#### Errata

Title & Document Type: 4329A High Resistance Meter Operating and Service Manual

Manual Part Number: 04329-90012

Revision Date: November 1983

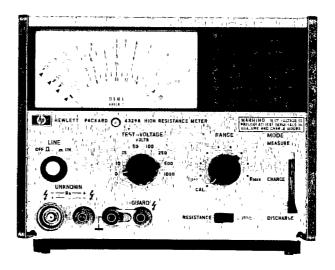
#### **HP References in this Manual**

This manual may contain references to HP or Hewlett-Packard. Please note that Hewlett-Packard's former test and measurement, semiconductor products and chemical analysis businesses are now part of Agilent Technologies. We have made no changes to this manual copy. The HP XXXX referred to in this document is now the Agilent XXXX. For example, model number HP8648A is now model number Agilent 8648A.

#### **About this Manual**

We've added this manual to the Agilent website in an effort to help you support your product. This manual provides the best information we could find. It may be incomplete or contain dated information, and the scan quality may not be ideal. If we find a better copy in the future, we will add it to the Agilent website.

## **Support for Your Product**


Agilent no longer sells or supports this product. You will find any other available product information on the Agilent Test & Measurement website:

#### www.tm.agilent.com

Search for the model number of this product, and the resulting product page will guide you to any available information. Our service centers may be able to perform calibration if no repair parts are needed, but no other support from Agilent is available.



# **METER** 4329 A





#### SAFETY SUMMARY

The following general safety precautions must be observed during all phases of operation, service, and repair of this instrument. Failure to comply with these precautions or with specific warnings given elsewhere in this manual violates safety standards of design, manufacture, and intended use of the instrument. Hewlett-Packard Company assumes no liability for the customer's failure to comply with these requirements.

#### GROUND THE INSTRUMENT

To minimize shock hazard, the instrument chassis and cabinet must be connected to an electrical ground. The instrument is equipped with a three-conductor ac power cable. The power cable must either be plugged into an approved three-contact electrical outlet or used with a three-contact to two-contact adapter with the grounding wire (green) firmly connected to an electrical ground (safety ground) at the power outlet. The power jack and the mating plug of the power cable meet International Electrotechnical Commission (IEC) safety standards.

## DO NOT OPERATE IN AN EXPLOSIVE ATMOSPHERE

Do not operate the instrument in the presence of flammable gases or fumes. Operation of any electrical instrument in such an environment constitutes a definite safety hazard.

## KEEP AWAY FROM LIVE CIRCUITS

Operating personnel must not remove instrument covers. Component replacement and internal adjustments must be made by qualified maintenance personnel. Do not replace components with power cable connected. Under certain conditions, dangerous voltages may exist even with the power cable removed. To avoid injuries, always disconnect power and discharge circuits before touching them.

## DO NOT SERVICE OR ADJUST ALONE

Do not attempt internal service or adjustment unless another person, capable of rendering first aid and resuscitation, is present.

## DO NOT SUBSTITUTE PARTS OR MODIFY INSTRUMENT

Because of the danger of introducing additional hazards, do not install substitute parts or perform any unauthorized modification to the instrument. Return the instrument to a Hewlett-Packard Sales and Service Office for service and repair to ensure that safety features are maintained.

## DANGEROUS PROCEDURE WARNINGS

Warnings, such as the example below, precede potentially dangerous procedures throughout this manual. Instructions contained in the warnings must be followed.

#### WARNING

Dangerous voltages, capable of causing death, are present in this instrument. Use extreme caution when handling, testing, and adjusting.

#### SAFETY SYMBOLS

General Definitions of Safety Symbols Used On Equipment or In Manuals.



Instruction manual symbol: the product will be marked with this symbol when it is necessary for the user to refer to the instruction manual in order to protect against damage to the instrument.



Indicates dangerous voltage (terminals fed from the interior by voltage exceeding 1000 volts must be so marked).



Protective conductor terminal. For protection against electrical shock in case of a fault. Used with field wiring terminals to indicate the terminal which must be connected to ground before operating equipment.



Low-noise or noiseless, clean ground (earth) terminal. Used for a signal common, as well as providing protection against electrical shock in case of fault. A terminal marked with this symbol must be connected to ground in the manner described in the installation (operating) manual, and before operating the equipment.



Frame or chassis terminal. A connection to the frame (chassis) of the equipment which normally includes all exposed metal structures.

 $\sim$ 

Alternating current (power line).

===

Direct current (power line).

 $\overline{\sim}$ 

Alternating or direct current (power line).

WARNING

A WARNING denotes a hazard. It calls attention to a procedure, practice, condition or the like, which, if not correctly performed or adhered to, could result in injury or death to personnel.

**CAUTION** 

The CAUTION sign denotes a hazard. It calls attention to an operating procedure, practice, condition or the like, which, if not correctly performed or adhered to, could result in damage to or destruction of part or all of the product.

Note

A Note denotes important information. It calls attention to a procedure, practice, condition or the like, which is essential to highlight.

## Herstellerbescheinigung

Hiermit wird bescheinigt, daß das Gerät HP 4329A high resistance meter in Übereinstimmung mit den Bestimmungen von Postverfügung 1046/84 funkentstört ist.

Der Deutschen Bundespost wurde das Inverkehrbringen dieses Gerätes angezeigt und die Berechtigung zur Überprüfung der Serie auf Einhaltung der Bestimmungen eingeräumt.

Anm: Werden Meß- und Testgeräte mit ungeschirmten Kabeln und/oder in offenen Meßaufbauten verwendet, so ist vom Betreiber sicherzustellen, daß die Funk-Entstörbestimmungen unter Betriebsbedingungen an seiner Grundstücksgrenze eingehalten werden.

## **GERÄUSCHEMISSION**

Lpa < 70 dB am Arbeitsplatz normaler Betrieb nach DIN 45635 T. 19

## Manufacturer's Declaration

This is to certify that this product, the HP 4329A high resistance meter, meets the radio frequency interference requirements of directive 1046/84. The German Bundespost has been notified that this equipment was put into circulation and was granted the right to check the product type for compliance with these requirements.

Note: If test and measurement equipment is operated with unshielded cables and/or used for measurements on open set-ups, the user must insure that under these operating conditions, the radio frequency interference limits are met at the border of his premises.

## ACOUSTIC NOISE EMISSION

Lpa < 70 dB operator position normal operation per ISO 7779

## MANUAL CHANGES

### **HP 4329A** HIGH RESISTANCE METER

#### MANUAL IDENTIFICATION

Model Number: HP 4329A Date Printed: November 1983 Part Number: 04329-90012

This supplement contains information for correcting manual errors and for adapting the manual to newer instruments that contains improvements or modifications not documented in the existing manual.

