
5.00000m	7.50000 mW	15.0000 mW	30.0000 mW	50.0000 mW	75.0000 mW	150.000 mW
10.0000m	15.0000 mW	30.0000 mW	60.0000 mW	100.0000 mW	150.000 mW	300.000 mW
25.0000m	37.5000 mW	75.0000 mW	150.000 mW	250.000 mW	375.000 mW	750.000 mW
50.0000m	75.0000 mW	150.000 mW	300.000 mW	500.000 mW	750.000 mW	1.50000 W
100.000m	150.000 mW	300.000 mW	600.000 mW	1000.000 mW	1.50000 W	3.00000 W
250.000m	375.000 mW	750.000 mW	1.50000 W	2.50000 W	3.75000 W	7.50000 W
500.000m	750.000 mW	1.50000 W	3.00000 W	5.00000 W	7.50000 W	15.0000 W
1.00000	1.50000 W	3.00000 W	6.00000 W	10.00000 W	15.0000 W	30.0000 W
2.50000	3.75000 W	7.50000 W	15.0000 W	25.0000 W	37.5000 W	75.0000 W
5.00000	7.50000 W	15.0000 W	30.0000 W	50.0000 W	75.0000 W	150.000 W
10.0000	15.0000 W	30.0000 W	60.0000 W	100.0000 W	150.000 W	300.000 W
15.0000	22.5000 W	45.0000 W	90.0000 W	150.000 W	225.000 W	450.000 W

Appendix 4 Power Range

Current Range	Voltage Range [V]					
[A]	30.0000	50.0000	75.000	150.000	300.000	500.000
2.50000m	150.000 mW	250.000 mW	375.000 mW	750.000 mW	1.50000 W	2.50000 W
5.00000m	300.000 mW	500.000 mW	750.000 mW	1.50000 W	3.00000 W	5.00000 W
10.0000m	600.000 mW	1000.000 mW	1.50000 W	3.00000 W	6.00000 W	10.00000 W
25.0000m	1.50000 W	2.50000 W	3.75000 W	7.50000 W	15.0000 W	25.0000 W
50.0000m	3.00000 W	5.00000 W	7.50000 W	15.0000 W	30.0000 W	50.0000 W
100.000m	6.00000 W	10.00000 W	15.0000 W	30.0000 W	60.0000 W	100.0000 W
250.000m	15.0000 W	25.0000 W	37.5000 W	75.0000 W	150.000 W	250.000 W
500.000m	30.0000 W	50.0000 W	75.0000 W	150.000 W	300.000 W	500.000 W
1.00000	60.0000 W	100.0000 W	150.000 W	300.000 W	600.000 W	1000.000 W
2.50000	150.000 W	250.000 W	375.000 W	750.000 W	1.50000 kW	2.50000 kW
5.00000	300.000 W	500.000 W	750.000 W	1.50000 kW	3.00000 kW	5.00000 kW
10.0000	600.000 W	1000.000 W	1.50000 kW	3.00000 kW	6.00000 kW	10.00000 kW
15.0000	900.000 W	1.50000 kW	2.25000 kW	4.50000 kW	9.00000 kW	15.0000 kW

Active Power Range of a Wiring Unit with a 3P4W Wiring System

Current	Voltage Range [V]					
Range						
[A]	0.75000	1.50000	3.00000	5.00000	7.5000	15.0000
2.50000m	5.62500 mW	11.25000 mW	22.5000 mW	37.5000 mW	56.2500 mW	112.5000 mW
5.00000m	11.25000 mW	22.5000 mW	45.0000 mW	75.0000 mW	112.5000 mW	225.000 mW
10.0000m	22.5000 mW	45.0000 mW	90.0000 mW	150.0000 mW	225.000 mW	450.000 mW
25.0000m	56.2500 mW	112.5000 mW	225.000 mW	375.000 mW	562.500 mW	1125.000 mW
50.0000m	112.5000 mW	225.000 mW	450.000 mW	750.000 mW	1125.000 mW	2.25000 W
100.000m	225.000 mW	450.000 mW	900.000 mW	1500.000 mW	2.25000 W	4.50000 W
250.000m	562.500 mW	1125.000 mW	2.25000 W	3.75000 W	5.62500 W	11.25000 W
500.000m	1125.000 mW	2.25000 W	4.50000 W	7.50000 W	11.25000 W	22.5000 W
1.00000	2.25000 W	4.50000 W	9.00000 W	15.00000 W	22.5000 W	45.0000 W
2.50000	5.62500 W	11.25000 W	22.5000 W	37.5000 W	56.2500 W	112.5000 W
5.00000	11.25000 W	22.5000 W	45.0000 W	75.0000 W	112.5000 W	225.000 W
10.0000	22.5000 W	45.0000 W	90.0000 W	150.0000 W	225.000 W	450.000 W
15.0000	33.7500 W	67.500 W	135.000 W	225.000 W	337.500 W	675.000 W

Current	Voltage Range [V]					
Range						
[A]	30.0000	50.0000	75.000	150.000	300.000	500.000
2.50000m	225.000 mW	375.000 mW	562.500 mW	1125.000 mW	2.25000 W	3.75000 W
5.00000m	450.000 mW	750.000 mW	1125.000 mW	2.25000 W	4.50000 W	7.50000 W
10.0000m	900.000 mW	1500.000 mW	2.25000 W	4.50000 W	9.00000 W	15.00000 W
25.0000m	2.25000 W	3.75000 W	5.62500 W	11.25000 W	22.5000 W	37.5000 W
50.0000m	4.50000 W	7.50000 W	11.25000 W	22.5000 W	45.0000 W	75.0000 W
100.000m	9.00000 W	15.00000 W	22.5000 W	45.0000 W	90.0000 W	150.0000 W
250.000m	22.5000 W	37.5000 W	56.2500 W	112.5000 W	225.000 W	375.000 W
500.000m	45.0000 W	75.0000 W	112.5000 W	225.000 W	450.000 W	750.000 W
1.00000	90.0000 W	150.0000 W	225.000 W	450.000 W	900.000 W	1500.000 W
2.50000	225.000 W	375.000 W	562.500 W	1125.000 W	2.25000 kW	3.75000 kW
5.00000	450.000 W	750.000 W	1125.000 W	2.25000 kW	4.50000 kW	7.50000 kW
10.0000	900.000 W	1500.000 W	2.25000 kW	4.50000 kW	9.00000 kW	15.00000 kW
15.0000	1350.000 W	2.25000 kW	3.37500 kW	6.75000 kW	13.50000 kW	22.5000 kW
760903 current sensor range When the Crest Factor Is Set to CF3 Active Power Range of Each Element

CT preset: CT2000A (Input resistance: 1 Ω, CT ratio: 2000)

Current Range [A]		Voltage Range [V]						
Setting	Setting × CT ratio	1.50000	3.00000	6.00000	10.0000	15.0000	30.0000	
10m	20.0000	30.0000 W	60.0000 W	120.000 W	200.000 W	300.000 W	600.000 W	
25m	50.0000	75.000 W	150.000 W	300.000 W	500.000 W	0.75000kW	1.50000kW	
50m	100.000	150.000 W	300.000 W	600.000 W	1.00000kW	1.50000kW	3.00000kW	
100m	200.000	300.000 W	600.000 W	1.20000kW	2.00000kW	3.00000kW	6.00000kW	
250m	500.000	0.75000kW	1.50000kW	3.00000kW	5.00000kW	7.5000kW	15.0000kW	
500m	1.00000k	1.50000kW	3.00000kW	6.00000kW	10.0000kW	15.0000kW	30.0000kW	
1	2.00000k	3.00000kW	6.00000kW	12.0000kW	20.0000kW	30.0000kW	60.0000kW	

Current Range [A]		Voltage Range [V]						
Setting	Setting × CT ratio	60.0000	100.000	150.000	300.000	600.000	1000.00	
10m	20.0000	1.20000kW	2.00000kW	3.00000kW	6.00000kW	12.0000kW	20.0000kW	
25m	50.0000	3.00000kW	5.00000kW	7.5000kW	15.0000kW	30.0000kW	50.0000kW	
50m	100.000	6.00000kW	10.0000kW	15.0000kW	30.0000kW	60.0000kW	100.000kW	
100m	200.000	12.0000kW	20.0000kW	30.0000kW	60.0000kW	120.000kW	200.000kW	
250m	500.000	30.0000kW	50.0000kW	75.000kW	150.000kW	300.000kW	500.000kW	
500m	1.00000k	60.0000kW	100.000kW	150.000kW	300.000kW	600.000kW	1.00000MW	
1	2.00000k	120.000kW	200.000kW	300.000kW	600.000kW	1.20000MW	2.00000MW	

CT preset: CT1000A (Input resistance: 1 Ω, CT ratio: 1500)

Current Range [A]		Voltage Range [V]						
Setting	Setting × CT ratio	1.50000	3.00000	6.00000	10.0000	15.0000	30.0000	
10m	15.0000	22.5000 W	45.0000 W	90.000 W	150.000 W	225.000 W	450.000 W	
25m	37.5000	56.2500 W	112.500 W	225.000 W	375.000 W	562.500 W	1.12500kW	
50m	75.000	112.500 W	225.000 W	450.000 W	0.75000kW	1.12500kW	2.25000kW	
100m	150.000	225.000 W	450.000 W	0.90000kW	1.50000kW	2.25000kW	4.50000kW	
250m	375.000	562.500 W	1.12500kW	2.25000kW	3.75000kW	5.62500kW	11.2500kW	
500m	0.75000k	1.12500kW	2.25000kW	4.50000kW	7.5000kW	11.2500kW	22.5000kW	
1	1.50000k	2.25000kW	4.50000kW	9.0000kW	15.0000kW	22.5000kW	45.0000kW	

Current Range [A]		Voltage Range [V]						
Setting	Setting × CT ratio	60.000	100.000	150.000	300.000	600.000	1000.00	
10m	15.0000	0.90000kW	1.50000kW	2.25000kW	4.50000kW	9.0000kW	15.0000kW	
25m	37.5000	2.25000kW	3.75000kW	5.62500kW	11.2500kW	22.5000kW	37.5000kW	
50m	75.000	4.50000kW	7.5000kW	11.2500kW	22.5000kW	45.0000kW	75.000kW	
100m	150.000	9.0000kW	15.0000kW	22.5000kW	45.0000kW	90.000kW	150.000kW	
250m	375.000	22.5000kW	37.5000kW	56.2500kW	112.500kW	225.000kW	375.000kW	
500m	0.75000k	45.0000kW	75.000kW	112.500kW	225.000kW	450.000kW	0.75000MW	
1	1.50000k	90.000kW	150.000kW	225.000kW	450.000kW	0.90000MW	1.50000MW	

Current Range [A]		Voltage Range [V]							
Setting	Setting × CT ratio	1.50000	3.00000	6.00000	10.0000	15.0000	30.0000		
6.67m	10.0000	15.0000 W	30.0000 W	60.0000 W	100.000 W	150.000 W	300.000 W		
16.7m	25.0000	37.5000 W	75.000 W	150.000 W	250.000 W	375.000 W	0.75000kW		
33.3m	50.0000	75.000 W	150.000 W	300.000 W	500.000 W	0.75000kW	1.50000kW		
66.7m	100.000	150.000 W	300.000 W	600.000 W	1.00000kW	1.50000kW	3.00000kW		
167m	250.000	375.000 W	0.75000kW	1.50000kW	2.50000kW	3.75000kW	7.5000kW		
333m	500.000	0.75000kW	1.50000kW	3.00000kW	5.00000kW	7.5000kW	15.0000kW		
667m	1.00000k	1.50000kW	3.00000kW	6.00000kW	10.0000kW	15.0000kW	30.0000kW		

CT preset: CT1000 (Input resistance: 1.5 Ω , CT ratio: 1500)

Curi	rent Range [A]	Voltage Range [V]						
Setting	Setting × CT ratio	60.0000	100.000	150.000	300.000	600.000	1000.00	
6.67m	10.0000	600.000 W	1.00000kW	1.50000kW	3.00000kW	6.00000kW	10.0000kW	
16.7m	25.0000	1.50000kW	2.50000kW	3.75000kW	7.5000kW	15.0000kW	25.0000kW	
33.3m	50.0000	3.00000kW	5.00000kW	7.5000kW	15.0000kW	30.0000kW	50.0000kW	
66.7m	100.000	6.00000kW	10.0000kW	15.0000kW	30.0000kW	60.0000kW	100.000kW	
167m	250.000	15.0000kW	25.0000kW	37.5000kW	75.000kW	150.000kW	250.000kW	
333m	500.000	30.0000kW	50.0000kW	75.000kW	150.000kW	300.000kW	500.000kW	
667m	1.00000k	60.0000kW	100.000kW	150.000kW	300.000kW	600.000kW	1.00000MW	

CT preset: CT200 (Input resistance: 5 Ω, CT ratio: 1000)

Current Range [A]		Voltage Range [V]						
Setting	Setting × CT ratio	1.50000	3.00000	6.00000	10.0000	15.0000	30.0000	
5m	5.00000	7.5000 W	15.0000 W	30.0000 W	50.0000 W	75.000 W	150.000 W	
10m	10.0000	15.0000 W	30.0000 W	60.0000 W	100.000 W	150.000 W	300.000 W	
20m	20.0000	30.0000 W	60.0000 W	120.000 W	200.000 W	300.000 W	600.000 W	
50m	50.0000	75.000 W	150.000 W	300.000 W	500.000 W	0.75000kW	1.50000kW	
100m	100.000	150.000 W	300.000 W	600.000 W	1.00000kW	1.50000kW	3.00000kW	
200m	200.000	300.000 W	600.000 W	1.20000kW	2.00000kW	3.00000kW	6.00000kW	

Current Range [A]		Voltage Range [V]						
Setting	Setting × CT ratio	60.0000	100.000	150.000	300.000	600.000	1000.00	
5m	5.00000	300.000 W	500.000 W	0.75000kW	1.50000kW	3.00000kW	5.00000kW	
10m	10.0000	600.000 W	1.00000kW	1.50000kW	3.00000kW	6.00000kW	10.0000kW	
20m	20.0000	1.20000kW	2.00000kW	3.00000kW	6.00000kW	12.0000kW	20.0000kW	
50m	50.0000	3.00000kW	5.00000kW	7.5000kW	15.0000kW	30.0000kW	50.0000kW	
100m	100.000	6.00000kW	10.0000kW	15.0000kW	30.0000kW	60.0000kW	100.000kW	
200m	200.000	12.0000kW	20.0000kW	30.0000kW	60.0000kW	120.000kW	200.000kW	

CT preset: CT60 (Input resistance: 10 Ω, CT ratio: 600)

Current Range [A]		Voltage Range [V]							
Setting	Setting × CT ratio	1.50000	3.00000	6.00000	10.0000	15.0000	30.0000		
5m	3.00000	4.50000 W	9.0000 W	18.0000 W	30.0000 W	45.0000 W	90.000 W		
10m	6.00000	9.0000 W	18.0000 W	36.0000 W	60.0000 W	90.000 W	180.000 W		
25m	15.0000	22.5000 W	45.0000 W	90.000 W	150.000 W	225.000 W	450.000 W		
50m	30.0000	45.0000 W	90.000 W	180.000 W	300.000 W	450.000 W	0.90000kW		
100m	60.0000	90.000 W	180.000 W	360.000 W	600.000 W	0.90000kW	1.80000kW		

Current Range [A]		Voltage Range [V]						
Setting	Setting × CT ratio	60.0000	100.000	150.000	300.000	600.000	1000.00	
5m	3.00000	180.000 W	300.000 W	450.000 W	0.90000kW	1.80000kW	3.00000kW	
10m	6.00000	360.000 W	600.000 W	0.90000kW	1.80000kW	3.60000kW	6.00000kW	
25m	15.0000	0.90000kW	1.50000kW	2.25000kW	4.50000kW	9.0000kW	15.0000kW	
50m	30.0000	1.80000kW	3.00000kW	4.50000kW	9.0000kW	18.0000kW	30.0000kW	
100m	60.0000	3.60000kW	6.00000kW	9.0000kW	18.0000kW	36.0000kW	60.0000kW	

Active Power Range of a Wiring Unit with a 1P3W, 3P3W, 3P3W (3V3A), or 3P3W (3V3AR) Wiring System

CT preset: CT2000A	(Input resistance:	1 Ω, CT ratio: 2000)
--------------------	--------------------	----------------------

Current Range [A]		Voltage Range [V]							
Setting	Setting × CT ratio	1.50000	3.00000	6.00000	10.0000	15.0000	30.0000		
10m	20.0000	60.0000 W	120.0000 W	240.000 W	400.000 W	600.000 W	1200.000 W		
25m	50.0000	150.000 W	300.000 W	600.000 W	1000.000 W	1.50000kW	3.00000kW		
50m	100.000	300.000 W	600.000 W	1200.000 W	2.00000kW	3.00000kW	6.00000kW		
100m	200.000	600.000 W	1200.000 W	2.40000kW	4.00000kW	6.00000kW	12.00000kW		
250m	500.000	1.50000kW	3.00000kW	6.00000kW	10.00000kW	15.0000kW	30.0000kW		
500m	1.00000k	3.00000kW	6.00000kW	12.00000kW	20.0000kW	30.0000kW	60.0000kW		
1	2.00000k	6.00000kW	12.00000kW	24.0000kW	40.0000kW	60.0000kW	120.0000kW		

Current Range [A]		Voltage Range [V]						
Setting	Setting × CT ratio	60.0000	100.000	150.000	300.000	600.000	1000.00	
10m	20.0000	2.40000kW	4.00000kW	6.00000kW	12.00000kW	24.0000kW	40.0000kW	
25m	50.0000	6.00000kW	10.00000kW	15.0000kW	30.0000kW	60.0000kW	100.0000kW	
50m	100.000	12.00000kW	20.0000kW	30.0000kW	60.0000kW	120.0000kW	200.000kW	
100m	200.000	24.0000kW	40.0000kW	60.0000kW	120.0000kW	240.000kW	400.000kW	
250m	500.000	60.0000kW	100.0000kW	150.000kW	300.000kW	600.000kW	1000.000kW	
500m	1.00000k	120.0000kW	200.000kW	300.000kW	600.000kW	1200.000kW	2.00000MW	
1	2.00000k	240.000kW	400.000kW	600.000kW	1200.000kW	2.40000MW	4.00000MW	