To use this supplement

1. Make all ERRATA corrections

2. Make all appropriate serial-number-related changes listed below

| SERIAL PREFIX OR NUMBER | MAKE MANUAL CHANGES |
|-------------------------|---------------------|
| All                     | 1                   |
|                         |                     |
|                         |                     |
|                         |                     |

| SERIAL PREFIX OR NUMBER | MAKE MANUAL CHANGES |
|-------------------------|---------------------|
|                         |                     |
|                         |                     |
|                         |                     |
|                         |                     |
|                         |                     |

### - CHANGE 1

## Page 6-9, Table 6-2, Reference Designation Index (Cont'd)

Add the following lists:

| Reference<br>Designation | Part No.               | Description                                                                | Note |
|--------------------------|------------------------|----------------------------------------------------------------------------|------|
|                          | 5020-3713<br>5040-3311 | TRANSPARENT SHIELD: MULTIPLIER INDICATOR BLACK BEZEL: MULTIPLIER INDICATOR |      |

NOTE

Manual change supplement are revised as often as necessary to keep manuals as current and accurate as possible. Hewlett-Packard recommends that you periodically request the latest edition of this supplement. Free copies are available from all HP offices. When requesting copies, quote the manual identification information from your supplement, or the model number and print date from the title page of the manual.

Date/Div: July, 1992/33

Page 1 of 1



<sup>▶</sup> New Item

## MANUAL CHANGES

## **HP 4329A HIGH RESISTANCE METER**

#### - MANUAL IDENTIFICATION -

Model Number: HP 4329A Date Printed: NOV. 1983 Part Number: 04329-90012

This supplement contains information for correcting manual errors and for adapting the manual to newer instruments that contain improvements or modifications not documented in the existing manual.

To use this supplement

1. Make all ERRATA corrections

2. Make all appropriate serial-number-related changes listed below

| SERIAL PREFIX OR NUMBER | MARE MANUAL CHANGES |
|-------------------------|---------------------|
| 2510J06901 and above    | 1                   |
| 2510J07714 and above    | 2                   |
| 2510J08236 and above    | 3                   |
|                         |                     |
|                         |                     |
|                         |                     |
|                         |                     |
| 1                       |                     |

| MAKE MANUAL CHANGES |  |
|---------------------|--|
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |

► New Item

#### **ERRATA**

Page 3-4, Paragraph 3-15,

Correct paragraph 3-15 as follows:

3-15. When measuring a capacitive component, the capacitor should be pre-charged for more than a few seconds (depending upon its capacitance). If the capacitor is not fully charged, . . .

#### NOTE

Manual change supplements are revised as often as necessary to keep manuals as current and accurate as possible. Hewlett-Packard recommends that you periodically request, the latest edition of this supplement. Free copies are available, from all HP offices. When requesting copies, quote the manual identification information from your supplement, or the model number and print date from the title page of the manual.

**Date/Div:** OCTOBER 24, 1988/33

Page: 1 of 3



Page 8-5, Figure 8-4, Test Voltage Switch Ass'y A4 and Range Switch Ass'y A7:

Correct the color code of the cable that connects A4S1AF-2 and A7S1BF-10 to WHT/BLK/ORG.

Correct the color code of the cable that connects A4S1AF-3 and A7S1AR-11 to WHT/BLK/RED. (Swap these color codes.)

Page 6-9, Table 6-2, Reference Designation Index:

Change the description of HP Part No. 04329-1044 to PANEL:REAR (OPT C10).

► Page 6-4, Table 6-2, Reference Designation Index:

See Table 1, Parts Information

### **CHANGE 1**

Pages 6-7, 6-8, and 6-9, Table 6-2, Reference Designation Index:

See Table 1, Parts Information.

### **CHANGE 2**

Page 6-5, Table 6-2, Reference Designation Index.

See Table 1, Parts Information.

### ► CHANGE 3

Page 6-5, Table 6-2, Reference Designation Index:

See table 1, Parts Information.

Page 8-7, Figure 8-5, Parametric Converter Ass'y A8 Diagram.

Change HP part numbers both of A8CR1 and A8CR2 from 0122-0104 to 0122-0178.

Table 1. Parts Information

| CHANGE        | PAGE | NOTE | REFERENCE<br>DESIGNATION          | HP PN       | DESCRIPTION              |
|---------------|------|------|-----------------------------------|-------------|--------------------------|
| ALL           | 6-4  | ► C  | A4R5                              | 0698-2323   | R: FXD 2.5MΩ 1%          |
|               |      | ► C  | A4R6                              | 0698-2324   | R: FXD 5.0MΩ 1%          |
| 1             | 6-7  | С    | J1                                | 9135-0035   | FILTER                   |
|               | 6-8  | Α    | MP1                               | 5040-3340   | COVER (FILTER)           |
| <u>.</u><br>: | 6-9  | D    |                                   | 04329-10022 | PANEL: REAR              |
|               | [    | Α    |                                   | 04329-00203 | PANEL: REAR              |
|               |      | ۵    |                                   | 04329-1044  | PANEL: REAR (OPT C10)    |
|               |      | Α    |                                   | 04329-00213 | PANEL: REAR (OPT C10)    |
| 2             | 6-5  | С    | . A6R1 0757-0465 R:FXD COMP 100ks |             | R:FXD COMP 100kΩ 1% 1/4W |
| 3             | 6-5  | ► C  | A8CR1                             | 0122-0178   | DIODE:VAR CAP.           |
|               | 6-5  | ► C  | A8CR2                             | 0122-0178   | DIODE.VAR CAP.           |

►: NEW ITEM

A: Added

D: Deleted C: Change

# OPERATING AND SERVICE MANUAL

# MODEL 4329A HIGH RESISTANCE METER

SERIAL PREFIXED : 2111J

See Section VII for Other Serial Prefixes.

© COPYRIGHT: YOKOGAWA-HEWLETT-PACKARD, LTD., 1969 9-1, TAKAKURA-CHO, HACHIOJI-SHÌ, TOKYO, JAPAN

Manual Part No. 04329-90012 Microfiche Part No. 04329-90062

Printed: NOV. 1983



## TABLE OF CONTENTS

| Section                                     | Title                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Page        |
|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| I GEN                                       | General General                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1-1         |
|                                             | deneral                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1-1         |
| 1-6.<br>1-8.                                | Ground, Guard Delininons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1-1         |
| 1-8.                                        | instrument identification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1-2         |
| 1-1(                                        | Manual Changes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1-2         |
| II INS                                      | TALLATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |
| 2-1.                                        | inci oddetton                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2-1         |
| 2-3.                                        | onpacking and inspection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2-1<br>2-1  |
| 2-5.                                        | Secrete and binbinell                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2-1         |
| 2-8.                                        | installation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2-1         |
| 2-10                                        | · combining case                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2-1         |
| $\begin{array}{c} 2-12 \\ 2-14 \end{array}$ | · Adapter Frame                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2-1         |
| 2-14                                        | · rower connection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2-1         |
| 2-13                                        | Line voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2-1         |
| 2-10                                        | Power Cable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2-1         |
| III OPE                                     | RATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |
| 3-1.                                        | Introduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3-1         |
| 3-3.                                        | Cultruis, indicators and Connectors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3-1         |
| 3-5.                                        | Basic Operating Procedure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3-1         |
| 3-6.                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3-1         |
| 3-7.                                        | TOTTIA LIOW NOISE LEST LESVE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3-1         |
| 3-9.                                        | . Measurement Modes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3-1         |
| 3-11.                                       | 11ppiications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3-4         |
| 3-17                                        | bampic breakdown; Short Cleaning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3-4         |
| 3-19.                                       | Difference of the second secon | 3-4         |
| 3-21.                                       | Current Measurement.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3-4         |
| 3-23.                                       | recorder Output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3-5<br>3-10 |
| 3-25.                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3-10        |
| IV THE                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
| 4-1.                                        | ORY OF OPERATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4-1         |
| 4-3.                                        | General Information High Resistance Measurement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4-1         |
| 4-5.                                        | High Resistance Measurement Principle of Parametric Converter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4-1         |
| 4-6.                                        | Pico Diode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4-1         |
| 4-8.                                        | Basic Parametric Converter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4-1         |
| 4-11.                                       | Actual Circuit Simplified                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4-2         |
| 4-13.                                       | Farailletric Converter Assamble Ao                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4-2         |
| 4-19.                                       | Complete Histriment Simplified                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4-3<br>4-4  |
| 4-25.                                       | ruditional Circuit Details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4-4         |
| 4-27.                                       | T ST SINCUIC CONVENIER ASSEMBLE AS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4-4         |
| 4-29.                                       | OSCILIZION/Ambitter Assembly Ab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4-4         |
| 4-31.                                       | Timpinici/Meter Circuit Assembly Ath                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4-4         |
| 4-33.                                       | 1951 Vullage Power Silphiy Aggambly Ag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4-5         |
| 4-35. $4-37.$                               | TOW VOILAGE FUWER SHIPPIV ASSEMBLY AS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4-5         |
| 4-37.<br>4-39.                              | runge bwitch Appeniply. At                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4-6         |
| 7-09.                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4-6         |
| V MAIN                                      | renance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |
| 5-1.                                        | Introduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5-1         |
| 5-3.                                        | Caution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5-1         |
| 5-4.                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5-1         |
| 5-7.                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5-1         |
| 5-8.                                        | Check 2: Test Volfages                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5-1         |
| 5-10.                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5-2         |
| 5-11.                                       | Check 4: Accuracy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5-2         |
| 5-13.                                       | Check 5: Recorder Ontont                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5-2<br>5-2  |
| 5-15.                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5-2<br>5-2  |

| Sect: | ion                                                                    | Title                                                                                                                                                                                                           | Page                                                        |
|-------|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
|       | 5-17.<br>5-19.<br>5-23.<br>5-25.<br>5-27.<br>5-29.<br>5-30.<br>5-32.   | Calibration Troubleshooting                                                                                                                                                                                     | 5-3<br>5-4<br>5-5<br>5-5<br>5-5<br>5-5<br>5-7<br>5-8        |
|       | REPLA<br>6-1.<br>6-4.                                                  | ACEABLE PARTS                                                                                                                                                                                                   | 6-1<br>6-1<br>6-1                                           |
|       | MANUA<br>7-1.<br>7-3.<br>7-5.                                          | AL CHANGES AND OPTIONS Options Special Instruments Manual Changes                                                                                                                                               | 7-1<br>7-1<br>7-1<br>7-1                                    |
|       | CIRCU<br>8-1.                                                          | IT DIAGRAMS                                                                                                                                                                                                     | 8-1<br>8-1                                                  |
|       |                                                                        | LIST OF ILLUSTRATIONS                                                                                                                                                                                           |                                                             |
| Num   | ber                                                                    | Title                                                                                                                                                                                                           | Page                                                        |
|       | 1-1.                                                                   | Model 4329A High Resistance Meter                                                                                                                                                                               | 1-1                                                         |
|       | 3-1.<br>3-2.<br>3-3.<br>3-4.<br>3-5.<br>3-6.<br>3-7.<br>3-8.           | Low Noise Test Lead Guard Detail                                                                                                                                                                                | 3-1<br>3-2<br>3-3<br>3-5<br>3-6<br>3-7<br>3-8<br>3-9        |
|       | 4-1.<br>4-2.<br>4-3.<br>4-4.<br>4-5.<br>4-6.<br>4-7.                   | Basic High Resistance Measurement "Pico-Diode" Characteristic Basic Parametric Converter Bridge Circuit Simplified Pico-diode Characteristic Simplified Circuit Input Insulator Detail Simplified Block Diagram | 4-1<br>4-1<br>4-2<br>4-2<br>4-3<br>4-4<br>4-5               |
|       | 5-1.<br>5-2.<br>5-3A.<br>5-3B.<br>5-4.<br>5-5.<br>5-6.<br>5-7.<br>5-8. | 4329A Adjustments Location                                                                                                                                                                                      | 5-2<br>5-3<br>5-4<br>5-4<br>5-5<br>5-6<br>5-6<br>5-7<br>5-8 |
|       | 8-1.<br>8-2A 'B<br>8-3.                                                | Schematic Diagram Notes                                                                                                                                                                                         | 8-1<br>8-2<br>8-3                                           |

| Number       |                                                                                                                                                                                                                                                                                                                                                | Page                                   |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| 8-4.<br>8-5. | Test Voltage Switch Assembly A4 Schematic  Mode Switch Assembly A5 Schematic  Multiplier Indicator Assembly A6 Schematic  Range Switch Assembly A7 Schematic  Meter Scale Indicator Assembly A11 Schematic  Component Location, A4, A5, A6, A7 and A11  Parametric Converter Assembly A8 Schematic  Oscillator/Amplifier Assembly A9 Schematic | 8-5<br>8-5<br>8-5<br>8-5<br>8-4<br>8-7 |
|              | Amplifier/Meter Circuit Assembly A10 Schematic                                                                                                                                                                                                                                                                                                 | 8-7                                    |
| 8-6.         | Component Location; A8 A9 and A10.  Mother Board Assembly A1 Schematic  Low Voltage Power Supply Assembly A2 Schematic  Test Voltage Power Supply Assembly A3 Schematic  Component Location, A1, A2 and A3.                                                                                                                                    | 8-6<br>8-9<br>8-9<br>8-9<br>8-8        |
|              | LIST OF TABLES                                                                                                                                                                                                                                                                                                                                 |                                        |
| Number       | Title                                                                                                                                                                                                                                                                                                                                          | Page                                   |
| 1-1.         | Specifications                                                                                                                                                                                                                                                                                                                                 | 1-2                                    |
| 5-1.<br>5-2. | Recommended Test Equipment                                                                                                                                                                                                                                                                                                                     | 5-1<br>5-2                             |
| 6-1.<br>6-2. | List of Reference Designators and Abbreviations Replaceable Parts                                                                                                                                                                                                                                                                              | 6-1<br>6-3                             |
| 7-1.         | Backdating Changes                                                                                                                                                                                                                                                                                                                             | 7_1                                    |

# SECTION I GENERAL INFORMATION

#### 1-1. GENERAL.

- 1-2. The HP Model 4329A High Resistance Meter is a solid-state measuring instrument intended for a majority of very-high-resistance test applications. The 4329A may be applied directly to the measurement of resistive elements such as high-valued resistors, capacitors and materials, or to the examination of volume and surface resistivities of solid or liquid materials using suitable resistivity cells. Covering a resistance range of 500 kilohms to 2 x 10<sup>16</sup> ohms, the 4329A is provided with seven discrete Test Voltages for maximum flexibility over the resistance range. Automatic indication of meter and multiplier scales to be read is featured, providing rapid reading and straightforward operation.
- 1-3. The 4329A uses a unique measurement circuit known as a "self-oscillating parametric converter"; a variable-capacitance diode bridge circuit serves as the parametric element. This technique provides the needed conversion of minute dc currents to ac oscillations eliminating traditional problems of dc drift, noisy choppers and vacuum tubes.
- 1-4. The internal dc current measuring circuit which is the heart of the instrument is made available for

- current measurement. Use of the 4329A as a picoammeter is intended as a limited application, considering the necessity to calculate errors. This added current measurement feature, however, will be found a convenient complement to high-resistance testing.
- 1-5. The Model 4329A has a "recorder output" voltage proportional to meter deflection. This voltage varies from 0 to 100mV dc for meter deflection from to full-scale.