CT preset: CT1000A (Input resistance: 1 Ω, CT ratio: 1500)

Cur	rent Range [A]	Voltage Range [V]							
Setting	Setting × CT ratio	1.50000	3.00000	6.00000	10.0000	15.0000	30.0000		
10m	15.0000	45.0000 W	90.0000 W	180.000 W	300.000 W	450.000 W	900.000 W		
25m	37.5000	112.5000 W	225.000 W	450.000 W	750.000 W	1125.000 W	2.25000kW		
50m	75.000	225.000 W	450.000 W	900.000 W	1.50000kW	2.25000kW	4.50000kW		
100m	150.000	450.000 W	900.000 W	1.80000kW	3.00000kW	4.50000kW	9.00000kW		
250m	375.000	1125.000 W	2.25000kW	4.50000kW	7.50000kW	11.25000kW	22.5000kW		
500m	0.75000k	2.25000kW	4.50000kW	9.00000kW	15.0000kW	22.5000kW	45.0000kW		
1	1.50000k	4.50000kW	9.00000kW	18.0000kW	30.0000kW	45.0000kW	90.0000kW		

Current Range [A]		Voltage Range [V]						
Setting	Setting × CT ratio	60.0000	100.000	150.000	300.000	600.000	1000.00	
10m	15.0000	1.80000kW	3.00000kW	4.50000kW	9.00000kW	18.0000kW	30.0000kW	
25m	37.5000	4.50000kW	7.50000kW	11.25000kW	22.5000kW	45.0000kW	75.0000kW	
50m	75.000	9.00000kW	15.0000kW	22.5000kW	45.0000kW	90.0000kW	150.000kW	
100m	150.000	18.0000kW	30.0000kW	45.0000kW	90.0000kW	180.000kW	300.000kW	
250m	375.000	45.0000kW	75.0000kW	112.5000kW	225.000kW	450.000kW	750.000kW	
500m	0.75000k	90.0000kW	150.000kW	225.000kW	450.000kW	900.000kW	1.50000MW	
1	1.50000k	180.000kW	300.000kW	450.000kW	900.000kW	1.80000MW	3.00000MW	

Curr	rent Range [A]	Voltage Range [V]							
Setting	Setting × CT ratio	1.50000	3.00000	6.00000	10.0000	15.0000	30.0000		
6.67m	10.0000	30.0000 W	60.0000 W	120.0000 W	200.000 W	300.000 W	600.000 W		
16.7m	25.0000	75.0000 W	150.000 W	300.000 W	500.000 W	750.000 W	1.50000kW		
33.3m	50.0000	150.000 W	300.000 W	600.000 W	1000.000 W	1.50000kW	3.00000kW		
66.7m	100.000	300.000 W	600.000 W	1200.000 W	2.00000kW	3.00000kW	6.00000kW		
167m	250.000	750.000 W	1.50000kW	3.00000kW	5.00000kW	7.50000kW	15.0000kW		
333m	500.000	1.50000kW	3.00000kW	6.00000kW	10.00000kW	15.0000kW	30.0000kW		
667m	1.00000k	3.00000kW	6.00000kW	12.00000kW	20.0000kW	30.0000kW	60.0000kW		

CT preset: CT1000 (Input resistance: 1.5 Ω , CT ratio: 1500)

Current Range [A]		Voltage Range [V]						
Setting	Setting × CT ratio	60.0000	100.000	150.000	300.000	600.000	1000.00	
6.67m	10.0000	1200.000 W	2.00000kW	3.00000kW	6.00000kW	12.00000kW	20.0000kW	
16.7m	25.0000	3.00000kW	5.00000kW	7.50000kW	15.0000kW	30.0000kW	50.0000kW	
33.3m	50.0000	6.00000kW	10.00000kW	15.0000kW	30.0000kW	60.0000kW	100.0000kW	
66.7m	100.000	12.00000kW	20.0000kW	30.0000kW	60.0000kW	60.0000kW	200.000kW	
167m	250.000	30.0000kW	50.0000kW	75.0000kW	150.000kW	300.000kW	500.000kW	
333m	500.000	60.0000kW	100.0000kW	150.000kW	300.000kW	600.000kW	1000.000kW	
667m	1.00000k	120.0000kW	200.000kW	300.000kW	600.000kW	1200.000kW	2.00000MW	

CT preset: CT200 (Input resistance: 5 Ω, CT ratio: 1000)

Current Range [A]		Voltage Range [V]						
Setting	Setting × CT ratio	1.50000	3.00000	6.00000	10.0000	15.0000	30.0000	
5m	5.00000	15.0000 W	30.0000 W	60.0000 W	100.0000 W	150.000 W	300.000 W	
10m	10.0000	30.0000 W	60.0000 W	120.0000 W	200.000 W	300.000 W	600.000 W	
20m	20.0000	60.0000 W	120.0000 W	240.000 W	400.000 W	600.000 W	1200.000 W	
50m	50.0000	150.000 W	300.000 W	600.000 W	1000.000 W	1.50000kW	3.00000kW	
100m	100.000	300.000 W	600.000 W	1200.000 W	2.00000kW	3.00000kW	6.00000kW	
200m	200.000	600.000 W	1200.000 W	2.40000kW	4.00000kW	6.00000kW	12.00000kW	

Current Range [A]		Voltage Range [V]						
Setting	Setting × CT ratio	60.0000	100.000	150.000	300.000	600.000	1000.00	
5m	5.00000	600.000 W	1000.000 W	1.50000kW	3.00000kW	6.00000kW	10.00000kW	
10m	10.0000	1200.000 W	2.00000kW	3.00000kW	6.00000kW	12.00000kW	20.0000kW	
20m	20.0000	2.40000kW	4.00000kW	6.00000kW	12.00000kW	24.0000kW	40.0000kW	
50m	50.0000	6.00000kW	10.00000kW	15.0000kW	30.0000kW	60.0000kW	100.0000kW	
100m	100.000	12.00000kW	20.0000kW	30.0000kW	60.0000kW	120.0000kW	200.000kW	
200m	200.000	24.0000kW	40.0000kW	60.0000kW	120.0000kW	240.000kW	400.000kW	

CT preset: CT60 (Input resistance: 10 Ω, CT ratio: 600)

Current Range [A]		Voltage Range [V]							
Setting	Setting × CT ratio	1.50000	3.00000	6.00000	10.0000	15.0000	30.0000		
5m	3.00000	9.00000 W	18.0000 W	36.0000 W	60.0000 W	90.0000 W	180.000 W		
10m	6.00000	18.0000 W	36.0000 W	72.0000 W	120.0000 W	180.000 W	360.000 W		
25m	15.0000	45.0000 W	90.0000 W	180.000 W	300.000 W	450.000 W	900.000 W		
50m	30.0000	90.0000 W	180.000 W	360.000 W	600.000 W	900.000 W	1.80000kW		
100m	60.0000	180.000 W	360.000 W	720.000 W	1200.000 W	1.80000kW	3.60000kW		

Current Range [A]		Voltage Range [V]						
Setting	Setting × CT ratio	60.0000	100.000	150.000	300.000	600.000	1000.00	
5m	3.00000	360.000 W	600.000 W	900.000 W	1.80000kW	3.60000kW	6.00000kW	
10m	6.00000	720.000 W	1200.000 W	1.80000kW	3.60000kW	7.20000kW	12.00000kW	
25m	15.0000	1.80000kW	3.00000kW	4.50000kW	9.00000kW	18.0000kW	30.0000kW	
50m	30.0000	3.60000kW	6.00000kW	9.00000kW	18.0000kW	36.0000kW	60.0000kW	
100m	60.0000	7.20000kW	12.00000kW	18.0000kW	36.0000kW	72.0000kW	90.0000kW	

Active Power Range of a Wiring Unit with a 3P4W Wiring System

Current Range [A]		Voltage Range [V]							
Setting	Setting × CT ratio	1.50000	3.00000	6.00000	10.0000	15.0000	30.0000		
10m	20.0000	90.0000 W	180.0000 W	360.000 W	600.000 W	900.000 W	1800.000 W		
25m	50.0000	225.000 W	450.000 W	900.000 W	1500.000 W	2.25000kW	4.50000kW		
50m	100.000	450.000 W	900.000 W	1800.000 W	3.00000kW	4.50000kW	9.00000kW		
100m	200.000	900.000 W	1800.000 W	3.60000kW	6.00000kW	9.00000kW	18.00000kW		
250m	500.000	2.25000kW	4.50000kW	9.00000kW	15.00000kW	22.5000kW	45.0000kW		
500m	1.00000k	4.50000kW	9.00000kW	18.00000kW	30.0000kW	45.0000kW	90.0000kW		
1	2.00000k	9.00000kW	18.00000kW	36.0000kW	60.0000kW	90.0000kW	180.0000kW		

CT preset: CT2000A (Input resistance: 1 Ω, CT ratio: 2000)

Curi	rent Range [A]	Voltage Range [V]						
Setting	Setting × CT ratio	60.0000	100.000	150.000	300.000	600.000	1000.00	
10m	20.0000	3.60000kW	6.00000kW	9.00000kW	18.00000kW	36.0000kW	60.0000kW	
25m	50.0000	9.00000kW	15.00000kW	22.5000kW	45.0000kW	90.0000kW	150.0000kW	
50m	100.000	18.00000kW	30.0000kW	45.0000kW	90.0000kW	180.0000kW	300.000kW	
100m	200.000	36.0000kW	60.0000kW	90.0000kW	180.0000kW	360.000kW	600.000kW	
250m	500.000	90.0000kW	150.0000kW	225.000kW	450.000kW	900.000kW	1500.000kW	
500m	1.00000k	180.0000kW	300.000kW	450.000kW	900.000kW	1800.000kW	3.00000MW	
1	2.00000k	360.000kW	600.000kW	900.000kW	1800.000kW	3.60000MW	6.00000MW	

CT preset: CT1000A (Input resistance: 1 Ω, CT ratio: 1500)

Curi	rent Range [A]	Voltage Range [V]						
Setting	Setting × CT ratio	1.50000	3.00000	6.00000	10.0000	15.0000	30.0000	
10m	15.0000	67.5000 W	135.0000 W	270.000 W	450.000 W	675.000 W	1350.000 W	
25m	37.5000	168.7500 W	337.500 W	675.000 W	1125.000 W	1687.500 W	3.37500kW	
50m	75.000	337.500 W	675.000 W	1350.000 W	2.25000kW	3.37500kW	6.75000kW	
100m	150.000	675.000 W	1350.000 W	2.70000kW	4.50000kW	6.75000kW	13.50000kW	
250m	375.000	1687.500 W	3.37500kW	6.75000kW	11.25000kW	16.87500kW	33.7500kW	
500m	0.75000k	3.37500kW	6.75000kW	13.50000kW	22.5000kW	33.7500kW	67.5000kW	
1	1.50000k	6.75000kW	13.50000kW	27.0000kW	45.0000kW	67.5000kW	135.0000kW	

Current Range [A]			Voltage Range [V]						
Setting	Setting × CT ratio	60.0000	100.000	150.000	300.000	600.000	1000.00		
10m	15.0000	2.70000kW	4.50000kW	6.75000kW	13.50000kW	27.0000kW	45.0000kW		
25m	37.5000	6.75000kW	11.25000kW	16.87500kW	33.7500kW	67.5000kW	112.5000kW		
50m	75.000	13.50000kW	22.5000kW	33.7500kW	67.5000kW	135.0000kW	225.000kW		
100m	150.000	27.0000kW	45.0000kW	67.5000kW	135.0000kW	270.000kW	450.000kW		
250m	375.000	67.5000kW	112.5000kW	168.7500kW	337.500kW	675.000kW	1125.000kW		
500m	0.75000k	135.0000kW	225.000kW	337.500kW	675.000kW	1350.000kW	2.25000MW		
1	1.50000k	270.000kW	450.000kW	675.000kW	1350.000kW	2.70000MW	4.50000MW		

Current Range [A]		Voltage Range [V]							
Setting	Setting × CT ratio	1.50000	3.00000	6.00000	10.0000	15.0000	30.0000		
6.67m	10.0000	45.0000 W	90.0000 W	180.0000 W	300.000 W	450.000 W	900.000 W		
16.7m	25.0000	112.5000 W	225.000 W	450.000 W	750.000 W	1125.000 W	2.25000kW		
33.3m	50.0000	225.000 W	450.000 W	900.000 W	1500.000 W	2.25000kW	4.50000kW		
66.7m	100.000	450.000 W	900.000 W	1800.000 W	3.00000kW	4.50000kW	9.00000kW		
167m	250.000	1125.000 W	2.25000kW	4.50000kW	7.50000kW	11.25000kW	22.5000kW		
333m	500.000	2.25000kW	4.50000kW	9.00000kW	15.00000kW	22.5000kW	45.0000kW		
667m	1.00000k	4.50000kW	9.00000kW	18.00000kW	30.0000kW	45.0000kW	90.0000kW		

CT preset: CT1000 (Input resistance: 1.5 Ω , CT ratio: 1500)

Current Range [A]		Voltage Range [V]						
Setting	Setting × CT ratio	60.0000	100.000	150.000	300.000	600.000	1000.00	
6.67m	10.0000	1800.000 W	3.00000kW	4.50000kW	9.00000kW	18.00000kW	30.0000kW	
16.7m	25.0000	4.50000kW	7.50000kW	11.25000kW	22.5000kW	45.0000kW	75.0000kW	
33.3m	50.0000	9.00000kW	15.00000kW	22.5000kW	45.0000kW	90.0000kW	150.0000kW	
66.7m	100.000	18.00000kW	30.0000kW	45.0000kW	90.0000kW	180.0000kW	300.000kW	
167m	250.000	45.0000kW	75.0000kW	112.5000kW	225.000kW	450.000kW	750.000kW	
333m	500.000	90.0000kW	150.0000kW	225.000kW	450.000kW	900.000kW	1500.000kW	
667m	1.00000k	180.0000kW	300.000kW	450.000kW	900.000kW	1800.000kW	3.00000MW	

CT preset: CT200 (Input resistance: 5 Ω, CT ratio: 1000)

Current Range [A]		Voltage Range [V]						
Setting	Setting × CT ratio	1.50000	3.00000	6.00000	10.0000	15.0000	30.0000	
5m	5.00000	22.5000 W	45.0000 W	90.0000 W	150.0000 W	225.000 W	450.000 W	
10m	10.0000	45.0000 W	90.0000 W	180.0000 W	300.000 W	450.000 W	900.000 W	
20m	20.0000	90.0000 W	180.0000 W	360.000 W	600.000 W	900.000 W	1800.000 W	
50m	50.0000	225.000 W	450.000 W	900.000 W	1500.000 W	2.25000kW	4.50000kW	
100m	100.000	450.000 W	900.000 W	1800.000 W	3.00000kW	4.50000kW	9.00000kW	
200m	200.000	900.000 W	1800.000 W	3.60000kW	6.00000kW	9.00000kW	18.00000kW	

Current Range [A]		Voltage Range [V]						
Setting	Setting × CT ratio	60.0000	100.000	150.000	300.000	600.000	1000.00	
5m	5.00000	900.000 W	1500.000 W	2.25000kW	4.50000kW	9.00000kW	15.00000kW	
10m	10.0000	1800.000 W	3.00000kW	4.50000kW	9.00000kW	18.00000kW	30.0000kW	
20m	20.0000	3.60000kW	6.00000kW	9.00000kW	18.00000kW	36.0000kW	60.0000kW	
50m	50.0000	9.00000kW	15.00000kW	22.5000kW	45.0000kW	90.0000kW	150.0000kW	
100m	100.000	18.00000kW	30.0000kW	45.0000kW	90.0000kW	180.0000kW	300.000kW	
200m	200.000	36.0000kW	60.0000kW	90.0000kW	180.0000kW	360.000kW	600.000kW	

CT preset: CT60 (Input resistance: 10 Ω, CT ratio: 600)

Cur	rent Range [A]		Voltage Range [V]						
Setting	Setting × CT ratio	1.50000	3.00000	6.00000	10.0000	15.0000	30.0000		
5m	3.00000	13.50000 W	27.0000 W	54.0000 W	90.0000 W	135.0000 W	270.000 W		
10m	6.00000	27.0000 W	54.0000 W	108.0000 W	180.0000 W	270.000 W	540.000 W		
25m	15.0000	67.5000 W	135.0000 W	270.000 W	450.000 W	675.000 W	1350.000 W		
50m	30.0000	135.0000 W	270.000 W	540.000 W	900.000 W	1350.000 W	2.70000kW		
100m	60.0000	270.000 W	540.000 W	1080.000 W	1800.000 W	2.70000kW	5.40000kW		

Current Range [A]		Voltage Range [V]						
Setting	Setting × CT ratio	60.0000	100.000	150.000	300.000	600.000	1000.00	
5m	3.00000	540.000 W	900.000 W	1350.000 W	2.70000kW	5.40000kW	9.00000kW	
10m	6.00000	1080.000 W	1800.000 W	2.70000kW	5.40000kW	10.80000kW	18.00000kW	
25m	15.0000	2.70000kW	4.50000kW	6.75000kW	13.50000kW	27.0000kW	45.0000kW	
50m	30.0000	5.40000kW	9.00000kW	13.50000kW	27.0000kW	54.0000kW	90.0000kW	
100m	60.0000	10.80000kW	18.00000kW	27.0000kW	54.0000kW	108.0000kW	180.0000kW	

When the Crest Factor Is Set to CF6 or CF6A

Active Power Range of Each Element

CT preset: CT2000A (Input resistance: 1 Ω, CT ratio: 2000)