#### 1-6. GROUND/GUARD DEFINITIONS.

1-7. Ground ( $\perp$ ) is referred to as the power-line earth connection, and if properly connected, the instrument outer case and front panel ground connector are connected to this ground. Guard ( $\checkmark$ ) is referred to in numerous ways in the 4329A. It is electrically a metallic enclosure around the low-current measurement circuits. This enclosure is also the circuit "common" or the traditional "chassis" relative to instrument circuitry. It is insulated from the instrument case. It is connected to the GUARD connector on the front panel, the UNKNOWN Rx (-) terminals on front and rear panels, and to the

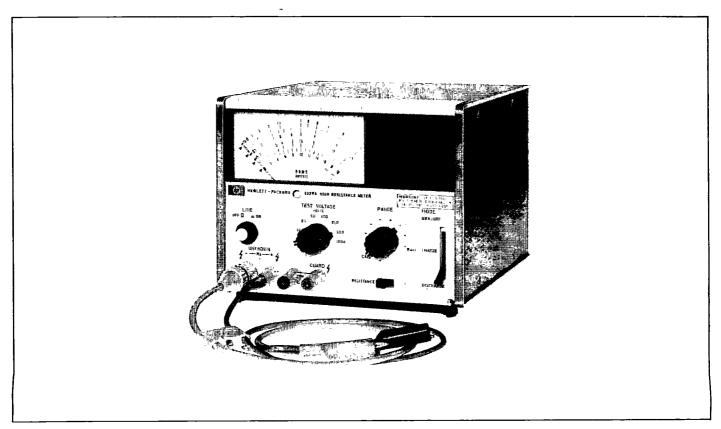



Figure 1-1. Model 4329A High Resistance Meter

panel RECORDER output connector low terminal. The GUARD and GROUND are interconnected at the front panel by a ground-strap for most measurements. When not so connected, the GUARD will be at Test Voltage potential relative to GROUND.

#### 1-8. INSTRUMENT IDENTIFICATION

1-9. Hewlett-Packard uses a two-section ten-character (0000A00000) or eight-character (000-00000) serial number. The first three or four digits (serial prefix) identify a series of instrument; the last five digits identify a particular instrument in that series. A letter placed between the two sections identifies the country where the instrument was manufactured. The serial number appears on a plate located on the rear panel. All correspondence with Hewlett-Packard Sales/Service Offices with regard to an instrument

should refer to the complete serial number.

#### 1-10. MANUAL CHANGES.

1-11. This manual provides operating and service information for the HP Model 4329A High Resistance Meter. Information in this manual applies directly to instruments (as manufactured) with serial numbers prefixed by the four digits indicated on the title page. If the serial prefix of the instrument is different from that on the title page, a "Manual Change" sheet supplied will describe changes which will adapt this manual to provide correct coverage. Technical correction (if any) to this manual, due to known errors in print, are called Errata and are shown on the change sheet. For information on manual coverage of any HP instrument, contact the nearest HP Sales/Service Office (addresses are listed at the rear of this manual.)

Table 1-1. Specifications

Resistance Range:  $500k\Omega$  to  $2 \times 10^{16} \Omega$ 

#### Resistance Accuracy:

±10% of reading except on RMAX. range after initial can and full-scale calibration. Accuracy depends on the deflection angle of the meter. At low resistance end of each scale, typical

accuracy is about  $\pm 3\%$ ; near center scale about  $\pm 5\%$ . Above effective upper limits (see table below), accuracy is not specified. On all voltage ranges, if multiplier is set to R MAX., add 3%.

| Test Voltage                        | 10V ±3%                                                                                   | 25 V ±3%    | 50V ±3%                                                 | 100V ±3%                                              | 250V ±3%                                        | 500 V ±3%   | 1000V ±3% |
|-------------------------------------|-------------------------------------------------------------------------------------------|-------------|---------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------|-------------|-----------|
| Available<br>Resistance<br>Readings | $\begin{array}{c} 5 \times 10^5 \Omega \\ \text{to } 2 \times 10^{14} \Omega \end{array}$ |             | $2.5 \times 10^{6} \Omega$ $to 1 \times 10^{15} \Omega$ | $5 \times 10^{6} \Omega$ to $2 \times 10^{15} \Omega$ | 1.25 x $10^7 \Omega$<br>to 5 x $10^{15} \Omega$ |             |           |
| Meter Scale                         | 0.5 to 20                                                                                 | 0. 125 to 5 | 0. 25 to 10                                             | 0.5 to 20                                             | 0.125 to 5                                      | 0. 25 to 10 | 0.5 to 20 |
| Effective<br>Upper Limit            | 5                                                                                         | 1. 25       | 2 5                                                     | 5                                                     | 1. 25                                           | 2.5         | 5         |

Current Range: 0.05pA to  $20 \mu A$ .

#### Current Accuracy

 $\pm 5\%$  using ideal current source of infinite impedance; for finite source impedances, accuracy is determined by the range resistor which sets meter input impedance. These vary from  $10^4~\Omega$  to  $10^{11}~\Omega$ , depending on the range selected. This additional error can be large, and should be calculated if the 4329A's current measurement capability is to be utilized.

Recorder output: 0 to 100mVdc, proportional to meter deflection, output impedance  $1k\Omega$ .

Power: 115,230V,  $\pm 10\%$ . 50 or 60Hz, 3W.

Weight 7.7lbs. (3.5kg)

#### Accessories Furnished:

16117A Low Noise Test Leads, composed of insulated BNC to Alligator clip lead, and banana plug to Alligator clip lead. On BNC lead, outer conductor comprised guard shield. Guard isolated from low resistance alligator clip sleeve.

#### Dimensions:

NOTE

DIMENSIONS IN INCHES AND (MILLIMETERS).

(A) FOR TOTAL LENGTH INCLUDING ENDS.
ADD 237-23 (20)

(B) FOR HEIGHT INCLUDING FEET ADD 7-16 (11).

(C) FOR TOTAL LENGTH INCLUDING FISE
HOLDER ENTRUDED. ADD 1-8-131

SIDE

DWC-0036A-0669

DWC-0036A-0669

REAR APRON. (2)

REAR APRON

# SECTION II

#### 2-1. INTRODUCTION

2-2. This section contains information for unpacking, inspection, repackaging, storage, and installation of the Model 4329A.