Current Range [A]		Voltage Range [V]						
Setting	Setting × CT ratio	0.75000	1.50000	3.00000	5.00000	7.5000	15.0000	
5m	10.0000	7.5000 W	15.0000 W	30.0000 W	50.0000 W	75.000 W	150.000 W	
12.5m	25.0000	18.7500 W	37.5000 W	75.000 W	125.000 W	187.500 W	375.000 W	
25m	50.0000	37.5000 W	75.000 W	150.000 W	250.000 W	375.000 W	0.75000kW	
50m	100.000	75.000 W	150.000 W	300.000 W	500.000 W	0.75000kW	1.50000kW	
125m	250.000	187.500 W	375.000 W	0.75000kW	1.25000kW	1.87500kW	3.75000kW	
250m	500.000	375.000 W	0.75000kW	1.50000kW	2.50000kW	3.75000kW	7.5000kW	
500m	1.00000k	0.75000kW	1.50000kW	3.00000kW	5.00000kW	7.5000kW	15.0000kW	

Current Range [A]			Voltage Range [V]						
Setting	Setting × CT ratio	30.0000	50.0000	75.000	150.000	300.000	500.000		
5m	10.0000	300.000 W	500.000 W	0.75000kW	1.50000kW	3.00000kW	5.00000kW		
12.5m	25.0000	0.75000kW	1.25000kW	1.87500kW	3.75000kW	7.5000kW	12.5000kW		
25m	50.0000	1.50000kW	2.50000kW	3.75000kW	7.5000kW	15.0000kW	25.0000kW		
50m	100.000	3.00000kW	5.00000kW	7.5000kW	15.0000kW	30.0000kW	50.0000kW		
125m	250.000	7.5000kW	12.5000kW	18.7500kW	37.5000kW	75.000kW	125.000kW		
250m	500.000	15.0000kW	25.0000kW	37.5000kW	75.000kW	150.000kW	250.000kW		
500m	1.00000k	30.0000kW	50.0000kW	75.000kW	150.000kW	300.000kW	500.000kW		

CT preset: CT1000A (Input resistance: 1 Ω, CT ratio: 1500)

Current Range [A]		Voltage Range [V]						
Setting	Setting × CT ratio	0.75000	1.50000	3.00000	5.00000	7.5000	15.0000	
5m	7.5000	5.62500 W	11.2500 W	22.5000 W	37.5000 W	56.2500 W	112.500 W	
12.5m	18.7500	14.0625 W	28.1250 W	56.2500 W	93.750 W	140.625 W	281.250 W	
25m	37.5000	28.1250 W	56.2500 W	112.500 W	187.500 W	281.250 W	562.500 W	
50m	75.000	56.2500 W	112.500 W	225.000 W	375.000 W	562.500 W	1.12500kW	
125m	187.500	140.625 W	281.250 W	562.500 W	0.93750kW	1.40625kW	2.81250kW	
250m	375.000	281.250 W	562.500 W	1.12500kW	1.87500kW	2.81250kW	5.62500kW	
500m	0.75000k	562.500 W	1.12500kW	2.25000kW	3.75000kW	5.62500kW	11.2500kW	

Current Range [A]		Voltage Range [V]						
Setting	Setting × CT ratio	30.0000	50.0000	75.000	150.000	300.000	500.000	
5m	7.5000	225.000 W	375.000 W	562.500 W	1.12500kW	2.25000kW	3.75000kW	
12.5m	18.7500	562.500 W	0.93750kW	1.40625kW	2.81250kW	5.62500kW	9.3750kW	
25m	37.5000	1.12500kW	1.87500kW	2.81250kW	5.62500kW	11.2500kW	18.7500kW	
50m	75.000	2.25000kW	3.75000kW	5.62500kW	11.2500kW	22.5000kW	37.5000kW	
125m	187.500	5.62500kW	9.3750kW	14.0625kW	28.1250kW	56.2500kW	93.750kW	
250m	375.000	11.2500kW	18.7500kW	28.1250kW	56.2500kW	112.500kW	187.500kW	
500m	0.75000k	22.5000kW	37.5000kW	56.2500kW	112.500kW	225.000kW	375.000kW	

Cur	rent Range [A]	Voltage Range [V]						
Setting	Setting × CT ratio	0.75000	1.50000	3.00000	5.00000	7.5000	15.0000	
3.33m	5.00000	3.75000 W	7.5000 W	15.0000 W	25.0000 W	37.5000 W	75.000 W	
8.33m	12.5000	9.3750 W	18.7500 W	37.5000 W	62.500 W	93.750 W	187.500 W	
16.7m	25.0000	18.7500 W	37.5000 W	75.000 W	125.000 W	187.500 W	375.000 W	
33.3m	50.0000	37.5000 W	75.000 W	150.000 W	250.000 W	375.000 W	0.75000kW	
83.3m	125.000	93.750 W	187.500 W	375.000 W	0.62500kW	0.93750kW	1.87500kW	
167m	250.000	187.500 W	375.000 W	0.75000kW	1.25000kW	1.87500kW	3.75000kW	
333m	500.000	375.000 W	0.75000kW	1.50000kW	2.50000kW	3.75000kW	7.5000kW	

CT preset: CT1000 (Input resistance: 1.5 Ω , CT ratio: 1500)

Current Range [A]			Voltage Range [V]							
Setting	Setting × CT ratio	30.0000	50.0000	75.000	150.000	300.000	500.000			
3.33m	5.00000	150.000 W	250.000 W	375.000 W	0.75000kW	1.50000kW	2.50000kW			
8.33m	12.5000	375.000 W	0.62500kW	0.93750kW	1.87500kW	3.75000kW	6.2500kW			
16.7m	25.0000	0.75000kW	1.25000kW	1.87500kW	3.75000kW	7.5000kW	12.5000kW			
33.3m	50.0000	1.50000kW	2.50000kW	3.75000kW	7.5000kW	15.0000kW	25.0000kW			
83.3m	125.000	3.75000kW	6.2500kW	9.3750kW	18.7500kW	37.5000kW	62.500kW			
167m	250.000	7.5000kW	12.5000kW	18.7500kW	37.5000kW	75.000kW	125.000kW			
333m	500.000	15.0000kW	25.0000kW	37.5000kW	75.000kW	150.000kW	250.000kW			

CT preset: CT200 (Input resistance: 5 Ω, CT ratio: 1000)

Current Range [A]		Voltage Range [V]						
Setting	Setting × CT ratio	0.75000	1.50000	3.00000	5.00000	7.5000	15.0000	
2.5m	2.50000	1.87500 W	3.75000 W	7.5000 W	12.5000 W	18.7500 W	37.5000 W	
5m	5.00000	3.75000 W	7.5000 W	15.0000 W	25.0000 W	37.5000 W	75.000 W	
10m	10.0000	7.5000 W	15.0000 W	30.0000 W	50.0000 W	75.000 W	150.000 W	
25m	25.0000	18.7500 W	37.5000 W	75.000 W	125.000 W	187.500 W	375.000 W	
50m	50.0000	37.5000 W	75.000 W	150.000 W	250.000 W	375.000 W	0.75000kW	
100m	100.000	75.000 W	150.000 W	300.000 W	500.000 W	0.75000kW	1.50000kW	

Current Range [A]		Voltage Range [V]						
Setting	Setting × CT ratio	30.0000	50.0000	75.000	150.000	300.000	500.000	
2.5m	2.50000	75.000 W	125.000 W	187.500 W	375.000 W	0.75000kW	1.25000kW	
5m	5.00000	150.000 W	250.000 W	375.000 W	0.75000kW	1.50000kW	2.50000kW	
10m	10.0000	300.000 W	500.000 W	0.75000kW	1.50000kW	3.00000kW	5.00000kW	
25m	25.0000	0.75000kW	1.25000kW	1.87500kW	3.75000kW	7.5000kW	12.5000kW	
50m	50.0000	1.50000kW	2.50000kW	3.75000kW	7.5000kW	15.0000kW	25.0000kW	
100m	100.000	3.00000kW	5.00000kW	7.5000kW	15.0000kW	30.0000kW	50.0000kW	

CT preset: CT60 (Input resistance: 10 Ω, CT ratio: 600)

Cur	rent Range [A]	Voltage Range [V]							
Setting	Setting × CT ratio	0.75000	1.50000	3.00000	5.00000	7.5000	15.0000		
2.5m	1.50000	1.12500 W	2.25000 W	4.50000 W	7.5000 W	11.2500 W	22.5000 W		
5m	3.00000	2.25000 W	4.50000 W	9.0000 W	15.0000 W	22.5000 W	45.0000 W		
12.5m	7.5000	5.62500 W	11.2500 W	22.5000 W	37.5000 W	56.2500 W	112.500 W		
25m	15.0000	11.2500 W	22.5000 W	45.0000 W	75.000 W	112.500 W	225.000 W		
50m	30.0000	22.5000 W	45.0000 W	90.000 W	150.000 W	225.000 W	450.000 W		

Current Range [A]		Voltage Range [V]						
Setting	Setting × CT ratio	30.0000	50.0000	75.000	150.000	300.000	500.000	
2.5m	1.50000	45.0000 W	75.000 W	112.500 W	225.000 W	450.000 W	0.75000kW	
5m	3.00000	90.000 W	150.000 W	225.000 W	450.000 W	0.90000kW	1.50000kW	
12.5m	7.5000	225.000 W	375.000 W	562.500 W	1.12500kW	2.25000kW	3.75000kW	
25m	15.0000	450.000 W	0.75000kW	1.12500kW	2.25000kW	4.50000kW	7.5000kW	
50m	30.0000	0.90000kW	1.50000kW	2.25000kW	4.50000kW	9.0000kW	15.0000kW	

Active Power Range of a Wiring Unit with a 1P3W, 3P3W, 3P3W (3V3A), or 3P3W (3V3AR) Wiring System

Current Range [A]		Voltage Range [V]						
Setting	Setting × CT ratio	0.75000	1.50000	3.00000	5.00000	7.5000	15.0000	
5m	10.0000	15.0000 W	30.0000 W	60.0000 W	100.0000 W	150.000 W	300.000 W	
12.5m	25.0000	37.5000 W	75.0000 W	150.000 W	250.000 W	375.000 W	750.000 W	
25m	50.0000	75.0000 W	150.000 W	300.000 W	500.000 W	750.000 W	1.50000kW	
50m	100.000	150.000 W	300.000 W	600.000 W	1000.000 W	1.50000kW	3.00000kW	
125m	250.000	375.000 W	750.000 W	1.50000kW	2.50000kW	3.75000kW	7.50000kW	
250m	500.000	750.000 W	1.50000kW	3.00000kW	5.00000kW	7.50000kW	15.0000kW	
500m	1.00000k	1.50000kW	3.00000kW	6.00000kW	10.00000kW	15.0000kW	30.0000kW	

CT preset: CT2000A (Input resistance: 1 Ω, CT ratio: 2000)

Curi	rent Range [A]	Voltage Range [V]						
Setting	Setting × CT ratio	30.0000	50.0000	75.000	150.000	300.000	500.000	
5m	10.0000	600.000 W	1000.000 W	1.50000kW	3.00000kW	6.00000kW	10.00000kW	
12.5m	25.0000	1.50000kW	2.50000kW	3.75000kW	7.50000kW	15.0000kW	25.0000kW	
25m	50.0000	3.00000kW	5.00000kW	7.50000kW	15.0000kW	30.0000kW	50.0000kW	
50m	100.000	6.00000kW	10.00000kW	15.0000kW	30.0000kW	60.0000kW	100.0000kW	
125m	250.000	15.0000kW	25.0000kW	37.5000kW	75.0000kW	150.000kW	250.000kW	
250m	500.000	30.0000kW	50.0000kW	75.0000kW	150.000kW	300.000kW	500.000kW	
500m	1.00000k	60.0000kW	100.0000kW	150.000kW	300.000kW	600.000kW	1000.000kW	

CT preset: CT1000A (Input resistance: 1 Ω, CT ratio: 1500)

Cur	rent Range [A]	Voltage Range [V]						
Setting	Setting × CT ratio	0.75000	1.50000	3.00000	5.00000	7.5000	15.0000	
5m	7.5000	11.25000 W	22.5000 W	45.0000 W	75.0000 W	112.5000 W	225.000 W	
12.5m	18.7500	28.1250 W	56.2500 W	112.5000 W	187.500 W	281.250 W	562.500 W	
25m	37.5000	56.2500 W	112.5000 W	225.000 W	375.000 W	562.500 W	1125.000 W	
50m	75.000	112.5000 W	225.000 W	450.000 W	750.000 W	1125.000 W	2.25000kW	
125m	187.500	281.250 W	562.500 W	1125.000 W	1.87500kW	2.81250kW	5.62500kW	
250m	375.000	562.500 W	1125.000 W	2.25000kW	3.75000kW	5.62500kW	11.25000kW	
500m	0.75000k	1125.000 W	2.25000kW	4.50000kW	7.50000kW	11.25000kW	22.5000kW	

Current Range [A]		Voltage Range [V]						
Setting	Setting × CT ratio	30.0000	50.0000	75.000	150.000	300.000	500.000	
5m	7.5000	450.000 W	750.000 W	1125.000 W	2.25000kW	4.50000kW	7.50000kW	
12.5m	18.7500	1125.000 W	1.87500kW	2.81250kW	5.62500kW	11.25000kW	18.7500kW	
25m	37.5000	2.25000kW	3.75000kW	5.62500kW	11.25000kW	22.5000kW	37.5000kW	
50m	75.000	4.50000kW	7.50000kW	11.25000kW	22.5000kW	45.0000kW	75.0000kW	
125m	187.500	11.25000kW	18.7500kW	28.1250kW	56.2500kW	112.5000kW	187.500kW	
250m	375.000	22.5000kW	37.5000kW	56.2500kW	112.5000kW	225.000kW	375.000kW	
500m	0.75000k	45.0000kW	75.0000kW	112.5000kW	225.000kW	450.000kW	750.000kW	

Curi	rent Range [A]	Voltage Range [V]							
Setting	Setting × CT ratio	0.75000	1.50000	3.00000	5.00000	7.5000	15.0000		
3.33m	5.00000	7.50000 W	15.0000 W	30.0000 W	50.0000 W	75.0000 W	150.000 W		
8.33m	12.5000	18.7500 W	37.5000 W	75.0000 W	125.000 W	187.500 W	375.000 W		
16.7m	25.0000	37.5000 W	75.0000 W	150.000 W	250.000 W	375.000 W	750.000 W		
33.3m	50.0000	75.0000 W	150.000 W	300.000 W	500.000 W	750.000 W	1.50000kW		
83.3m	125.000	187.500 W	375.000 W	750.000 W	1.25000kW	1.87500kW	3.75000kW		
167m	250.000	375.000 W	750.000 W	1.50000kW	2.50000kW	3.75000kW	7.50000kW		
333m	500.000	750.000 W	1.50000kW	3.00000kW	5.00000kW	7.50000kW	15.0000kW		

CT preset: CT1000 (Input resistance: 1.5 Ω , CT ratio: 1500)

Curi	rent Range [A]		Voltage Range [V]						
Setting	Setting × CT ratio	30.0000	50.0000	75.000	150.000	300.000	500.000		
3.33m	5.00000	300.000 W	500.000 W	750.000 W	1.50000kW	3.00000kW	5.00000kW		
8.33m	12.5000	750.000 W	1.25000kW	1.87500kW	3.75000kW	7.50000kW	12.5000kW		
16.7m	25.0000	1.50000kW	2.50000kW	3.75000kW	7.50000kW	15.0000kW	25.0000kW		
33.3m	50.0000	3.00000kW	5.00000kW	7.50000kW	15.0000kW	30.0000kW	50.0000kW		
83.3m	125.000	7.50000kW	12.5000kW	18.7500kW	37.5000kW	75.0000kW	125.000kW		
167m	250.000	15.0000kW	25.0000kW	37.5000kW	75.0000kW	150.000kW	250.000kW		
333m	500.000	30.0000kW	50.0000kW	75.0000kW	150.000kW	300.000kW	500.000kW		

CT preset: CT200 (Input resistance: 5 Ω, CT ratio: 1000)

Current Range [A]		Voltage Range [V]						
Setting	Setting × CT ratio	0.75000	1.50000	3.00000	5.00000	7.5000	15.0000	
2.5m	2.50000	3.75000 W	7.50000 W	15.0000 W	25.0000 W	37.5000 W	75.0000 W	
5m	5.00000	7.50000 W	15.0000 W	30.0000 W	50.0000 W	75.0000 W	150.000 W	
10m	10.0000	15.0000 W	30.0000 W	60.0000 W	100.0000 W	150.000 W	300.000 W	
25m	25.0000	37.5000 W	75.0000 W	150.000 W	250.000 W	375.000 W	750.000 W	
50m	50.0000	75.0000 W	150.000 W	300.000 W	500.000 W	750.000 W	1.50000kW	
100m	100.000	150.000 W	300.000 W	600.000 W	1000.000 W	1.50000kW	3.00000kW	

Current Range [A]		Voltage Range [V]						
Setting	Setting × CT ratio	30.0000	50.0000	75.000	150.000	300.000	500.000	
2.5m	2.50000	150.000 W	250.000 W	375.000 W	750.000 W	1.50000kW	2.50000kW	
5m	5.00000	300.000 W	500.000 W	750.000 W	1.50000kW	3.00000kW	5.00000kW	
10m	10.0000	600.000 W	1000.000 W	1.50000kW	3.00000kW	6.00000kW	10.00000kW	
25m	25.0000	1.50000kW	2.50000kW	3.75000kW	7.50000kW	15.0000kW	25.0000kW	
50m	50.0000	3.00000kW	5.00000kW	7.50000kW	15.0000kW	30.0000kW	50.0000kW	
100m	100.000	6.00000kW	10.00000kW	15.0000kW	30.0000kW	60.0000kW	100.0000kW	

CT preset: CT60 (Input resistance: 10 Ω, CT ratio: 600)

Cur	rent Range [A]		Voltage Range [V]						
Setting	Setting × CT ratio	0.75000	1.50000	3.00000	5.00000	7.5000	15.0000		
2.5m	1.50000	2.25000 W	4.50000 W	9.00000 W	15.0000 W	22.5000 W	45.0000 W		
5m	3.00000	4.50000 W	9.00000 W	18.0000 W	30.0000 W	45.0000 W	90.0000 W		
12.5m	7.5000	11.25000 W	22.5000 W	45.0000 W	75.0000 W	112.5000 W	225.000 W		
25m	15.0000	22.5000 W	45.0000 W	90.0000 W	150.000 W	225.000 W	450.000 W		
50m	30.0000	45.0000 W	90.0000 W	180.000 W	300.000 W	450.000 W	900.000 W		

Current Range [A]		Voltage Range [V]						
Setting	Setting × CT ratio	30.0000	50.0000	75.000	150.000	300.000	500.000	
2.5m	1.50000	90.0000 W	150.000 W	225.000 W	450.000 W	900.000 W	1.50000kW	
5m	3.00000	180.000 W	300.000 W	450.000 W	900.000 W	1.80000kW	3.00000kW	
12.5m	7.5000	450.000 W	750.000 W	1125.000 W	2.25000kW	4.50000kW	7.50000kW	
25m	15.0000	900.000 W	1.50000kW	2.25000kW	4.50000kW	9.00000kW	15.0000kW	
50m	30.0000	1.80000kW	3.00000kW	4.50000kW	9.00000kW	18.0000kW	30.0000kW	

Active Power Range of a Wiring Unit with a 3P4W Wiring System

Curi	ent Range [A]	Voltage Range [V]						
Setting	Setting × CT ratio	0.75000	1.50000	3.00000	5.00000	7.5000	15.0000	
5m	10.0000	22.5000 W	45.0000 W	90.0000 W	150.0000 W	225.000 W	450.000 W	
12.5m	25.0000	56.2500 W	112.5000 W	225.000 W	375.000 W	562.500 W	1125.000 W	
25m	50.0000	112.5000 W	225.000 W	450.000 W	750.000 W	1125.000 W	2.25000kW	
50m	100.000	225.000 W	450.000 W	900.000 W	1500.000 W	2.25000kW	4.50000kW	
125m	250.000	562.500 W	1125.000 W	2.25000kW	3.75000kW	5.62500kW	11.25000kW	
250m	500.000	1125.000 W	2.25000kW	4.50000kW	7.50000kW	11.25000kW	22.5000kW	
500m	1.00000k	2.25000kW	4.50000kW	9.00000kW	15.00000kW	22.5000kW	45.0000kW	

CT preset: CT2000A (Input resistance: 1 Ω, CT ratio: 2000)

Current Range [A]		Voltage Range [V]						
Setting	Setting × CT ratio	30.0000	50.0000	75.000	150.000	300.000	500.000	
5m	10.0000	900.000 W	1500.000 W	2.25000kW	4.50000kW	9.00000kW	15.00000kW	
12.5m	25.0000	2.25000kW	3.75000kW	5.62500kW	11.25000kW	22.5000kW	37.5000kW	
25m	50.0000	4.50000kW	7.50000kW	11.25000kW	22.5000kW	45.0000kW	75.0000kW	
50m	100.000	9.00000kW	15.00000kW	22.5000kW	45.0000kW	90.0000kW	150.0000kW	
125m	250.000	22.5000kW	37.5000kW	56.2500kW	112.5000kW	225.000kW	375.000kW	
250m	500.000	45.0000kW	75.0000kW	112.5000kW	225.000kW	450.000kW	750.000kW	
500m	1.00000k	90.0000kW	150.0000kW	225.000kW	450.000kW	900.000kW	1500.000kW	

CT preset: CT1000A (Input resistance: 1 Ω, CT ratio: 1500)

Current Range [A]		Voltage Range [V]						
Setting	Setting × CT ratio	0.75000	1.50000	3.00000	5.00000	7.5000	15.0000	
5m	7.5000	16.87500 W	33.7500 W	67.5000 W	112.5000 W	168.7500 W	337.500 W	
12.5m	18.7500	42.1875 W	84.3750 W	168.7500 W	281.250 W	421.875 W	843.750 W	
25m	37.5000	84.3750 W	168.7500 W	337.500 W	562.500 W	843.750 W	1687.500 W	
50m	75.000	168.7500 W	337.500 W	675.000 W	1125.000 W	1687.500 W	3.37500kW	
125m	187.500	421.875 W	843.750 W	1687.500 W	2.81250kW	4.21875kW	8.43750kW	
250m	375.000	843.750 W	1687.500 W	3.37500kW	5.62500kW	8.43750kW	16.87500kW	
500m	0.75000k	1687.500 W	3.37500kW	6.75000kW	11.25000kW	16.87500kW	33.7500kW	

Current Range [A]		Voltage Range [V]						
Setting	Setting × CT ratio	30.0000	50.0000	75.000	150.000	300.000	500.000	
5m	7.5000	675.000 W	1125.000 W	1687.500 W	3.37500kW	6.75000kW	11.25000kW	
12.5m	18.7500	1687.500 W	2.81250kW	4.21875kW	8.43750kW	16.87500kW	28.1250kW	
25m	37.5000	3.37500kW	5.62500kW	8.43750kW	16.87500kW	33.7500kW	56.2500kW	
50m	75.000	6.75000kW	11.25000kW	16.87500kW	33.7500kW	67.5000kW	112.5000kW	
125m	187.500	16.87500kW	28.1250kW	42.1875kW	84.3750kW	168.7500kW	281.250kW	
250m	375.000	33.7500kW	56.2500kW	84.3750kW	168.7500kW	337.500kW	562.500kW	
500m	0.75000k	67.5000kW	112.5000kW	168.7500kW	337.500kW	675.000kW	1125.000kW	

Curi	rent Range [A]	Voltage Range [V]							
Setting	Setting × CT ratio	0.75000	1.50000	3.00000	5.00000	7.5000	15.0000		
3.33m	5.00000	11.25000 W	22.5000 W	45.0000 W	75.0000 W	112.5000 W	225.000 W		
8.33m	12.5000	28.1250 W	56.2500 W	112.5000 W	187.500 W	281.250 W	562.500 W		
16.7m	25.0000	56.2500 W	112.5000 W	225.000 W	375.000 W	562.500 W	1125.000 W		
33.3m	50.0000	112.5000 W	225.000 W	450.000 W	750.000 W	1125.000 W	2.25000kW		
83.3m	125.000	281.250 W	562.500 W	1125.000 W	1.87500kW	2.81250kW	5.62500kW		
167m	250.000	562.500 W	1125.000 W	2.25000kW	3.75000kW	5.62500kW	11.25000kW		
333m	500.000	1125.000 W	2.25000kW	4.50000kW	7.50000kW	11.25000kW	22.5000kW		

CT preset: CT1000 (Input resistance: 1.5 Ω , CT ratio: 1500)

Current Range [A]		Voltage Range [V]							
Setting	Setting × CT ratio	30.0000	50.0000	75.000	150.000	300.000	500.000		
3.33m	5.00000	450.000 W	750.000 W	1125.000 W	2.25000kW	4.50000kW	7.50000kW		
8.33m	12.5000	1125.000 W	1.87500kW	2.81250kW	5.62500kW	11.25000kW	18.7500kW		
16.7m	25.0000	2.25000kW	3.75000kW	5.62500kW	11.25000kW	22.5000kW	37.5000kW		
33.3m	50.0000	4.50000kW	7.50000kW	11.25000kW	22.5000kW	45.0000kW	75.0000kW		
83.3m	125.000	11.25000kW	18.7500kW	28.1250kW	56.2500kW	112.5000kW	187.500kW		
167m	250.000	22.5000kW	37.5000kW	56.2500kW	112.5000kW	225.000kW	375.000kW		
333m	500.000	45.0000kW	75.0000kW	112.5000kW	225.000kW	450.000kW	750.000kW		

CT preset: CT200 (Input resistance: 5 Ω, CT ratio: 1000)

Current Range [A]		Voltage Range [V]						
Setting	Setting × CT ratio	0.75000	1.50000	3.00000	5.00000	7.5000	15.0000	
2.5m	2.50000	5.62500 W	11.25000 W	22.5000 W	37.5000 W	56.2500 W	112.5000 W	
5m	5.00000	11.25000 W	22.5000 W	45.0000 W	75.0000 W	112.5000 W	225.000 W	
10m	10.0000	22.5000 W	45.0000 W	90.0000 W	150.0000 W	225.000 W	450.000 W	
25m	25.0000	56.2500 W	112.5000 W	225.000 W	375.000 W	562.500 W	1125.000 W	
50m	50.0000	112.5000 W	225.000 W	450.000 W	750.000 W	1125.000 W	2.25000kW	
100m	100.000	225.000 W	450.000 W	900.000 W	1500.000 W	2.25000kW	4.50000kW	

Current Range [A]		Voltage Range [V]						
Setting	Setting × CT ratio	30.0000	50.0000	75.000	150.000	300.000	500.000	
2.5m	2.50000	225.000 W	375.000 W	562.500 W	1125.000 W	2.25000kW	3.75000kW	
5m	5.00000	450.000 W	750.000 W	1125.000 W	2.25000kW	4.50000kW	7.50000kW	
10m	10.0000	900.000 W	1500.000 W	2.25000kW	4.50000kW	9.00000kW	15.00000kW	
25m	25.0000	2.25000kW	3.75000kW	5.62500kW	11.25000kW	22.5000kW	37.5000kW	
50m	50.0000	4.50000kW	7.50000kW	11.25000kW	22.5000kW	45.0000kW	75.0000kW	
100m	100.000	9.00000kW	15.00000kW	22.5000kW	45.0000kW	90.0000kW	150.0000kW	

CT preset: CT60 (Input resistance: 10 Ω, CT ratio: 600)

Cur	rent Range [A]	Voltage Range [V]						
Setting	Setting × CT ratio	0.75000	1.50000	3.00000	5.00000	7.5000	15.0000	
2.5m	1.50000	3.37500 W	6.75000 W	13.50000 W	22.5000 W	33.7500 W	67.5000 W	
5m	3.00000	6.75000 W	13.50000 W	27.0000 W	45.0000 W	67.5000 W	135.0000 W	
12.5m	7.5000	16.87500 W	33.7500 W	67.5000 W	112.5000 W	168.7500 W	337.500 W	
25m	15.0000	33.7500 W	67.5000 W	135.0000 W	225.000 W	337.500 W	675.000 W	
50m	30.0000	67.5000 W	135.0000 W	270.000 W	450.000 W	675.000 W	1350.000 W	

Curi	rent Range [A]		Voltage Range [V]				
Setting	Setting × CT ratio	30.0000	50.0000	75.000	150.000	300.000	500.000
2.5m	1.50000	135.0000 W	225.000 W	337.500 W	675.000 W	1350.000 W	2.25000kW
5m	3.00000	270.000 W	450.000 W	675.000 W	1350.000 W	2.70000kW	4.50000kW
12.5m	7.5000	675.000 W	1125.000 W	1687.500 W	3.37500kW	6.75000kW	11.25000kW
25m	15.0000	1350.000 W	2.25000kW	3.37500kW	6.75000kW	13.50000kW	22.5000kW
50m	30.0000	2.70000kW	4.50000kW	6.75000kW	13.50000kW	27.0000kW	45.0000kW

Appendix 5 Setting the Measurement Period

To make correct measurements on the instrument, you must set its measurement period properly.

There are two cases for setting the measurement period depending on the computing method (Measurement Method).

- When Measurement Method is set to Sync Source Period Average Setting the measurement period is necessary
- When Measurement Method is set to Digital Filter Average Setting the measurement period is not necessary.

These two cases are detailed below.

When Measurement Method Is Set to Sync Source Period Average

The instrument detects the period of the input signal selected using the measurement period setting. The measurement period is an integer multiple of this detected period. The instrument determines the measured values by averaging the data sampled in the measurement period. The input signal used to determine the measurement period is called the sync source.

The measurement period is automatically determined inside the instrument when you specify the sync source.

This computing method is called the sync source period average method. This method is effective for cases when the data update interval is short or for efficiently measuring low frequency signals.

You can select the sync source signal from the options listed below.

U1, I1, U2, I2, U3, I3, U4, I4, U5, I5, U6, I6, U7, I7, Ext Clk (external clock), Z Phase 1 (Ch D), Z Phase 3 (Ch H), None

* The available options vary depending on the installed elements.

For example, if the sync source for input element 1 is set to 11, an integer multiple of the period of 11 becomes the measurement period. By averaging the sampled data in this measurement period, the instrument computes the measured values for input element 1, such as U1, I1, and P1.

Deciding Whether to Use Voltage or Current Input as the Sync Source

Select input signals with stable input levels and frequencies (with little distortion) as sync sources. Correct measured values can only be obtained if the period of the sync source signal is detected accurately. On the instrument, display the frequency of the input signal that you have selected as the sync source, and confirm that the frequency is being measured correctly. The most suitable sync source is the input signal that is the most stable and that provides accurate measured results. For example, if a switching power supply is being measured and the voltage waveform distortion is smaller than the current waveform distortion, set the sync source to the voltage signal.

As another example, if an inverter is being measured and the current waveform distortion is smaller than the voltage waveform distortion, set the sync source to the current signal.

Period Detection

- The rising (or falling) cross point is the time when the sync source passes through the specified level (the center of the amplitude) on a rising (or falling) slope. The measurement period on the instrument is between the first rising (or falling) cross point and the last rising (or falling) cross point in the data update interval.
- The instrument determines whether to define the measurement period using the rising or falling cross point automatically by choosing the method that will result in the longest measurement period.

When the Period of the Sync Source Cannot Be Detected

If the total number of rising and falling zero crossings on the input signal that has been set as the sync source is less than two within the data update interval, the period cannot be detected. Also, the period cannot be detected if the AC amplitude is small. For information on the detection levels of the frequency measurement circuit, see "Conditions" under "Frequency Measurement Function" in section 6.7, "Features." In this situation, the entire data update interval is used to average the sampled data.

Because of the reasons described above, the measured voltage and current values may be unstable. If this happens, lower the data update interval so that more periods of the input signal fit within the data update interval.

When the Waveform of the Sync Source Is Distorted

Change the sync source to a signal that allows for more stable detection of the period (switch from voltage to current or from current to voltage). Also, turn on the frequency filter.

The instrument reduces the effects of noise by using hysteresis when it detects cross points. If the synchronization source is distorted or harmonics and noise are superposed on the signal to a level exceeding this hysteresis, harmonic components will cause cross point detection to occur frequently, and the cross point of the fundamental frequency will not be detected stably. Consequently, the measured voltage and current may be unstable. When high frequency components are superposed on the current waveform such as in the aforementioned inverter example, turn the frequency filter on to stably detect cross points. Use of the filter is appropriate if it makes the measured frequency accurate and more stable. In this way, the frequency filter also functions as a filter for detecting the cross points of the sync source.

When Measuring a Signal That Has No Cross Points Because of a DC Offset Superposed on the AC Signal

The measured values may be unstable if the period of the AC signal cannot be detected accurately. Change the sync source to a signal that allows for more stable detection of the period (switch from voltage to current or from current to voltage).

The AC coupling (high-pass filter) of the frequency detection circuit is turned on and off using Sync Source/Freq Measurement under Input (Advanced/Options). If you turn on the AC coupling (high-pass filter), even with AC signals in which there are no cross points because of an offset, the period can be detected if the AC amplitude is greater than or equal to the detection level of the frequency measurement circuit (see "Conditions" under "Frequency Measurement Function" in section 6.7, "Features").

With this feature, the measurement period is set to an integer multiple of the period of the AC signal.

When Measuring a DC Signal

When there are ripples in the DC signal, if the level of the ripples is greater than or equal to the detection level of the frequency measurement circuit (see the conditions listed under "Accuracy" under "Frequency Measurement" in section 6.7, "Features") and the period can be detected accurately and stably, a more accurate DC measurement is possible. If a large AC signal is superposed on a DC signal, you can achieve a more stable measurement by detecting the AC signal period and averaging it.

In addition, if a small fluctuating pulse noise riding on the DC signal crosses the specified level, that point is detected as a cross point. As a result, sampled data is averaged over an unintended period, and measured values such as voltage and current may be unstable. You can prevent these kinds of erroneous detections by setting the sync source to None.

All of the sampled data in the data update interval is used to determine measured values.

Unintended cross point caused by pulse noise

Set the sync source according to the signal under measurement and the measurement objective.

Setting the Synchronization Period When Measuring a Three-Phase Device

If a three-phase device is measured with input elements 1 and 2 using a three-phase three-wire system, set the sync source of input elements 1 and 2 to the same signal. For example, set the sync source of input elements 1 and 2 to U1 or I1. The measurement periods of input elements 1 and 2 will match, and it will be possible to measure the Σ voltage, Σ current, and Σ power of a three-phase device more accurately.

Likewise, if a three-phase device is measured with input elements 1, 2, and 3 using a three-phase four-wire system, set the sync source of input elements 1, 2, and 3 to the same signal. To facilitate this sort of configuration, the synchronization source setting on the instrument is linked to the Σ wiring unit of the wiring system (when independent input element configuration is turned off). If independent input element configuration is turned on, the synchronization source of each input element in the Σ wiring unit can be set independently.

Setting the Synchronization Period When Measuring the Efficiency of a Power Transformer

(1) Power Transformer with Single-Phase Input and Single-Phase Output

If you are using input elements 1 and 2 to measure a device that converts single-phase AC power to single-phase DC power, set the sync source of input elements 1 and 2 to the voltage (or current) on the AC power end. In the example shown in the figure below, set the sync source of input elements 1 and 2 to U1 (or I1).

The measurement periods of input element 1 (input end) and input element 2 (output end) will match, and it will be possible to measure the power conversion efficiency at the input and output ends of the power transformer more accurately.