#### 2-3. UNPACKING AND INSPECTION

2-4. If the shipping carton is damaged, ask that the carrier's agent be present when the instrument is unpacked. Inspect the instrument for damage (scratches, dents, broken knobs, etc.). If the instrument is damaged or fails to meet specifications, notify the carrier and the nearest Hewlett-Packard field office (see list at back of this manual). Retain the shipping carton and the padding material for the carrier's inspection. The field office will arrange for the repair or replacement of your instrument without waiting for the claim against the carrier to be settled.

#### 2-5. STORAGE AND SHIPMENT.

- 2-6. <u>PACKAGING</u>. To protect valuable electronic equipment during storage or shipment always use the best packaging methods available. Your Hewlett-Packard field office can provide packing material such as that used for original factory packaging. Contract packaging companies in many cities can provide dependable custom packaging on short notice. Here are a few recommended packaging methods:
- a. RUBBERIZED HAIR. Cover painted surfaces of instrument with protective wrapping paper. Pack instrument securely in strong corrugated container (350 lb, sq in. bursting test) with 2-inch rubberized hair pads placed along all surfaces of the instrument. Insert fillers between pads and container to ensure a snug fit.
- b. EXCELSIOR. Cover painted surfaces of instrument with protective wrapping paper. Pack instrument in strong corrugated container (350 lb/sq in. bursting test) with a layer of excelsior about 6 inches thick packed firmly against all surfaces of the instrument.
- 2-7. <u>ENVIRONMENT</u>. Conditions during storage and shipment should normally be limited as follows:
  - a. Maximum altitude, 20,000 feet.
  - b. Minimum temperature, -40°F (-40°C).
  - c. Maximum temperature, 167°F (75°C)

#### 2-8. INSTALLATION

2-9. The Model 4329A is a submodular unit, equipped with plastic feet and tilt stand for bench operation as shipped from the factory. However, when used in combination with other submodular units it can be

bench and 'or rack mounted. The HP combining case and adapter frame are designed for this purpose and are available through your Hewlett-Packard Sales and Service Office.

#### 2-10. COMBINING CASE ( Models 1051A or 1052A)

2-11. The combining case is a full-module unit which accepts various combinations of submodular units. Being a full-module unit, it can be bench or rack mounted and is analogous to any full-module instrument.

#### 2-12. ADAPTER FRAME (@ Part No. 5060-0797)

2-13. The adapter frame is a rack frame that accepts any combination of submodular units. It can be rack mounted only.

#### 2-14. POWER CONNECTION

2-15. LINE VOLTAGE The Model 4329A May be operated from either 115- or 230-volt  $(\pm 10^{\circ\prime})$  50 or 60Hz power lines, which can supply approximately 3 watts. A slide switch on the rear panel permits quick conversion for operation from either voltage. Insert a narrow-blade screwdriver in the switch slot and slide the switch to the right for 230-volt operation ("230" marking exposed) or to the left for 115-volt operation ("115" marking exposed). The Model 4329A is supplied with a 0.1 ampere fuse for either 115-or 230-volt operation.

#### CAUTION

To avoid damage to the instrument, before connecting the power cable, set the 115, 230 switch for the line voltage to be used.

- 2-16. POWER CABLE. To protect operating personnel, the National Electrical Manufactures' Association (NEMA) recommends that instrument panels and cabinets be grounded. Accordingly, the Model 4329A is equipped with a detachable three conductor power cable which, when plugged into an appropriate receptacle, grounds panel and cabinet. The offset pin of the three-prong connector is the ground pin. Proceed as follows for power cable installation.
- a. Connect flat plug (3-terminal connector) to LINE jack at rear of instrument.
- b. Connect plug (2-blade with round grounding pin) to 3-wire (grounded) power outlet. Exposed portions of instrument are grounded through the round pin on the plug for safety; when only 2-blade outlet is available, use connector adapter (PN 1251-8196) then connect short wire from side of adapter to ground to preserve the protection feature.

## CAUTION

In the design of the Model 4329A High Resistance Meter, many precautions have been taken to prevent the possibility of electrical shock. However, high voltage is necessary to make measurement at the desired levels and one should be aware of the dangers involved.

The current supplied by the 4329A under short-circuit conditions is less than approximately 0.5mA at any range. Painful shock may result upon contact. Note that any of UNKNOWN terminals, GUARD terminal, and RECORDER terminals may be at high voltage, depending on the position of the ground strap.

When capacitors are being tested, the possibility of dangerous charge level may exist. It is therefore recommended that all capacitors should be fully discharged. The following steps outlines the discharging procedure. The capacitor should always be shunted before connection, and the MODE switch should be set to DISCHARGE for a few seconds before disconnection.

# SECTION III OPERATION

#### 3-1. INTRODUCTION

3-2. This section includes a complete description of the High Resistance Meter operating controls, its accessories, characteristics and techniques of use.

3-3. CONTROLS, INDICATORS AND CONNECTORS.

3-4. All controls and connectors of the 4329A are identified and described by Figures 3-2 and 3-3.

3-5. BASIC OPERATING PROCEDURE

3-6. TURN-ON

#### WARNING

IN VARIOUS MODES OF OPERATION DEPENDENT ON TEST-LEAD CONFIG-URATION, GROUND-STRAP POSITION AND FRONT PANEL SWITCHES, THERE MAY BE UP TO1000VDC WITH RESPECT TO GROUND APPEARING ON THE "GUARD"AND "UNKNOWN" TERMINALS. ALTHOUGH MAXIMUM SHORT CIRCUIT CURRENT IS LIMITED TO SAFE LEVELS, THE POSSIBILITY OF HEAVY DISCHARGE CURRENT FROM CAPACI-TORS UNDER TEST IS PRESENT. GOOD MEASUREMENT PRACTICE REQUIRES THEREFORE THAT THE MODE "DIS-CHARGE" SWITCH BE USED AS MAT-TER OR ROUTINE, AND THAT THE TEST VOLTAGE BE REDUCED TO ZERO WHENEVER OPERATORS HANDLE LEADS OR SAMPLE UNDER TEST.

- a. Set 115, 230V slide-switch on rear panel to line voltage to be used.
- b. Connect power line to power input jack, assuring that a power line ground is provided and that the LINE push-button is off.
- c. Set TEST VOLTAGE to zero, and MODE to "DISCHARGE".
- d. Set RESISTANCE/CURRENT to RESISTANCE.
- e. Connect 16117A Low Noise Test Leads to UN-KNOWN terminals, assuring that ground strap is connected from ground to guard.
- f. Push line "ON".
- g. Switch RANGE to "CAL". Check meter deflection. If meter reading does not indicate full-scale, adjust FULL-SCALE CAL on rear panel.

#### WARNING

WHEN YOU MAKE THIS ADJUSTMENT, GUARD TERMINAL SHOULD BE CONNECTED TO GND (GROUND) TERMINAL WITH THE SHORT STRAP.

h. Return RANGE switch to any other position. If pointer doesn't indicate infinity, adjust at rear panel ∞ADJ using insulated screwdriver or tuning wand.

#### WARNING

WHEN YOU MAKE THIS ADJUSTMENT, GUARD TERMINAL SHOULD BE CONNECTED TO GND (GROUND) TERMINAL WITH THE SHORT STRAP.

#### 3-7. 16117A LOW NOISE TEST LEADS

3-8. The 16117A Low Noise Test Leads are designed to provide maximum measurement convenience. The coaxial lead contains a graphite lubricant between conductors and dielectric to reduce errors generated by flexing the cable. The guard circuit is carried from the UNKNOWN connector out to the sample by the test lead outer coaxial conductor. The alligator clip's vinyl cover represents moderate insulation resistance, if the guard (outer conductor) and test voltage (inner conductor) were separated at the measurement point by only this material, poor guarding would result. For this reason the molded cylinder behind the clip encloses a special guard ring and lead separation design to reduce measurement error. Without the guard ring, if the low-resistance insulation on the positive (red) test lead were to contact the coaxial lead outer cover, this could represent a low resistance current path in parallel with Rx. Error currents could flow from the (+) conductor to the (-) center conductor through the (+) insulation, the surface resistance of the coaxial outer covering and the low resistance alligator-clip cover to the coaxial center conductor. The guard ring intercepts these possible error currents, returning them to the Test Voltage by way of the guard circuit, as a result they do not pass through the meter circuit, and potential error is eliminated. The molded grip on the connector provides convenience in handling when test voltage is present on the guard connector.

#### WARNING

HAZARDOUS VOLTAGE MAY EXIST AT GUARD RING WHEN GUARD IS NOT CONNECTED TO GROUND.

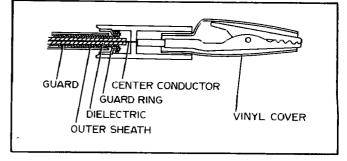
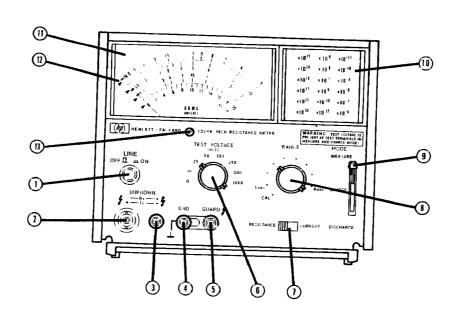
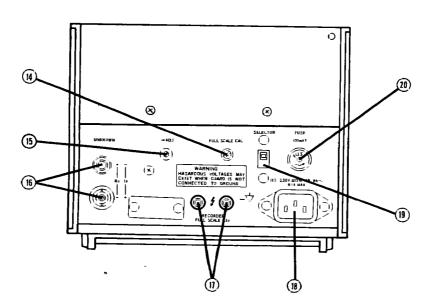





Figure 3-1. Low Noise Test Lead Guard Detail.



- 1. LINE: Applies power to instrument. Push ON OFF. Illuminates in "ON" position.
- 2. UNKNOWN: High-impedance side of the UN-KNOWN terminals. BNC jack outer conductor is internally connected to GUARD circuit. Outer plastic cover provides handling convenience when GUARD at is negative TEST VOLTAGE potential. In CURRENT mode 7, this is positive terminal of pico-ammeter.
- UNKNOWN: Low-impedance side of the UN-KNOWN terminals. In resistance measurement, TEST VOLTAGE is applied to sample. This is also negative terminal for current measurement.
- 4. GND: Power line ground. Ground strap is normally tied to GUARD.
- 5. GUARD: Circuit common for measurement circuitry internally insulated from ground. Common with 2 outer conductor. This terminal will be at negative test voltage potential relative to ground if the ground strap is tied to 3.
- 6. TEST VOLTAGE: Selects dc regulated voltage which is used to drive current through the sample. Zero position is grounded. Voltage is applied to sample through terminal 3. Determines meter scale and multiplying factor to be used in conjunction with 8.

- 7. RESISTANCE/CURRENT: Selects measurement of either Rx or Ix. Current position disconnects Test Voltage from measurement circuits and connects 5 to 3.
- 8. RANGE: Selects resistance or current meterscale and multiplying factor dependent on test voltage being used. Meter-circuit shunts selected vary from 10<sup>4</sup> to 10<sup>11</sup> ohms.
- 9. MODE: "DISCHARGE" disconnects test voltage internally, and connects 1 Megohm from 2 to 3 to provide discharge path for charge accumulated by sample. "CHARGE" disconnects meter circuits, and connects one side of sample to circuit common for rapid charging of sample effective capacity. "MEASURE" connects sample to meter circuit, and applies Test Voltage internally for resistance measurement.
- 10. METER MULTIPLIER: Multiply by meter reading to obtain final reading. Controlled by 6 and 8. Illuminated readout of selected multiplier.
- 11. METER: Provides three resistance scales and one current scale. Meter Scale Indicators are provided to indicate meter scale to be read.
- 12. METER SCALE INDICATOR: Indicates meter scale to be read.
- 13. Mechanical zero-set.



14. FULL-SCALE CAL: Adjusts meter to "CAL" when 8 is full counter-clockwise (CAL position).

#### WARNING

WHEN YOU MAKE THIS ADJUST-MENT, GUARD TERMINAL SHOULD BE CONNECTED TO GND (GROUND) TERMINAL WITH THE SHORT STRAP.

15. ADJ: Sets electrical "zero" of meter.

#### WARNING

WHEN YOU MAKE THIS ADJUST-MENT, GUARD TERMINAL SHOULD BE CONNECTED TO GND (GROUND) TERMINAL WITH THE SHORT STRAP.

- 16. UNKNOWN: Terminals in parallel with front panel "UNKNOWN" terminals (Option C10 only).
- 17. RECORDER OUTPUT: 0 to 100mV analog output proportional to meter deflection. Output impedance is  $1k\Omega$ .

#### WARNING

HAZARDOUS VOLTAGES MAY EXIST WHEN GUARD IS NOT CONNECTED TO GROUND.

- Power input jack. Make receptacle for 115/ 230V ac power. Center pin is ground.
- 19. 115/230V ac selector: Selects appropriate line voltage. Operate with power off.
- 20. Fuse: 0.1A slow-blow.

#### 3-9. MEASUREMENT MODES

3-10. The 4329A High Resistance Meter can be applied in numerous ways: basic high resistance measurement of ungrounded resistances; measurement of grounded samples (such as grounded shield cables), current measurement; sheet in sulation surface and volume resistivity testing (using the 16008A Resistivity Cell Accessory); capacitor leakage tests, liquid resistivity testing (using a suitable cell), and combinations of these. This section outlines basic measurement considerations and specific operating techniques (Figure 3-5 to Figure 3-8).

#### 3-11. APPLICATIONS

3-12. High resistance measurement and insulation testing find broad application in the design, production and use of insulating materials such as teflon, polyethylene, polystyrene, ceramics, plastics, fibres, synthetics, rubber, glass and phenolics. The insulating qualities of common materials used in switches, relays, stand-offs, printed-circuit boards, cables, insulating films, varnishes, tapes, oils, and papers can be readily measured.