Input element 2

Likewise, if you are using input elements 1 (DC end) and 2 (AC end) to measure a device that converts single-phase DC power to single-phase AC power, set the sync source of input elements 1 and 2 to the voltage (or current) on the AC power end (input element 2). In the example shown in the figure below, set the sync source of input elements 1 and 2 to U2 (or I2).

U1 (or I1)

(2) Power Transformer with Single-Phase DC Input and Three-Phase AC Output

If you are using the connections shown on the next page to measure a device that converts single-phase DC power to three-phase AC power, set the sync source of all input elements to the same signal: the voltage or current of element 2 or 3 on the AC power end. In this example, set the sync source of input elements 1, 2, and 3 to U2 (or I2, U3, or I3). The measurement periods of the input signal and all output signals will match, and it will be possible to measure the power conversion efficiency of the power transformer more accurately.

- Single-phase DC power: Connect to input element 1.
- Three-phase AC power: Connect to input elements 2 and 3 using a three-phase three-wire system.

Appendix 5 Setting the Measurement Period

(3) Power Transformer with Single-Phase AC Input and Three-Phase AC Output

If you are using the connections shown in the figure below to measure a device that converts single-phase AC power to three-phase AC power, set the sync source of input elements on the input end to the same signal and do the same for input elements on the output end. In this example, set the sync source of input element 1 to U1 (or I1), and set the sync source of input elements 2 and 3 to U2 (or I2, U3, or I3).

In this case, AC signals of different frequencies are measured. If the sync source of all input elements is set to the same signal, the measurement period of either the input signal or the output signal will not be an integer multiple of the signal.

- Single-phase AC power: Connect to input element 1.
- Three-phase AC power: Connect to input elements 2 and 3 using a three-phase three-wire system.

Note.

The measurement period for determining the numeric data of the peak voltage or peak current is the
entire span of the data update interval, regardless of the measurement period settings discussed above.
Therefore, the measurement period for the measurement functions that are determined using the
maximum voltage or current value (U+pk, U-pk, I+pk, I-pk, CfU, and CfI) is also the entire span of the data
update interval.

• For details on the measurement period for measurement functions related to harmonic measurement, see "Measurement Period (Sync Source)" in chapter 3, "Input Settings (Basic Measurement Conditions)," of the Features Guide, IM WT5000-01EN.

When Measurement Method Is Set to Digital Filter Average

Measured values are determined by applying a digital filter on all sampled data and computing the averages, regardless of the data update interval. This computing method is called the digital filter method. With this method, the measurement period is not affected by the input signal period or the sync source settings. As such, there is no need to detect the input signal period. In addition, the measurement period is always the same on all input elements. If aligning the measurement period between the input and output is difficult as shown in the earlier example in "(3) Power Transformer with Single-Phase AC Input and Three-Phase AC Output," we recommend using this method. This method, in principle, is free of period detection errors and the like and provides highly stable measurements.

Appendix 6 User-Defined Function Operands

The following is a list of operands that can be used in user-defined functions.

Measurement Function User-Defined Function Parameter in () Element Wiring Unit SA to SC Example E1 to E7 Urms URMS() URMS(E1) Yes Yes Umn UMN() UMN(E1) Yes Yes UDC() Udc UDC(E1) Yes Yes Urmn URMN() URMN(E1) Yes Yes UAC() UAC(E1) Uac Yes Yes Ufnd Yes UFND() UFND(E1) Yes IRMS() IRMS(E1) Yes Irms Yes IMN(E1) Imn IMN() Yes Yes ldc IDC() IDC(E1) Yes Yes Irmn IRMN() IRMN(E1) Yes Yes lac IAC() IAC(E1) Yes Yes lfnd IFND() IFND(E1) Yes Yes P() Р P(E1) Yes Yes S S() S(E1) Yes Yes Q Q() Q(E1) Yes Yes LAMBDA() LAMBDA(E1) Yes Yes λ Φ PHI() PHI(E1) Yes Yes Pfnd PFND(PFND(E1) Yes Yes SFND(E1) Yes Sfnd SFND() Yes QFND() QFND(E1) Qfnd Yes Yes LAMBDAFND() λfnd LAMBDAFND(E1) Yes Yes Φfnd PHIFND() PHIFND(E1) Yes No FU() fU FU(E1) Yes No fl FI() FI(E1) Yes No f2U F2U() F2U(E1) Yes No f2I F2I() F2I(E1) Yes No U+pk UPPK() UPPK(E1) No Yes UMPK() UMPK(E1) U-pk Yes No IPPK() IPPK(E1) l+pk Yes No IMPK() IMPK(E1) Yes l-pk No P+pk PPPK() PPPK(E1) Yes No P-pk PMPK() PMPK(E1) Yes No CfU CFU() CFU(E1) Yes No Cfl CFI() CFI(E1) Yes No Pc PC() PC(E1) Yes Yes

Measurement Functions Used in Normal Measurement

Integrated Power (Watt hour)

Measurement Function	User-Defined Function		Parameter in ()		
			Element	Wiring Unit	
		Example	E1 to E7	SA to SC	
Wp	WH()	WH(E1)	Yes	Yes	
Wp+	WHP()	WHP(E1)	Yes	Yes	
Wp-	WHM()	WHM(E1)	Yes	Yes	
q	AH()	AH(E1)	Yes	Yes	
q+	AHP()	AHP(E1)	Yes	Yes	
q-	AHM()	AHM(E1)	Yes	Yes	
WS	SH()	SH(E1)	Yes	Yes	
WQ	QH()	QH(E1)	Yes	Yes	
ITime	ITIME()	ITIME(E1)	Yes	No	

Efficiency

Measurement Function	User-Defin	ed Function	Parameter in ()
		Example	
η1	ETA1()	ETA1()	None or space*
η2	ETA2()	ETA2()	None or space*
η3	ETA3()	ETA3()	None or space*
η4	ETA4()	ETA4()	None or space*

* You cannot omit the parentheses.

User-Defined Function

Measurement Function	User-Defined Function		Parameter in ()
		Example	
F1	F1()	F1()	None or space*
F2	F2()	F2()	None or space*
F3	F3()	F3()	None or space*
F4	F4()	F4()	None or space*
F5	F5()	F5()	None or space*
F6	F6()	F6()	None or space*
F7	F7()	F7()	None or space*
F8	F8()	F8()	None or space*
F9	F9()	F9()	None or space*
F10	F10()	F10()	None or space*
F11	F11()	F11()	None or space*
F12	F12()	F12()	None or space*
F13	F13()	F13()	None or space*
F14	F14()	F14()	None or space*
F15	F15()	F15()	None or space*
F16	F16()	F16()	None or space*
F17	F17()	F17()	None or space*
F18	F18()	F18()	None or space*
F19	F19()	F19()	None or space*
F20	F20()	F20()	None or space*

* You cannot omit the parentheses.

User-defined equations cannot use other user-defined equations with larger numbers as operands.

MAX Hold

Measurement Function	User-Defined Function		Parame	eter in ()	
			Element	Wiring Unit	
		Example	E1 to E7	SA to SC	
Rms voltage	MAXURMS()	MAXURMS(E1)	Yes	Yes	
Voltage mean	MAXUMN()	MAXUMN(E1)	Yes	Yes	
Voltage simple average	MAXUDC()	MAXUDC(E1)	Yes	Yes	
Voltage rectified mean	MAXURMN()	MAXURMN(E1)	Yes	Yes	
value					
Voltage AC component	MAXUAC()	MAXUAC(E1)	Yes	Yes	
Rms current	MAXIRMS()	MAXIRMS(E1)	Yes	Yes	
Current mean	MAXIMN()	MAXIMN(E1)	Yes	Yes	
Current simple average	MAXIDC()	MAXIDC(E1)	Yes	Yes	
Current rectified mean	MAXIRMN()	MAXIRMN(E1)	Yes	Yes	
value					
Current AC component	MAXIAC()	MAXIAC(E1)	Yes	Yes	
Active power	MAXP()	MAXP(E1)	Yes	Yes	
Apparent power	MAXS()	MAXS(E1)	Yes	Yes	
Reactive power	MAXQ()	MAXQ(E1)	Yes	Yes	
Positive peak voltage	MAXUPPK()	MAXUPPK(E1)	Yes	No	
Negative peak voltage	MINUMPK()	MINUMPK(E1)	Yes	No	
Positive peak current	MAXIPPK()	MAXIPPK(E1)	Yes	No	
Negative peak current	MINIMPK()	MINIMPK(E1)	Yes	No	
Positive peak power	MAXPPPK()	MAXPPPK(E1)	Yes	No	
Negative peak power	MINPMPK()	MINPMPK(E1)	Yes	No	

Motor Evaluation Option

Measurement Function	User-Defined Function		Parameter in ()
			Motor
		Example	M1 to M4
Speed	SPEED()	SPEED(M1)	Yes
Torque	TORQUE()	TORQUE(M1)	Yes
Pm	PM()	PM(M1)	Yes
Slip	SLIP()	SLIP(M1)	Yes
SyncSp	SYNC()	SYNC(M1)	Yes

Auxiliary Input Option

Measurement Function	User-Define	ed Function	Parameter in ()
		Example	
Aux1	AUX1()	AUX1()	None or space*
Aux2	AUX2()	AUX2()	None or space*
Aux3	AUX3()	AUX3()	None or space*
Aux4	AUX4()	AUX4()	None or space*
Aux5	AUX5()	AUX5()	None or space*
Aux6	AUX6()	AUX6()	None or space*
Aux7	AUX7()	AUX7()	None or space*
Aux8	AUX8()	AUX8()	None or space*

* You cannot omit the parentheses.

Measurement Function	User-Defi	ned Function	Parameter in ()		
			Element	Wiring Unit	
		Example	E1 to E7	SA to SC	
ΔU1()	DELTAU1()	DELTAU1(SA)	No	Yes	
ΔU2()	DELTAU2()	DELTAU2(SA)	No	Yes	
ΔU3()	DELTAU3()	DELTAU3(SA)	No	Yes	
ΔυΣ()	DELTAUSIG()	DELTAUSIG(SA)	No	Yes	
ΔΙ()	DELTAI()	DELTAI(SA)	No	Yes	
ΔΡ1()	DELTAP1()	DELTAP1(SA)	No	Yes	
ΔΡ2()	DELTAP2()	DELTAP2(SA)	No	Yes	
ΔΡ3()	DELTAP3()	DELTAP3(SA)	No	Yes	
ΔΡΣ()	DELTAPSIG()	DELTAPSIG(SA)	No	Yes	
ΔU1rms()	DELTAU1RMS()	DELTAU1RMS(SA)	No	Yes	
ΔU2rms()	DELTAU2RMS()	DELTAU2RMS(SA)	No	Yes	
ΔU3rms()	DELTAU3RMS()	DELTAU3RMS(SA)	No	Yes	
ΔUΣrms()	DELTAUSIGRMS()	DELTAUSIGRMS(SA)	No	Yes	
ΔU1mean()	DELTAU1MN()	DELTAU1MN(SA)	No	Yes	
ΔU2mean()	DELTAU2MN()	DELTAU2MN(SA)	No	Yes	
ΔU3mean()	DELTAU3MN()	DELTAU3MN(SA)	No	Yes	
ΔUΣmean()	DELTAUSIGMN()	DELTAUSIGMN(SA)	No	Yes	
ΔU1rmean()	DELTAU1RMN()	DELTAU1RMN(SA)	No	Yes	
ΔU2rmean()	DELTAU2RMN()	DELTAU2RMN(SA)	No	Yes	
ΔU3rmean()	DELTAU3RMN()	DELTAU3RMN(SA)	No	Yes	
ΔUΣrmean()	DELTAUSIGRMN()	DELTAUSIGRMN(SA)	No	Yes	
ΔU1dc()	DELTAU1DC()	DELTAU1DC(SA)	No	Yes	
ΔU2dc()	DELTAU2DC()	DELTAU2DC(SA)	No	Yes	
ΔU3dc()	DELTAU3DC()	DELTAU3DC(SA)	No	Yes	
ΔUΣdc()	DELTAUSIGDC()	DELTAUSIGDC(SA)	No	Yes	
ΔU1ac()	DELTAU1AC()	DELTAU1AC(SA)	No	Yes	
ΔU2ac()	DELTAU2AC()	DELTAU2AC(SA)	No	Yes	
ΔU3ac()	DELTAU3AC()	DELTAU3AC(SA)	No	Yes	
ΔUΣac()	DELTAUSIGAC()	DELTAUSIGAC(SA)	No	Yes	
ΔIrms()	DELTAIrms()	DELTAIRMS(SA)	No	Yes	
ΔImean()	DELTAIMN()	DELTAIMN(SA)	No	Yes	
ΔIrmean()	DELTAIRMN()	DELTAIRMN(SA)	No	Yes	
Δldc()	DELTAIDC()	DELTAIDC(SA)	No	Yes	
Δlac()	DELTAIAC()	DELTAIAC(SA)	No	Yes	

Delta Computation

Delta Harmonic Computation

Measurement Function	User-Defined Function		Parame	ter in ()
			Element	Wiring Unit
		Example	E1 to E7	SA to SC
Delta harmonic voltage 1 fundamental wave	DELTAU1F()	DELTAU1F(SA)	No	Yes
Delta harmonic voltage 2 fundamental wave	DELTAU2F()	DELTAU2F(SA)	No	Yes
Delta harmonic voltage 3 fundamental wave	DELTAU3F()	DELTAU3F(SA)	No	Yes
Delta harmonic voltage Σ fundamental wave	DELTAUSIGF()	DELTAUSIGF(SA)	No	Yes
Delta harmonic power 1 fundamental wave	DELTAP1F()	DELTAP1F(SA)	No	Yes
Delta harmonic power 2 fundamental wave	DELTAP2F()	DELTAP2F(SA)	No	Yes
Delta harmonic power 3 fundamental wave	DELTAP3F()	DELTAP3F(SA)	No	Yes
Delta harmonic power Σ fundamental wave	DELTAPSIGF()	DELTAPSIGF(SA)	No	Yes

Delta harmonic computation can be used for ΣA and ΣB (NAN is output constantly for ΣC).

Measurement	nt User-Defined Function		Left Parameter in (,)		Right Parameter in (,)			
Function			or Parame	eter in ()				
			Element	Wiring			Harmonics	
				Unit	Total Value	DC	Fundamental Wave	Harmonics
		Example	E1 to E7	SA to SC	ORT	OR0	OR1	OR2 to
		Example			•	0.10		OR100(500)
U_k	UK(,)	UK(E1,OR3)	Yes	Yes	Yes	Yes	Yes	Up to OR500
I_k	IK(,)	IK(E1,OR3)	Yes	Yes	Yes	Yes	Yes	Up to OR500
P_k	PK(,)	PK(E1,OR3)	Yes	Yes	Yes	Yes	Yes	Up to OR500
S_k	SK(,)	SK(E1,OR3)	Yes	Yes	Yes	Yes	Yes	Up to OR100
Q_k	QK(,)	QK(E1,OR3)	Yes	Yes	Yes	Yes	Yes	Up to OR100
λ_k	LAMBDAK(,)	LAMBDAK(E1,OR3)	Yes	Yes	Yes	Yes	Yes	Up to OR100
Ф_k	PHIK(,)	PHIK(E1,OR3)	Yes	No	Yes	No	Yes	Up to OR500
ΦU	UPHI(,)	UPHI(E1,OR3)	Yes	No	No	No	No	Up to OR500
ФІ	IPHI(,)	IPHI(E1,OR3)	Yes	No	No	No	No	Up to OR500
Z	ZK(,)	ZK(E1,OR3)	Yes	No	No	Yes	Yes	Up to OR100
Rs	RSK(,)	RSK(E1,OR3)	Yes	No	No	Yes	Yes	Up to OR100
Xs	XSK(,)	XSK(E1,OR3)	Yes	No	No	Yes	Yes	Up to OR100
Rp	RPK(,)	RPK(E1,OR3)	Yes	No	No	Yes	Yes	Up to OR100
Хр	XPK(,)	XPK(E1,OR3)	Yes	No	No	Yes	Yes	Up to OR100
Uhdf	UHDF(,)	UHDF(E1,OR3)	Yes	No	No	Yes	Yes	Up to OR500
lhdf	IHDF(,)	IHDF(E1,OR3)	Yes	No	No	Yes	Yes	Up to OR500
Phdf	PHDF(,)	PHDF(E1,OR3)	Yes	No	No	Yes	Yes	Up to OR500
Uthd	UTHD()	UTHD(E1)	Yes	No				/
lthd	ITHD()	ITHD(E1)	Yes	No				
Pthd	PTHD()	PTHD(E1)	Yes	No				
Uthf	UTHF()	UTHF(E1)	Yes	No				
lthf	ITHF()	ITHF(E1)	Yes	No				
Utif	UTIF()	UTIF(E1)	Yes	No				
ltif	ITIF()	ITIF(E1)	Yes	No			/	
hvf	HVF()	HVF(E1)	Yes	No				
hcf	HCF()	HCF(E1)	Yes	No				
K-factor	KFACT()	KFACT(E1)	Yes	No				
EaM1U*	EAM1U()	EAM1U(E1)	Yes	No				
EaM1I*	EAM1I()	EAM1I(E1)	Yes	No				
EaM3U*	EAM3U()	EAM3U(E1)	Yes	No		,		
EaM3I*	EAM3I()	EAM3I(E1)	Yes	No				
FreqPLL1	PLLFRQ1()	PLLFRQ1()	No	No				
FreqPLL2	PLLFRQ2()	PLLFRQ2()	No	No				
ΦU1-U2	PHIU1U2()	PHIU1U2(SA)	No	Yes	/	/		
ΦU1-U3	PHIU1U3()	PHIU1U3(SA)	No	Yes				
ΦU1-I1	PHIU1I1()	PHIU1I1(SA)	Yes	Yes				
ΦU2-I2	PHIU2I2()	PHIU2I2(SA)	No	Yes				
ФU3-I3	PHIU3I3()	PHIU3I3(SA)	No	Yes	/			

Harmonic Measurement:

* Available on models with the motor evaluation function (option)

Measuring Range

Measurement Function	User-Defined Function		Parameter in ()
		Example	
RngU	RNGU()	RNGU(E1)	E1 to E7 (element)
Rngl	RNGI()	RNGI(E1)	E1 to E7 (element)
RngSpd ¹	RNGSPD()	RNGSPD(M1)	M1 to M4 (motor)
RngTrq ¹	RNGTRQ()	RNGTRQ(M1)	M1 to M4 (motor)
RngAux ¹	RNGAUX1()	RNGAUX1()	None or space ²
	~RNGAUX8()	~RNGAUX8()	

1 Available on models with the motor evaluation function (option)

2 You cannot omit the parentheses.

Appendix 7 USB Keyboard Key Assignments

104 Keyboard (US)

	When the Ctrl Key Is Held Down on the USB Keyboard	When the Soft Keyboard Is Displayed on the instrument		Other
Key			+Shift on the USB Keyboard	
a	SETUP LOAD menu	а	А	
b	STORE REC	b	В	
с	Execute CAL	с	С	
d	Execute HOLD	d	D	
е	STORE END	е	E	
f	DATA SAVE menu	f	F	
g	INTEGRATION menu	g	G	
h	SETUP SAVE menu	h	н	
i		i	I	
j	Execute NULL	j	J	
k	STORE PAUSE	k	К	
I	NUMERIC UPPER	I	L	
m	NUMERIC LOWER	m	М	
n	NUMERIC FULL	n	Ν	
0	CUSTOM	0	0	
р	INTEGRATION STOP	р	Р	
q	INTEGRATION START	q	Q	
r	INTEGRATION RESET	r	R	
s	SETUP menu	s	S	
t	STORE menu	t	т	
u	GRAPH UPPER	u	U	
v	GRAPH LOWER	v	v	
w	GRAPH FULL	w	W	
x	TOUCH LOCK	x	х	
у	KEY LOCK	У	Y	
z	Execute SINGLE	Z	Z	
1		1	!	
2		2	@	
3		3	#	
4		4	\$	
5		5	%	
6		6	^	
7		7	&	
8		8	*	
9		9	(
0		0)	
Enter	Execute SET	Enter	Same as left	Execute SET
Esc	Execute ESC	Escape	Same as left	Execute ESC
Back Space		Back Space	Same as left	
Tab				
Space Bar		Space	Same as left	
•		``	to	
-		-	=	
=		=	+	
ſ		[{	
1]	}	
N		Λ		
;		;	:	
,		,	<	
	UTILITY menu		>	
1	Execute Help	1	?	
Caps Lock				

: No feature is assigned to the key.

Appendix 7 USB Keyboard Key Assignments

Kov	When the Ctrl Key Is Held Down on the USB Keyboard	When the Soft Keyboard on the instrument	l Is Displayed	Oth	er
Rey			+Shift on the		
F1	Execute VOLTAGE RANGE UP		USB Reyboard	ELEME	INTS 1
F2	Execute VOLTAGE RANGE DOWN	Move cursor to the left	Same as left	ELEME	ENTS 2
F3		Move cursor to the right	Same as left	ELEME	ENTS 3
F4	Execute VOLTAGE RANGE AUTO	Back Space	Same as left	ELEME	ENTS 4
F5	Execute CURRENT RANGE UP	All Clear	Same as left	ELEME	ENTS 5
F6	Execute CURRENT RANGE DOWN	Enter	Same as left	ELEME	ENTS 6
F7		History	Same as left	ELEME	ENTS 7
F8	Execute CURRENT RANGE AUTO			OPT	ONS
F9					
F10					
F11		μ	Same as left		
F12		Ω	Same as left		
Print Screen	Execute DATA SAVE EXEC				
Scroll Lock					
Pause					
Insert					
Home					
Page Up	Execute Page Up*			Execute	Page Up*
Delete					
End					
Page Down	Execute Page Down*			Execute Pa	age Down*
→	Move cursor to the right	Move cursor to the right	Same as left	Move curso	r to the right
-	Move cursor to the left	Move cursor to the left	Same as left	Move curso	or to the left
¥	Move cursor down			Move cur	sor down
1	Move cursor up			Move cu	ırsor up
Numeric	When the Ctrl Key Is Held Down on the USB Keyboard	When the Soft Keyboar on the instrument	d Is Displayed	Other	
keypad			+Shift on the USB Keyboard		+Shift on the USB Keyboard
Num Lock					
/		Ι	Same as left		
*		*	Same as left		
-		-	Same as left		
+		+	Same as left		
Enter	Execute SET	Enter	Same as left		Execute SET
1		1			
2	Move cursor down	2			Move cursor down
3	Execute Page Down*	3			Execute Page Down*
4	Move cursor to the left	4	Move cursor to the left		Move cursor to the left
5		5			
6	Move cursor to the right	6	Move cursor to the right		Move cursor to the right
7	* Full screen display or the	ton half of the e	nlit display		
8	Move cursor up		pint diopidy		Move cursor up
9	•Executions of the second seco	rage ug/down			Execute Page Up*

: No feature is assigned to the key.

• Graph display: Display page (Group) up/down

0

109 Keyboard (Japanese)

Kov	When the Ctrl Key Is Held Down on the USB Keyboard	When the Soft Keybo on the instrument	ard Is Displayed	Other
Key			+Shift on the USB Keyboard	
а	SETUP LOAD menu	а	А	
b	STORE REC	b	В	
с	Execute CAL	с	С	
d	Execute HOLD	d	D	
е	STORE END	е	E	
f	DATA SAVE menu	f	F	
g	INTEGRATION menu	g	G	
h	SETUP SAVE menu	h	н	
i		i	I	
j	Execute NULL	j	J	
k	STORE PAUSE	k	к	
I	NUMERIC UPPER	I	L	
m	NUMERIC LOWER	m	М	
n	NUMERIC FULL	n	N	
0	CUSTOM	0	0	
р	INTEGRATION STOP	р	Р	
q	INTEGRATION START	q	Q	
r	INTEGRATION RESET	r	R	
s	SETUP menu	s	S	
t	STORE menu	t	т	
u	GRAPH UPPER	u	U	
v	GRAPH LOWER	v	v	
w	GRAPH FULL	w	w	
x	TOUCH LOCK	x	х	
у	KEY LOCK	у	Y	
z	Execute SINGLE	z	Z	
1		1	!	
2		2		
3		3	#	
4		4	\$	
5		5	%	
6		6	&	
7		7	•	
8		8	(
9		9)	
0		0		
Enter	Execute SET	Enter	Same as left	Execute SET
Esc	Execute ESC	Escape	Same as left	Execute ESC
BS		Back Space	Same as left	
Tab				
Space		Space	Same as left	
-		-	=	
^		^	to	
١		١		
@		@		
[[{	
;		;	+	
:		:	*	
1		1	}	
,		,	<	
· ·	UTILITY menu		>	
1	Execute Help	1	?	
\ \		\		
Caps Lock				

: No feature is assigned to the key.

Appendix 7 USB Keyboard Key Assignments

Kov	When the Ctrl Key Is Held Down on the USB Keyboard	When the Soft Keyboa the instrument	ard Is Displayed on	Oti	ner
			+Shift on the USB Keyboard		
F1	Execute VOLTAGE RANGE UP			ELEM	ENTS 1
F2	Execute VOLTAGE RANGE DOWN	Move cursor to the left	Same as left	ELEM	ENTS 2
F3		Move cursor to the right	Same as left	ELEM	ENTS 3
F4	Execute VOLTAGE RANGE AUTO	Back Space	Same as left	ELEM	ENTS 4
F5	Execute CURRENT RANGE UP	All Clear	Same as left	ELEM	ENTS 5
F6	Execute CURRENT RANGE DOWN	Enter	Same as left	ELEM	ENTS 6
F7		History	Same as left	ELEM	ENTS 7
F8	Execute CURRENT RANGE AUTO			OPT	IONS
F9					
F10					
F11		μ	Same as left		
F12		Ω	Same as left		
Print Screen	Execute DATA SAVE EXEC				
Scroll Lock					
Pause					
Insert					
Home					
Page Up	Execute Page Up*			Execute	Page Up*
Delete					
End					
Page Down	Execute Page Down*			Execute P	age Down*
	Move cursor to the right	Move cursor to the right	Same as left	Move curso	r to the right
-	Move cursor to the left	Move cursor to the left	Same as left	Move curs	or to the left
¥	Move cursor down			Move cu	rsor down
1	Move cursor up			Move c	ursor up
		1			
Numeric	When the Ctrl Key Is Held Down on the USB Keyboard	When the Soft Keyboa the instrument	rd Is Displayed on	Oti	ner
кеурац			+Shift on the		+Shift on the
			00B Reyboard		USB Reyboard
Num Lock		,			
/		/	Same as left		
^			Same as left		
-			Same as left		
+	E LA CET	+	Same as left		
Enter	Execute SEI	Enter	Same as left		Execute SET
1		1			
2	Move cursor down	2			Move cursor down
3	Execute Page Down*	3			Execute Page Down*
4	Move cursor to the left	4	Move cursor to the left		Move cursor to the left
5		5			
6	Move cursor to the right	6	Move cursor to the right		Move cursor to the right
7		7			
8	Move cursor up	8			Move cursor up
9	Execute Page Up*	9			Execute Page Up*
0		0			

: No feature is assigned to the key.

* Full screen display or the top half of the split display

- Numeric data display: Page up/down
- Graph display: Display page (Group) up/down

Factory Default Settings (Example for a model with seven input elements installed)

The default settings vary depending on the number of installed input elements and what options are installed.

Measurement Mode

Item	Setting
Measurement Mode	Normal

Input (Basic)

Item	Setting			
Wiring	1P2W			
Voltage Range	1000V			
Auto	OFF			
760901, 760902		760903		
ltem	Setting	Item	Setting	
Current Range	760901:30A	Current Rang	e 760903:1A	
	760902:5A			
Auto	OFF	Auto	OFF	
Ext Sensor	OFF	Terminal	Sensor	
Sensor Preset	Others	CT Preset	Custom	
Sensor Ratio	10.0000	Input Resis	tance 1Ω	
		Scaling	OFF	
		CT Ratio	1.0000	
Scaling	OFF	Scaling	OFF	
VT Ratio	1.0000	VT Ratio	1.0000	
CT Preset	Others	CT Preset	Others	
CT Ratio	1.0000	CT Ratio	1.0000	
SF Ratio	1.0000	SF Ratio	1.0000	
Itom	Sotting			
Item	When the mean	romant mada ia V	When the measurement m	ada ia IEC Eliakar
	Normal			
	IFC Harmonic			
Line Filter	OFF	0)N*	
Cutoff	0.5kHz	1	0.0kHz	
Freg Filter	OFF	C	DN*	
Cutoff	0.1kHz	1	.0kHz	
Sync Source	Element1: I1*			
,	Element2: I2*			
	Element3: I3*			
	Element4: I4*			
	Element5: I5*			
	Element6: I6*			
	Element7: I7*			

* When the measurement mode is IEC Harmonic, Sync Source setting is invalid.

Input (Advanced/Options)

Wiring	

5			
Item	Setting		
Wiring	1P2W		
	760901, 760902	760903	
Ext Sensor	OFF	-	
Terminal	-	Sensor	

Range

- J -		
Item	Setting	
Crest Factor	CF3	
Range Σ Link	ON	
Current Range Display Format Direct		

Range Config

Item	Setting
Valid Measurement Range	All measurement ranges: Checking available
Peak Over Jump	OFF

Line Filter

Item	Setting	
	When the measurement mode is	When the measurement mode is IEC Flicker
	Normal	
	IEC Harmonic	
Line Filter Advanced Settings	OFF	OFF*
Line Filter Type	Butterworth	Butterworth*
Line Filter	OFF	ON*
Cutoff	0.5 kHz	10.0 kHz

* A fixed value. It cannot be changed.

Freq Filter/Rectifier/Level

Item	Setting	
	When the measurement mode is Normal 	When the measurement mode is IEC Flicker
	IEC Harmonic	
Sync Source/		
Freq Measurement		
Freq Filter Advanced	OFF	OFF*
Settings		
HPF		
Freq Filter (0.1Hz)	ON	OFF*
LPF		
Freq Filter	OFF	ON*
Cutoff	0.1 kHz	1.0 kHz
Freq2 Measurement		
HPF		
Freq Filter (Freq2)	OFF	
Cutoff	0.1 Hz	
Level		
Voltage Level (Freq2)	0.0%	
Current Level (Freq2)	0.0%	

* A fixed value. It cannot be changed.

Null	
Item	Setting
Null	OFF
Control Target	All items: Checking available U1 to U7, I1 to I7,
	Speed1 and 2 ⁺ , Torque1 and 2 ⁺ , Speed3 and 4 ² , Torque3 and 4 ² , Aux1 to Aux4 ¹ , Aux5 to Aux8 ²
Null Value Update	New

1 Available on models with the motor evaluation function 1 (option)

2 Available on models with the motor evaluation function 2 (option)

Motor/Aux				
Item	Setting			
MTR Configuration	Single Motor(Speed: Pulse)			
Ch Settings				
	Torque	Speed	Pm	
Scaling	1.0000	1.0000	1.0000	
Unit	Nm	rpm	W	
Sense Type	Analog	Pulse		
Analog Auto Range	OFF	_		
Analog Range	20V	_		
Linear Scale A	1.000	_		
Linear Scale B	0.000	_		
Calculation		_		
Point1X	1.000V	_		
Point1Y	1.000Nm	_		
Point2X	-1.000V	_		
Point2Y	-1.000Nm	_		
Line Filter	OFF	_		
Pulse Noise Filter	_	OFF		
Sync Source	None	None		
Pulse Range Upper	_	10000.0000		
Pulse Range Lower	_	0.0000		
Rated Upper	_			
Rated Freq (Upper)	_			
Rated Lower	_			
Rated Freq (Lower)	_			
Pulse N(Speed)		60		
Sync Speed				
Pole	2			
Source	11			
Electrical Angle Measurement	OFF			
Harmonics Trigger	Hrm1, Hrm2: Z Phase1(ChD)			
Electrical Angle	0.00			
Correction				
Auto Enter Correction	U1			
Target				

Sensor Correction

Item	Setting
Current Amplitude Correction	OFF
Correction Ratio	1.000000
Current Phase Correction	OFF
Frequency	60 Hz
Phase Difference Between I/O	0.000°
Time Difference Between I/O	0.000s

Computation/Output

Efficiency		
Item	Setting	
η1	ΡΣΒ/ΡΣΑ	
η2	ΡΣΑ/ΡΣΒ	
η3	OFF/OFF	
η4	OFF/OFF	
Udef1	P1+None+None	
Udef2	P1+None+None	

∆ Measure

Item	Setting	
ΔMeasure Type	-	
∆Measure Mode	rms	

Update Rate/Averaging			
Item	Setting		
Update Rate			
Update Mode	Constant		
Update Rate	500ms		
Measurement Method	Sync Source Period Average		
Trigger			
Mode	Auto		
Source	U1		
Slope	Rise		
Level	0.0%		
Averaging			
Averaging	OFF		
Averaging Type	Exp.		
Averaging Count	2		

Harmonics (Mode other than IEC harmonic mode)

Item	Setting
Element Settings	Element1 to Element7: Hrm1
PLL Source	U1
Min Order	1
Max Order	100
Thd Formula	1/Total
FFT Points	1024

Harmonics (IEC harmonic mode)

Item	Setting
Object	Element1
PLL Source	U1
Min Order	1
Max Order	100
Thd Formula	1/Total
IEC 61000-4-7	Edition 2.0
U Grouping	OFF
I Grouping	OFF

Measure						
Item	Setting					
User Defined Functions	ON/OFF	Name	Expressio	n		Unit
Function1	OFF	Avg-W	WH(E1)/(ITIME(E1)/3600)		W	
Function2	OFF	P-loss	P(E1)-P(E2)		W	
Function3	OFF	U-ripple	(UPPK(E1)-UMPK(E1))/	2/UDC(E1)*100	%
Function4	OFF	I-ripple	(IPPK(E1)	-IMPK(E1))/2/	IDC(E1)*100	%
Function5	OFF	D-UrmsR	DELTAU1	RMS(SA)		V
Function6	OFF	D-UrmsS	DELTAU2	RMS(SA)		V
Function7	OFF	D-UrmsT	DELTAU3	RMS(SA)		V
Function8	OFF	D-UmnR	DELTAU1I	MN(SA)		V
Function9	OFF	D-UmnS	DELTAU2I	MN(SA)		V
Function10	OFF	D-UmnT	DELTAU3I	MN(SA)		V
Function11	OFF	PhiU3-U2	360-PHIU	1U3(SA)+PHI	J1U2(SA)	degree
Function12	OFF	Phil1-l2	PHIU1I2(S	SA)-PHIU1I1(S	SA)	degree
Function13	OFF	Phil2-I3	PHIU3I3(S	SA)-PHIU2I2(S	SA)-F11()	degree
Function14	OFF	Phil3-I1	(360-PHIL PHIU1U3(J3I3(SA))+PHI SA))	U1I1(SA)+(360-	degree
Function15	OFF	Рр-р	PPPK(E1)	-PMPK(E1)		W
Function16	OFF	F16	DELTAU1	RMN(SA)		V
Function17	OFF	F17	DELTAU2RMN(SA)		V	
Function18	OFF	F18	DELTAU3RMN(SA)		V	
Function19	OFF	F19	DELTAU1DC(SA)		V	
Function20	OFF	F20	DELTAU2I	DC(SA)		V
Max Hold	OFF					
User Defined Events	ON/OFF	Name	TRUE	FALSE	Expression	
Event No.1	OFF	Ev1	True	False	URMS(E1) > 0.	00000E+00
Event No.2	OFF	Ev2	True	False	IRMS(E1) > 0.0	0000E+00
Event No.3	OFF	Ev3	True	False	EV1() AND EV2	2()
Event No.4	OFF	Ev4	True	False	No Expression	
Event No.5	OFF	Ev5	True	False	No Expression	
Event No.6	OFF	Ev6	True	False	No Expression	
Event No.7	OFF	Ev7	True	False	No Expression	
Event No.8	OFF	Ev8	True	False	No Expression	
S Formula	Urms*Irms					
S,Q Formula	Type 1					
Pc Formula	Type 1					
	P1=0.5000	P2=0.5000				
Phase Polarity	Lead(-)/Lag	l(+)				
Phase Angle	180°					
Sync Measure	Master					