3-13. Insulators, resistors, transformers and other devices finding application in high voltage circuitry (such as cathode-ray-tube power supplies) and highpower transmission are dependent on the stability and reliability of high level "teraohm" resistances. The flexibility of the 4329A Test Voltage supply and the wide measurement range provided (up to 2 x  $10^{16}$  ohms) make the High Resistance Meter particularly useful for examination of the voltage coefficient of resistance of these components.

#### NOTE

Resistance values in the high megohm and teraohm regions are subject to wide variations in measured and operating values dependent on applied voltage. All high-valued insulating or resistor materials can be considered non-linear; this is particularly noticeable at increasingly high voltages

3-14. The directions taken in recent years by circuit designers have given rise to new requirements in high resistance measurement. Printed-circuit board materials and their resistance to environmental conditions such as humidity and elevated temperatures can be critical to high-impedance solid-state circuits. This is especially true for those employing FETs (Field Effect Transistors). Occasionally, materials applied in substrates and encapsulation of integrated circuits and transistors bring problems of insulation resistance and surface leakage to solid state circuit design. Testing of capacitors for dielectric qualities, particularly the "leakage" resistance of the dielectric material has long been a requirement for high-resistance measurement.

3-15. In measuring a capacitive sample, the capacitor should be pre-charged for more than few seconds

capacitance of the sample). If the sample is not fully charged, when the MODE switch is set to "MEASURE" position, the meter will peg due to the charging current. Internal Test Voltage Supply current capacity is limited for safe measurement, since it takes relatively long time to charge to sample in measuring the capacitor having large capacitance greater than a several hundreds micro-farads. Essentially the 4329A is a high input resistance instrument (input resistance depends on RANGE used) so, when capacitor with high value and low leakage current is measure, it should be understood that very long measurement time may be required to get the final (correct) value.

#### WARNING

IN TESTING CAPACITORS, ALWAYS DISCHARGE THEM BEFORE AND AFTER MEASUREMENT; USE A SHORTING BAR OR CLIP LEAD AND USE THE INSTRUMENT "DISCHARGE" SWITCH FOR A FEW SECONDS TO ASSURE THAT DANCHARGE LEVELS ARE NOT ACCIDENTALLY HANDLED.

3-16. Resistivity (per-unit area or volume) measurement occupies a specialized place in the field of insulation testing. Surface and volume resistivity are readily measureable with the HP4329A, using 16008A Resistivity cell. This technique applies the test voltage to the sample in such a way as to distribute the potential over both sides (volume) or one side (surface) of sheet samples of insulating material. Given the size of the electrodes and the dimensions of the sample, resistivity values are easily calculated. (see para, 3-25). Resistivity, conductivity, dielectric leakage, purity, and chemical content of liquids can be measured using suitable cells, again, cell construction essentially distributes and guards the test voltage potential for a given volume of liquid sample. Suitable cells can be constructed according to ASTM or user guidelines. Commercially, liquid resistivity cells are available from a number of manufacturers.

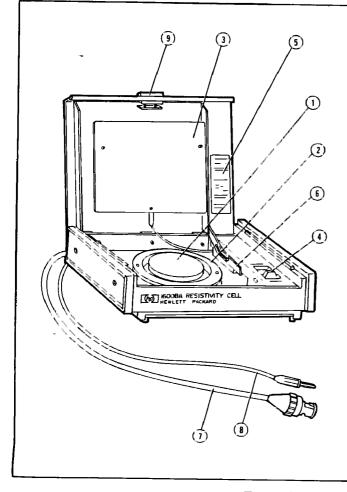
#### 3-17. SAMPLE BREAKDOWN; SHORT CIRCUITS

3-18. If resistance samples should break down during test, or test leads should be inadvertently shorted, the meter pointer will "peg" up-scale. Although the measurement circuits are protected, prolonged short-circuit conditions are ill-advised. Reduce test voltage to zero as soon as possible, set MODE to DISCHARGE.

#### 3-19. SHIELDING

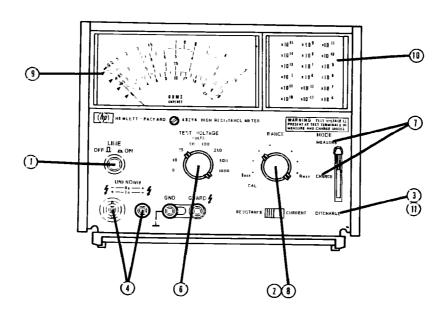
3-20. Variation in total current seen by the measurement circuit can be caused by power-line pickup, adjacent fields of excessive strength, flexing the test leads beyond reasonable limits, or while changing the position of the leads relative to their surroundings Most noise problems of this type are transient, and contribute more inconvenience than error. If on sensitive ranges, shielding of the sample is required, any suitable enclosure will suffice to reduce unwanted pick-up. Connect the shield to guard (ground). If on sensitive ranges, lead movement or operator proximity affects stability of readings, stationary leads and

shielding are recommended.


#### 3-21. CURRENT MEASUREMENT

3-22. The High Resistance Meter's high-impedance measurement and metering circuits have been made available for current measurement. Basic measurement accuracy is 5% (8% on the most sensitive range) assuming an infinite source impedance. Additional errors due to finite values of source impedance on be calculated using the following expression:

$$^{07}_{6}$$
 ERROR =  $(\frac{Rs}{Rr + Rs} - 1) \times 100\%$ 

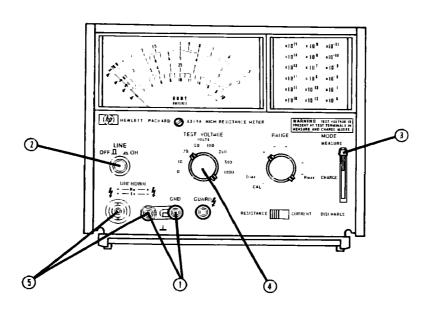

where Rs = output resistance of current source, and Rr = meter internal range resistor. Applicable range resistors (Rr) are (for full-scale current ranges) indicated:

| Rr<br>(ohms)     | Range<br>(Amps)     | Rr<br>(ohms)    | Range<br>(Amps)    |
|------------------|---------------------|-----------------|--------------------|
| 10 <sup>11</sup> | 2x10 <sup>-12</sup> | 10 <sup>7</sup> | 2x10 <sup>-8</sup> |
| 10 <sup>10</sup> | 2x10 <sup>-11</sup> | 10 <sup>6</sup> | 2x10 <sup>-7</sup> |
| 10 <sup>9</sup>  | 2x10 <sup>-10</sup> | 10 <sup>5</sup> | 2x10 <sup>-6</sup> |
| 10 <sup>8</sup>  | 2x10 <sup>-9</sup>  | 10 <sup>4</sup> | 2x10 <sup>-5</sup> |
|                  |                     | <u> </u>        | <u>L</u>           |



- 1. Center Electrode: covered with conducting plastic for uniform contact. Negative potential of Test Voltage is applied through Low Noise Test Lead.
- 2. Guard Ring: provides guarding for volume measurement. Positive potential of Test Voltage is applied for surface measurement.
- 3. Upper Electrode: provides guarding for surface measurement. Positive potential of Test Voltage is applied for volume measurement
- 4. VOLUME-SURFACE Switch: selects measurement mode of volume or surface resistivity.
- 5. Calculation formula: for both measurements are shown here for convenience.
- 6. Top Cover Arm: activates microswitch for application of Test Voltage. Test Voltage is not present when top cover is open.
- 7. Low Noise Test Lead: carries negative potential of Test Voltage to center electrode. Outer conductor of this cable is connected to guard circuit (to Guard Ring for volume measurement or upper electrode for surface measurement). Connect this to the Model 4329A UNKNOWN bnc connector.
- Test Lead (Red): carries positive potential of Test Voltage to Guard Ring for surface measurement, or Upper Electrode for volume measurement.
- 9. Latch: locks top cover. Push to open.