Display	
Item	Setting
Display	Numeric+Graph(Wave)
Numeric	All Items
Page	Page 1
Item (Numeric)	
Order(k)	1
Display All Elements	ON
Graph	Wave
Wave	
Group	Group 1
Item (Wave)	
Group	1
Display On	U1 to I7, Speed1 and 2 ¹ , Torque1 and 2 ¹ , Speed3 and 4 ² , Torque3 and 4 ²
Vertical Zoom	×1
Vertical Position	0.000%
Form (Wave)	
Format	Single
Time/div	5ms
Advanced	
Interpolate	Line
Graticule	Grid()
Scale Value	ON
Wave Label	OFF
Cursor (Wave Cursor)	
Cursor	OFF
C1+ Trace	U1
C1+ Position	200
C2x Trace	11
C2x Position	800
Cursor Path	Max
Linkage	OFF
Trend	
Group	Group 1
Item (Trend)	
Group	1
Display On	T1 to T8
Function	T1: Urms, T2: Irms, T3: P, T4: S, T5: Q, T6: λ, T7: Φ, T8: FreqU, T9 to T16: Urms
Element	Element1
Order	-
Scaling	Auto
Upper Scale	100.0
Lower Scale	-100.0
Form (Trend)	
Trend Format	Single
Time/div	3s
Advanced	Same as those listed under Form (Wave)
Cursor (Trend Cursor)	
Cursor	OFF
C1+ Trace	Τ1
C1+ Position	200
C2x Trace	Τ2
C2x Position	1800
Linkage	OFF

1 Available on models with the motor evaluation function 1 (option)

2 Available on models with the motor evaluation function 2 (option)

Item	Setting			
Bar				
Group	Group 1			
Item (Bar)				
Bar Item No.	1	2	3	
Function	U	I	Р	
Element	Element1	Element1	Element1	
Scale Mode	Fixed	Fixed	Fixed	
Form (Bar)				
Format	Single			
Start Order	1			
End Order	100			
Cursor (Bar Cursor)				
Cursor	OFF			
C1+ Order	1			
C2x Order	15			
Linkage	OFF			
Vector				
Group	Group 1			
Item (Vector)				
Vector Item No	1	2		
Object	ΣΑ	Element1		
U Mag	1.000	1.000		
I Mag	1.000	1.000		
Form (Vector)				
Format	Single			
Numeric	On			
Store

Item	Setting
Store Mode	Manual
Store Count	100
Interval	00:00:00
Stored Items	Selected Items
Store Time Stamp	Measure
Select Stored Items	Element1
	Urms, Irms, P, S, Q, λ, Φ, FreqU, FreqI
Auto Naming	Numbering
Auto CSV Conversion	ON

Data Save

Itom	Sotting				
item	Setting				
Saved Objects	Numeric				
Saved Numeric Items	Selected Items				
Select Saved Numeric Items	Element1				
	Urms, Irms, P, S, Q, λ, Φ, FreqU, FreqI				
Image File Format	PNG				
Image Color	Color				
Auto Naming	Numbering				

Integration

-		
Item	Setting	
Integration Mode	Normal	
Integration Timer	0:00:00	
Independent Control	OFF	
Auto Cal	OFF	
WP±Type		
Setting	Each	
Element1 to 7	Charge/Discharge	
q mode		
Setting	Each	
Element1 to 7	dc	
Resume Action	Error	

D/A Output (Available on models with the D/A output option)

Item	Setting			
Ch.	Function	Element/Σ	Order	Range Mode
1	Urms	Element 1	-	Fixed
2	Irms	Element 1	-	Fixed
3	Р	Element 1	-	Fixed
4	S	Element 1	-	Fixed
5	Q	Element 1	-	Fixed
6	λ	Element 1	-	Fixed
7	Φ	Element 1	-	Fixed
8	fU	Element 1	-	Fixed
9	fl	Element 1	-	Fixed
10 to 20	Urms	Element 1	-	Fixed
Integration Rated Time	00001:00:00			

Item		Setting						
Measure	d Settings							
Measu	rement Mode	licker						
IEC 61	1000-4-15	dition 2.0						
IEC 61	000-3-3	lition 3.0						
Eleme	nt Objects							
Un Mo	de	uto						
Un Se	t	230.00V						
Freque	ency	50Hz						
Voltag	e	230V						
dmin		0.20%						
Interva	al	/linute:10, Second:0						
Count		12						
Limit Se	ttings							
dc	Judgement	ON						
	Limit	3.30%						
dmax	Judgement	ON						
	Limit	4.00%						
Tmax	Judgement	ON						
	Limit Time	500ms						
	Limit Threshold Lv	3.30%						
Pst	Judgement	ON						
	Limit	1.00						
Plt	Judgement	ON						
	Limit	0.65						
	N Value	12						

Flicker (IEC voltage fluctuation/flicker measurement mode)

Utility

System Configuration	
Item	Setting
Date/Time	
Display ^{1, 2}	ON
Setting Method ^{1, 2}	Manual
Time Zone ^{1, 2}	UTC+ 09:00
Time Synchro	
IEEE1588 ^{1, 2}	OFF
Delay Mechanism ^{1, 2}	E2E
Network Layer ^{1, 2}	Layer 3
Domain Number ^{1, 2}	0
Language	
Menu Language ¹	English
Message Language ¹	English
LCD	
Auto OFF ^{1, 2}	OFF
Auto OFF Time ^{1, 2}	5min
Brightness	7
Grid Intensity	4
Preference	
Freq Display at Low Frequency ^{1, 2}	0
Motor Display at Low Pulse Freq ^{1, 2}	0
Decimal Point for CSV File ^{1, 2}	Period
Rounding to Zero	ON
USB Keyboard ^{1, 2}	English

1 This item is not affected when the instrument is initialized (by pressing Setup and then Initialize Settings).

2 This item is not loaded when a setup parameter file is loaded (by pressing Setup and then Load Setup).

Remote Control

ltem	Setting	
Network(VXI-11)		
Time Out ^{1, 2}	Infinite	
GP-IB		
Address ^{1, 2}	1	
Command Type	WT5000	

1 This item is not affected when the instrument is initialized (by pressing Setup and then Initialize Settings).

2 This item is not loaded when a setup parameter file is loaded (by pressing Setup and then Load Setup).

Network	
Item	Setting
TCP/IP	
DHCP ^{1, 2}	ON
DNS ^{1, 2}	Auto
FTP/Web Server	
User Name ^{1, 2}	anonymous
Time Out ^{1, 2}	900 s
Net Drive	
Login Name ^{1, 2}	anonymous
FTP Passive ^{1, 2}	OFF
Time Out ^{1, 2}	15 s
SNTP	
Time Out ^{1, 2}	3 s
Adjust at Power On ^{1, 2}	OFF
Time Difference from GMT	^{-1,} Hour: 9, Minute: 0

- 1 This item is not affected when the instrument is initialized (by pressing Setup and then Initialize Settings).
- 2 This item is not loaded when a setup parameter file is loaded (by pressing Setup and then Load Setup).

Selftest

Item	Setting
Test Item	Memory

Upgrade

Item	Setting
Item	Firmware

Other

Item	Setting	
Hold	OFF	
KEY LOCK ^{1, 2}	OFF	
TOUCH LOCK ^{1, 2}	OFF	

1 This item is not affected when the instrument is initialized (by pressing Setup and then Initialize Settings).

2 This item is not loaded when a setup parameter file is loaded (by pressing Setup and then Load Setup).

Numeric Data Display Order (Example for a model with seven input elements installed)

If you reset the order of the numeric data using the Element Origin setting, the data of each measurement function is displayed in the order indicated in the table below.

All Items Display

	Page										
1	2	3	4	5	6	7	8	9	10	11	12
Urms	Urms	Irms	ITime	F1	Ev1	Speed ¹	ΔU1	U(k)	Uhdf(k)	Uthd	ΦUi-Uj
rmsl	Umn	lmn	Wp	F2	Ev2	Torque ¹	ΔU2	l(k)	Ihdf(k)	Ithd	ΦUi-Uk
Р	Udc	ldc	WP+	F3	Ev3	SyncSp ¹	ΔU3	P(k)	Phdf(k)	Pthd	ΦUi-li
S	Urmn	Irmn	WP-	F4	Ev4	Slip ¹	ΔυΣ	S(k)	Z(k)	Uthf	ΦUj-Ij
Q	Uac	lac	q	F5	Ev5	Pm ¹	ΔΙ	Q(k)	Rs(k)	lthf	ΦUk-lk
λ	Ufnd	lfnd	q+	F6	Ev6	EaM1U ¹	ΔP1	λ(k)	Xs(k)	Utif	
Φ	U+pk	l+pk	q-	F7	Ev7	EaM1I ¹	ΔP2	Φ(k)	Rp(k)	Itif]
fU	U-pk	l-pk	WS	F8	Ev8	EaM3U ²	ΔP3	ΦU(k)	Xp(k)	hvf]
fl	CfU	Cfl	WQ	F9	η1	EaM3 ²	ΔΡΣ	Φl(k)	K-factor	hcf]
	Pc ^{*3}			F10	η2						-
	P+pk ^{*3}			F11	η3]					
	P-pk ³			F12	η4]					
				F13		_					
				F14							
				F15							
				F16							
				F17							
				F18							
				F19							
				F20							

4 Items Display

	Page											
1	2	3	4	5	6	7	8	9	10	11	12	
Urms1	Urms2	Urms3	Urms4	Urms5	Urms6	Urms7	UrmsΣA	UrmsΣB	WP1	WP5	η1	
Irms1	Irms2	Irms3	Irms4	Irms5	Irms6	Irms7	IrmsΣA	IrmsΣB	WP2	WP6	η2	
P1	P2	P3	P4	P5	P6	P7	ΡΣΑ	ΡΣΒ	WP3	WP7	η3	
λ1	λ2	λ3	λ4	λ5	λ6	λ7	λΣΑ	λΣΒ	WP4	WPΣA	η4	

8 Items Display

	Page											
1	2	3	4	5	6	7	8	9	10	11	12	
Urms1	Urms2	Urms3	Urms4	Urms5	Urms6	Urms7	UrmsΣA	UrmsΣB	WP1	WP5	P1	
Irms1	Irms2	Irms3	Irms4	Irms5	Irms6	Irms7	IrmsΣA	IrmsΣB	q1	q5	P2	
P1	P2	P3	P4	P5	P6	P7	ΡΣΑ	ΡΣΒ	WP2	WP6	P3	
S1	S2	S3	S4	S5	S6	S7	SΣA	SΣB	q2	q6	P4	
Q1	Q2	Q3	Q4	Q5	Q6	Q7	QΣA	QΣB	WP3	WP7	η1	
λ1	λ2	λ3	λ4	λ5	λ6	λ7	λΣΑ	λΣΒ	q3	q7	η2	
Φ1	Φ2	Ф3	Φ4	Φ5	Φ6	Φ7	ΦΣΑ	ΦΣΒ	WP4	WPΣA	η3	
fU1	fU2	fU3	fU4	fU5	fU6	fU7	_	_	q4	qΣA	η4	

16 Items Display

Page											
1	2	3	4	5	6	7	8	9	10	11	12
Urms1	Urms2	Urms3	Urms4	Urms5	Urms6	Urms7	UrmsΣA	P1	P5	P1	F1
Irms1	Irms2	Irms3	Irms4	Irms5	Irms6	Irms7	IrmsΣA	WP1	WP5	P2	F2
P1	P2	P3	P4	P5	P6	P7	ΡΣΑ	Irms1	Irms5	P3	F3
S1	S2	S3	S4	S5	S6	S7	SΣA	q1	q5	P4	F4
Q1	Q2	Q3	Q4	Q5	Q6	Q7	QΣA	P2	P6	P5	F5
λ1	λ2	λ3	λ4	λ5	λ6	λ7	λΣΑ	WP2	WP6	P6	F6
Ф1	Ф2	Ф3	Ф4	Φ5	Ф6	Φ7	ΦΣΑ	Irms2	Irms6	P7	F7
Pc1	Pc2	Pc3	Pc4	Pc5	Pc6	Pc7	ΡςΣΑ	q2	q6	ΡΣΑ	F8
fU1	fU2	fU3	fU4	fU5	fU6	fU7	UrmsΣB	P3	P7	η1	F9
fl1	fl2	fl3	fl4	fl5	fl6	fl7	IrmsΣB	WP3	WP7	η2	F10
U+pk1	U+pk2	U+pk3	U+pk4	U+pk5	U+pk6	U+pk7	ΡΣΒ	Irms3	Irms7	η3	F11
U-pk1	U-pk2	U-pk3	U-pk4	U-pk5	U-pk6	U-pk7	SΣB	q3	q7	η4	F12
l+pk1	I+pk2	I+pk3	l+pk4	l+pk5	I+pk6	l+pk7	QΣB	P4	ΡΣΑ	_	F13
I-pk1	I-pk2	I-pk3	I-pk4	I-pk5	I-pk6	I-pk7	λΣΒ	WP4	WPΣA	_	F14
CfU1	CfU2	CfU3	CfU4	CfU5	CfU6	CfU7	ΦΣΒ	Irms4	IrmsΣA		F15
Cfl1	Cfl2	CfI3	Cfl4	CfI5	CfI6	Cfl7	ΡcΣΒ	q4	qΣA		F16

Matrix Display

	Page										
1	2	3	4	5	6	7	8	9			
Urms	Urms	Irms	ITime	—	—	—	—	—			
Irms	Umn	Imn	WP	_	_	_	_	_			
Р	Udc	ldc	WP+	_	_	_	_	_			
S	Urmn	Irmn	WP-	_	_	_	_	_			
Q	Uac	lac	q	_	_	_	_	_			
λ	U+pk	l+pk	q+	_		_	_				
Φ	U-pk	l-pk	q-	—		_	_				
fU	CfU	Cfl	WS	_	_	_					
fl	fU	fl	WQ	—	—	—	_	—			

Left Side of the HRM Single List and Dual List Displays (single screen display)

Page											
1	2	3	4	5	6	7	8	9	10	11	
Urms1	Urms2	Urms3	Urms4	Urms5	Urms6	Urms7	UrmsΣA	UrmsΣB	UrmsΣC	F1	
Irms1	Irms2	Irms3	Irms4	Irms5	Irms6	lrms7	IrmsΣA	IrmsΣB	IrmsΣC	F2	
P1	P2	P3	P4	P5	P6	P7	ΡΣΑ	ΡΣΒ	ΡΣϹ	F3	
S1	S2	S3	S4	S5	S6	S7	SΣA	SΣB	SΣC	F4	
Q1	Q2	Q3	Q4	Q5	Q6	Q7	QΣA	QΣB	QΣC	F5	
λ1	λ2	λ3	λ4	λ5	λ6	λ7	λΣΑ	λΣΒ	λΣC	F6	
Ф1	Ф2	Ф3	Ф4	Ф5	Ф6	Φ7	ΦUi-Uj	ΦUi-Uj	ΦUi-Uj	F7	
Uthd1	Uthd2	Uthd3	Uthd4	Uthd5	Uthd6	Uthd7	ΦUi-Uk	ΦUi-Uk	ΦUi-Uk	F8	
lthd1	lthd2	lthd3	Ithd4	lthd5	Ithd6	lthd7	ΦUi-li	ΦUi-li	ΦUi-li	F9	
Pthd1	Pthd2	Pthd3	Pthd4	Pthd5	Pthd6	Pthd7	ΦUj-lj	ΦUj-Ij	ΦUj-Ij	F10	
Uthf1	Uthf2	Uthf3	Uthf4	Uthf5	Uthf6	Uthf7	ΦUk-lk	ΦUk-lk	ΦUk-lk	F11	
lthf1	Ithf2	Ithf3	Ithf4	lthf5	Ithf6	lthf7				F12	
Utif1	Utif2	Utif3	Utif4	Utif5	Utif6	Utif7				F13	
Itif1	Itif2	Itif3	Itif4	Itif5	Itif6	ltif7				F14	
hvf1	hvf2	hvf3	hvf4	hvf5	hvf6	hvf7				F15	
hcf1	hcf2	hcf3	hcf4	hcf5	hcf6	hcf7				F16	
K-factor1	K-factor2	K-factor3	K-factor4	K-factor	K-factor6	K-factor7				F17	
										F18	
										F19	

F20

Page											
1	3	5	7	9	11	13	15	17	19	21	
Urms1	Urms2	Urms3	Urms4	Urms5	Urms6	Urms7	UrmsΣA	UrmsΣB	UrmsΣC	F1	
lrms1	Irms2	Irms3	Irms4	Irms5	Irms6	Irms7	IrmsΣA	IrmsΣB	IrmsΣC	F2	
P1	P2	P3	P4	P5	P6	P7	ΡΣΑ	ΡΣΒ	ΡΣϹ	F3	
S1	S2	S3	S4	S5	S6	S7	SΣA	SΣB	SΣC	F4	
Q1	Q2	Q3	Q4	Q5	Q6	Q7	QΣA	QΣB	QΣC	F5	
λ1	λ2	λ3	λ4	λ5	λ6	λ7	λΣΑ	λΣΒ	λΣC	F6	
Ф1	Φ2	Ф3	Ф4	Φ5	Ф6	Φ7				F7	
							-			F8	
										F9	
										F10	
					Page						
2	4	6	8	10	12	14	16	18	20	22	
Uthd1	Uthd2	Uthd3	Uthd4	Uthd5	Uthd6	Uthd7	ΦUi-Uj	ΦUi-Uj	ΦUi-Uj	F11	
lthd1	Ithd2	lthd3	Ithd4	lthd5	Ithd6	lthd7	ΦUi-Uk	ΦUi-Uk	ΦUi-Uk	F12	
Pthd1	Pthd2	Pthd3	Pthd4	Pthd5	Pthd6	Pthd7	ΦUi-li	ΦUi-li	ΦUi-li	F13	
Uthf1	Uthf2	Uthf3	Uthf4	Uthf5	Uthf6	Uthf7	ΦUj-lj	ΦUj-lj	ΦUj-Ij	F14	
lthf1	Ithf2	Ithf3	Ithf4	Ithf5	Ithf6	lthf7	ΦUk-lk	ΦUk-lk	ΦUk-lk	F15	
Utif1	Utif2	Utif3	Utif4	Utif5	Utif6	Utif7				F16	
ltif1	Itif2	Itif3	Itif4	Itif5	Itif6	ltif7]			F17	
hvf1	hvf2	hvf3	hvf4	hvf5	hvf6	hvf7	1			F18	
hcf1	hcf2	hcf3	hcf4	hcf5	hcf6	hcf7	1			F19	

Left Side of the HRM Single List and Dual List Displays (split display)

K-factor2 K-factor3 K-factor4 K-factor K-factor6 K-factor7

1 Displayed on models with the motor evaluation function 1 (/MTR1 option)

2 Displayed on models with the motor evaluation function 2 (/MTR2 option)

3 Not displayed when the split display is in use.

F20

K-factor1

Appendix 9 Limitations on Modifying Settings and Operations

During integration, storage, IEC harmonic measurement mode (option), and voltage fluctuation and flicker measurement mode (option), there are measurement conditions and computations whose settings you cannot change and features that you cannot execute.

Operation (Changing settings or executing features)		Integratio	on status	Storage State			IEC	Voltage Fluctuation	
features)		Start/	Stop/	Rec/	Pause	Cmpl/	Harmonics	and Flick	er
		Ready	Timeup/	Ready		Error		Reset	Other than
			Error						Reset
Fundamental	Measurement Mode	No	No	No	No	No	Yes	Yes	No
Measurement	Wiring	No	No	No	No	No	Yes	Yes	No
Conditions	η Formula	No	Yes	No	No	No	No	No	No
	Range Σ Link	No	No	No	No	No	Yes	Yes	No
	ΔMeasure Type	No	No	No	No	No	No	No	No
	∆Measure Mode	No	Yes	No	No	No	No	No	No
	Voltage or current range	No	No	Yes	Yes	Yes	Yes	Yes	No
	Voltage or current Auto Range	No	No	Yes	Yes	Yes	No	No	No
	Direct Current Input or	No	No	No	No	No	Yes	Yes	No
	External Current Sensor								
	Terminal/CT Preset/Input Resistance/	No	No	No	No	No	Yes	Yes	No
	Output Voltage Rate								
	Sensor Ratio	No	No	No	No	No	Yes	Yes	No
	CT Preset	No	No	No	No	No	Yes	Yes	No
	VT/CT/SF Scaling	No	No	No	No	No	Yes	Yes	No
	Valid Measurement Range	No	No	No	No	No	Yes	Yes	No
	Crest Factor	No	No	No	No	No	Yes	Yes	No
	Svnc Source	No	No	No	No	No	No	No	No
	Line Filter Settings	No	No	No	No	No	Yes ¹	Yes ²	No
	Freg Filter Settings	No	No	No	No	No	Yes ¹	Yes ²	No
	Rectifier	No	No	No	No	No	No	No	No
	level	No	No	No	No	No	No	No	No
	Undate Rate	No	No	No	No	No	No	No ³	No
	Average	No	No	No	No	No	View ⁴	No	No
Harmonics	PLL Source	No	No	No	No	No	Yes	No	No
	Min/Max Order	No	No	No	No	No	Ves	No	No
	Thd Formula	No	No	No	No	No	Ves	No	No
	Flement Settings	No	No	No	No	No	No	No	No
Motor	MTR Configuration	No	No	No	No	No	No	No	No
	Scaling	No	No	No	No	No	Ves	Ves	No
	Sonso Typo	No	No	No	No	No	Voc	Voc	No
	Auto Pango	No	No	Voc	Voc	Voc	No	No	No
	Ruto Range	No	No	Voc	Voc	Voc	Voc	Voc	No
		No	No	No	No	No	Voc	Voc	No
	Linear Scale Calculate Execute	No	No	No	No	No	Voc	Voc	No
		No	No	No	No	No	Voo	Vee	No
	Line Filler Dulas Noiss Eilter	No	No	No	No	No	Vee	Vee	No
		No	No	No	No	No	No	No	No
	Bules Dange Unner/Lewer	No		No	No	No	NO Vee	NO Vec	No
	Terraue Dulee	No	No	No		No	Yes	Vec	No
	Torque Pulse	INO No					Yes	i res	
	Torque Pulse Rated Freq	INO N.L.	INO No	INO	INO N.	INO	Yes	Yes	INO
		INO N I s	INO N.	INO	INO N.	INO NI S	Yes	Yes	INO
	Pole	INO		INO		INO	INO		
	Sync Speed Source	NO	NO	No	NO	NO	No	NO	No
	Electrical Angle Measurement ON/OFF	NO	NO	NO	NO	NO	No	NO	No
Forten 1 1	Electrical Angle Correction	INO NI S	INO	INO NI	NO	NO	INO No	INO No	NO
⊨xternal signal		INO N.	NO No	INO No	NO	NO	Yes	Yes	NO
	Auto Range	INO	INO	Yes	Yes	Yes	INO	INO	NO
	Range	No	No	Yes	Yes	Yes	Yes	Yes	No
	Linear Scale A/B	No	No	No	No	No	Yes	Yes	No
	Linear Scale Calculate Execute	No	No	No	No	No	Yes	Yes	No
	Line Filter	No	No	No	No	No	Yes	Yes	No
	Pulse Noise Filter	No	No	No	No	No	Yes	Yes	No
	Pulse Range Upper/Lower	No	No	No	No	No	Yes	Yes	No

Appendix 9 Limitations on Modifying Settings and Operations

Operation (Changing settings or executing		Integration status		Storage	State		IEC	Voltage Fluctuation	
Operation (Changing settings or executing features)		Start/	Stop/	Rec/	Pause	Cmpl/	Harmonics	and Flicker	
			Timeup/ Error	Ready		Error		Reset	Other than Reset
Computation	User-Defined Function	No	Yes	No	No	No	No	No	No
	Conditions								
	Max Hold ON/OFF	No	No	Yes	Yes	Yes	No	No	No
	User-Defined Event	No	Yes	No	No	No	No	No	No
	Conditions								
	S Formula	No	No	No	No	No	No	No	No
	S, Q Formula	No	No	No	No	No	No	No	No
	Pc Formula	No	No	No	No	No	No	No	No
	Phase	No	No	No	No	No	Yes	No	No
	Sync Measure	No	No	No	No	No	No	No	No
Hold	Hold	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Single measurement	Single	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Integration	Independent Control	No	No	Yes	Yes	Yes	No	No	No
D/A	D/A Rated Time	No	No	Yes	Yes	Yes	No	No	No
Waveform		No	No	No	No	No	No	No	No
display	Trigger Mode	No	No	Yes	Yes	Yes	No	No	No
	Trigger Source	No	No	No	No	No	No	No	No
	Trigger Slope	No	No	No	No	No	No	No	No
	Trigger Level	No	No	No	No	No	No	No	No
Storage	Store CSV Conversion	Ves	Ves	No	No	Ves	No	No	No
lotorage	Store Rec	Yes	Yes	No ⁵	Yes	No	No	No	No
	Store Pause	Ves	Ves	Ves	Ves	Ves	No	No	No
	Store End	Ves	Ves	Ves	Ves	Ves	No	No	No
File	File Auto Naming	Yes	Yes	No	No	Yes	Yes	Yes	Yes
	File Name	Ves	Ves	No	No	Ves	Ves	Ves	Ves
	Comment	Ves	Ves	No	No	Ves	Ves	Ves	Ves
	Setup File Save	No	No	No	No	No	Ves	Ves	No
	Setup File Load	No	No	No	No	No	Ves	Ves	No
	Numeric Save	Ves	Ves	No	No	Ves	No	No	No
	Numeric Save Item Settings	Vec	Voc	No	No	Vos	Vec	Vos	Ves
	Wave Save	Vec	Voc	No	No	Voc	No	No	No
	Execute Image Save	Vec	Voc	No	No	Voc	Vec	Vos	Ves
	Change Drive	Voc	Voc	No	No	No	Voc	Voc	Voc
	Change Eoldor	Voc	Voc	No	No	No	Voc	Voc	Voc
		No	No	No	No	No	Voc	Voc	No
	Ponamo	No	No	No	No	No	Voc	Voc	No
	New Folder	No	No	No	No	No	Ves	Voc	No
		No	No	No	No	No	Voc	Voc	No
	Моуе	No	No	No	No	No	Ves	Voc	No
		Voc	Voc	No	No	No	Voc	Voc	Voc
	Data/Timo	No	No	No	No	No	Voc	Voc	No
	Sotting Mothod	No	No	No	No	No	Voc	Voc	No
		No	No	Vec	Vee	Vee	Vec	Voo	No
		No	No	Voc	Voc	Voc	Voc	Voc	No
	Message Language	INO		Nes	res	res	tes	res	NO NIS
	Freq Display at Low	NO	110	NO				110	INO
	Motor Dioploy at Law Dutas	No	No	No	No	No	Vee	Voc	No
	Free		140	NO			165	les	NO
		No	No	No	No	No	Vaa	Voc	No
Othor		No	No	Voc	Voc	Voc	Voc	Voc ⁶	No
		No	No	No	No	No	No	No	No
	Innull	001	INO	INO	INO	INO	INO	סאון	INO

Yes: The setting can be changed, or the feature can be performed.

No: The setting cannot be changed, or the feature cannot be performed.

1 A dedicated filter for IEC Harmonic measurement. Advanced settings are invalid.

2 A dedicated filter for voltage fluctuation/flicker measurement. Advanced settings are invalid.

3 Fixed to 2 s.

4 Exponential averaging only. An attenuation constant cannot be set.

5 Store Rec can be executed in Single Shot Mode.

6 Can be executed when the flicker measurement status is Reset.

Appendix 10 Measurement Functions That Can Be Measured in Each Measurement Mode

The measurement functions that can be measured in each measurement mode that is selectable on models with the IEC harmoincs/flicker measurement (/G7) option are as follows:

Measurement Item*1		Measurement N	lode
		Normal Measurement	IEC Harmonic
Voltage	Urms	Yes	No
5	Umn	Yes	No
	Udc	Yes	No
	Urmn	Yes	No
	Uac	Yes	No
	Ufnd	Yes	Yes
	U(k)	Yes	Yes
Current	Irms	Yes	No
	Imn	Yes	No
	Idc	Yes	No
	Irmn	Yes	No
	lac	Yes	No
	lfnd	Yes	Yes
	l(k)	Yes	Yes
Power	P	Yes	No
	Pfnd	Yes	Yes
	P(k)	Yes	Yes
	S	Yes	No
	Sfnd	Yes	Yes
	S(k)	Yes	Yes
		Yes	No
	Ofnd	Ves	Ves
		Ves	Ves
		Ves	No
	λfnd	Ves	Ves
	$\lambda(k)$	Ves	Ves
	л(к) Ф	Ves	No
	φ Φfnd	Ves	Ves
		Ves	Ves
		Ves	No
Frequency	fli	Ves	Ves
requeitey	fl	Voc	Vos
	f211	Voc	Vos
	120 f21	Voc	Vos
	fDI 1	Ves	Ves
	fPLL 2	Ves	No
Peak		Ves	No
ean		Ves	No
	U-pk	Ves	No
	I pk	Voc	No
	П-рк	Voc	No
	IP nk	Vee	No
	Cfu	Veo	No
	Cfl	Vac	No
ntogration		Vee	No
negration		ies Voo	No
		Yes	NO
		ies Voo	NO
	IVVP-	Yes	NO
	q	Yes	No
	q+	Yes	No
	q-	Yes	No
	WS	Yes	No
	IWQ	Yes	No

Appendix 10 Measurement Functions That Can Be Measured in Each Measurement Mode

Measurement Item ^{*1}	Measurement Mode				
		Normal Measurement	IEC Harmonic		
Efficiency	n1 to n4	Yes	No		
User-Defined Functions	E1 to E20	Yes	No		
Liser-defined events	Event1 to Event8	Ves	No		
		Voc	Voc		
Tarriories		Voc	Vos		
	$\nabla I(k)$	Vee	No		
		Vee	No		
	KS(K)	Yes	No		
	XS(K)	Yes	NO		
		Yes	NO		
	Хр(к)	Yes	No		
	Uhdf(k)	Yes	Yes		
	lhdf(k)	Yes	Yes		
	Phdf(k)	Yes	Yes		
	Uthd	Yes	Yes		
	Ithd	Yes	Yes		
	Pthd	Yes	Yes		
	Uthf	Yes	No		
	Ithf	Yes	No		
	Utif	Yes	No		
	Itif	Yes	No		
	hvf	Yes	No		
	hcf	Yes	No		
	K-factor	Yes	No		
	Φl li-l li	Yes	Yes		
	ΦUi-Uk	Ves	Ves		
		Ves	Ves		
		Vee	Vee		
		Vee	Vee		
Delte Commutation		Yes	tes		
Della Computation		Yes	NO No		
	Δ02	Yes	NO		
		Yes	NO		
	ΔυΣ	Yes	No		
	ΔΙ	Yes	No		
	ΔΡ1	Yes	No		
	ΔΡ2	Yes	No		
	ΔΡ3	Yes	No		
	ΔΡΣ	Yes	No		
Motor Evaluation ^{*2}	Speed	Yes	No		
	Torque	Yes	No		
	SyncSp	Yes	No		
	Slip	Yes	No		
	Pm	Yes	No		
	EaM1U	Yes	No		
	EaM1I	Yes	No		
Motor Evaluation ^{*3}	EaM3U	Yes	No		
	EaM3I	Yes	No		
Auxiliary Input ^{*2}	Aux1 to Aux4	Yes	No		
Auxiliary Input ^{*3}	Aux5 to Aux8	Yes	No		
Measurement Range*4	RngU	Yes	Yes		
	Rngl	Yes	Yes		
Measurement Range*2*4	RngSpd	Yes	Yes		
	RngTrg	Yes	Yes		
	RngAux	Ves	Ves		
Timestamn ^{*5}	TS Date	Vee	No		
	TS Time	Vee	No		
		Vac	No		
1		162	NU		

Yes: Can be measured or computed.

No: Cannot be measured or computed.

Appendix 10 Measurement Functions That Can Be Measured in Each Measurement Mode

- *1 Variable k is the harmonic order and total value. The maximum order for which the harmonic data is measured is the maximum harmonic order to be measured that is specified in the harmonic measurement menu. The data is set to [------] (no data) for harmonic orders without data.
- *2 The motor evaluation function 1 (option, /MTR) is required.
- *3 The motor evaluation function 2 (option, /MTR) is required.
- *4 For measurement range functions, data can be acquired using the following methods.
 - By setting a user-defined function
 - By storing or by saving numeric data
 - By outputting through communication
- *5 For timestamp functions, data can be acquired using the following method.
 - By outputting through communication

Only the specialized measurement functions can be measured in voltage fluctuation and flicker measurement mode. For the measurement functions that can be measured, see "IEC Voltage Fluctuation and Flicker Measurement Functions" in chapter 1, "Items That This Instrument Can Measure," of the Features Guide, IM WT5000-01EN.

Appendix 11 Firmware Version

This manual covers firmware versions 3.21 or later of the WT5000. You can check the firmware version on the overview screen that appears by pressing Setup > Utility > System Overview.

Appendix 12 Block Diagram

WT5000

760901 30A High Accuracy Element

760902 5A High Accuracy Element

760903 Current Sensor Element

Equivalent circuit when a CT, sensor cable, and current sensor element input are connected

Input Signal Flow and Process

Input elements 1 through 7 consist of a voltage input circuit and a current input circuit. On the 760901/760902, they are mutually isolated. They are also isolated from the case. On the 760903, only the voltage input circuit is isolated from the instrument case. (The current input circuit is not isolated from the instrument case.)

The voltage signal that is applied to the voltage input terminal (U, \pm) is normalized using the voltage divider and the operational amplifier (op-amp) of the voltage input circuit. It is then sent to a voltage A/ D converter.

The current input circuit of the 760901/760902 is equipped with two types of input terminals, a current input terminal (I, \pm) and an external current sensor input terminal (EXT). Only one can be used at any given time. The voltage signal from the current sensor that is received at the external current sensor input terminal is normalized using the voltage divider and the operational amplifier (op-amp). It is then sent to a current A/D converter.

The current signal that is applied to the current input terminal is converted to a voltage signal by a shunt. Then, it is sent to the current A/D converter in the same fashion as the voltage signal from the current sensor.

The current input circuit of the 760903 is equipped with two types of input terminals, a sensor input terminal (Dsub) and a probe input terminal (Probe). Only one can be used at any given time. The voltage signal from the current sensor that is received at the probe input terminal is normalized using the voltage divider and the operational amplifier (op-amp). It is then sent to a current A/D converter.

The current signal from the current sensor that is applied to the sensor input terminal is converted to a voltage signal by a shunt. Then, it is sent to the current A/D converter in the same fashion as the voltage signal from the current sensor.

The voltage signal that is applied to the voltage A/D converter and current A/D converter is converted to digital values at an interval of approximately 100 ns.

On the 760901/760902, these digital values are isolated by the isolator and input to the FPGA. On the 760903, the digital voltage values are isolated by the isolator and input to the FPGA.

In the FPGA, the measured values are derived based on the digital values. The measured values are then transmitted to the CPU. Various computed values are determined from the measured values. The measured values and computed values are displayed and transmitted (as D/A and communication output) as measurement functions of normal measurement and harmonic measurement.