Figure 3-4. Resistivity Cell Controls.

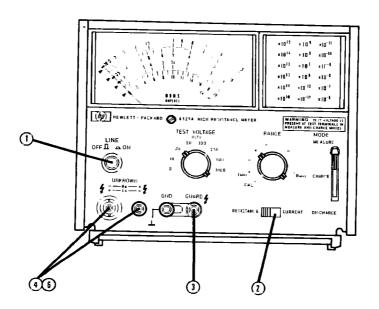



- 1. Read TURN-ON instructions. Turn on instrument according to para. 3-6.
- 2. Set RANGE to I MAX.
- 3. Set MODE to DISCHARGE.
- 4. Connect 16117A Low Noise Test leads to Rx (UNKNOWN) connectors.
- 5. Connect clips to sample. (If testing junction devices or capacitors, check polarity.)
- 6. Select a suitable Test Voltage.
- 7. Switch MODE to CHARGE. Switch MODE to MEASURE. (Sample test circuit charge time will depend on range, test voltage, sample type and sample magnitude).
- 8. Rotate RANGE switch until pointer indicates a

- convenient reading. (NOTE: Best accuracy is obtained on the low end of the Meter Scales).
- Select scale to be read. (▷) lights at left end of scale indicate applicable scale.
- Multiply reading from meter scale by factor illuminated. This is sample resistance in ohms.
- 11 Return MODE to DISCHARGE before disconnecting sample.

#### WARNING

Do not handle test lead clips during measurement without setting MODE switch to DISCHARGE, and TEST VOLTAGE switch to zero.




- Shift ground-strap to interconnect ground and + of UNKNOWN.
- 2. Turn on instrument as in paragraph 3-6, leave ground-strap as in 1 above.
- 3. Set MODE to DISCHARGE.
- 4. Set TEST VOLTAGE to ZERO.
- 5. Connect 16117A Low-Noise Test Leads to UNKNOWN terminals.

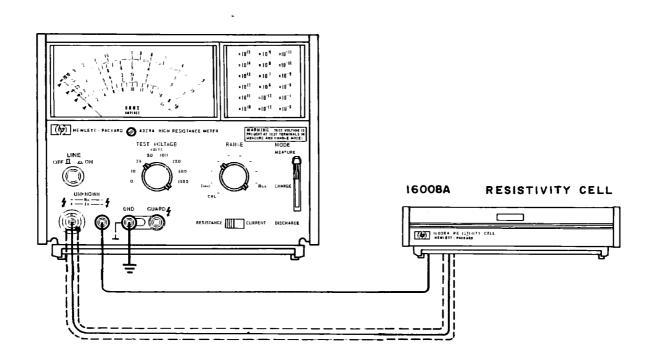
- 6. Connect test lead clips to sample.
- 7. Continue as for Fig. 3-5, steps 6, through 11.

#### WARNING

In this mode, the GUARD terminal is at a potential equal to minus the test voltage. This applies to the Guard connection on the rear panel, and the outer conductor of the 16117A coaxial lead.



- 1. Turn on instrument according to instructions in para. 3-6.
- 2. Set RESISTANCE-CURRENT Slide-switch to CURRENT.
- 3. Ground the guard connector using the strap.
- 4. Connect test leads to instrument Ix terminals.
- Note Ix polarity; connect test leads to appropriate points on current source to be measured.
- 6. Switch MODE to MEASURE.
- 7. Rotate RANGE until suitable reading is obtained. (See Figure 3-5, 8 to 10)


8. Do not set TEST VOLTAGE switch to other than zero, or slide switch to other than CURRENT during current measurement.

#### WARNING

The Test Voltage is disconnected from the UNKNOWN terminals by the RESISTANCE CURRENT slide switch when set to CURRENT. The TEST VOLTAGE should be set to zero position, and the MODE switch to DISCHARGE position.

9. See para. 3-20 on current measurement accuracy.

11



- 1. Turn on 4329A as in para. 3-6.
- 2. Place sample in 16008A Resistivity Cell (or equivalent).
- 3. Select VOLUME or SURFACE (in using 16008A).
- 4. Close top cover of cell, snap catch firmly to lock.
- 5. Select suitable Test Voltage.
- 6. Switch MODE to CHARGE. Switch MODE to MEASURE.
- 7. Rotate RANGE to convenient reading.

8. Calculate resistivity using appropriate formula.

#### CAUTION

16008A Top cover (when closed) turns on the micro-switch which results in the application of Test Voltage to electrodes. Voltages are not present at the electrodes when top cover is open. Do not close resistivity cell top cover without a sample, or insulator present to separate electrodes. (See para. 3-28)

#### 3-23. RECORDER OUTPUT

3-24. When monitoring slowly-varying resistance changes with humidity, voltage, temperature, etc. the recorder output in the instruments rear panel may be used. Note that the recorder output terminals common terminal is circuit guard and may be at the test potential relative to ground.

#### WARNING

HAZARDOUS VOLTAGES MAY EXIST WHEN GUARD IS NOT CONNECTED TO GROUND.

## 3-25. 16008A RESISTIVITY CELL

3-26. This accessory is used in conjunction with the HP 4329A High Resistance Meter for resistivity testing of insulation materials in "sheet" form. Samples are placed in the cell and clamped between electrods and guard "ring". Samples should be less than 7mm thick and greater than 10cm in width (or diameter) to be measured. (See Figure 3-4).

3-27. Surface Resistivity is defined as the ratio of potential grandient parallel to the current along a surface to the current per unit width of the surface. It follows that surface resistivity is equal to surface resistance if the electrodes on the measured surface form two sides of a square. Units of surface resistivity are ohms, and can be attributed to current flow through surface deposits, moisture, oxides and other semiconducting materials on insulator surfaces. 4329A Meter readings are converted to resistivity quantities using the following expression (derived from the dimensions of the 16008A electrodes):

$$\sigma = 18.8 \text{ x Rs}$$

where  $\sigma$  = surface resistivity in ohms, and Rs = indicated surface resistance.

3-28. Volume resistivity is defined as the ratio of the potential gradient parallel to the current in the material to the current density. Thus, calculation of volume resistivity figures uses the following formura:

$$\rho = \frac{19.6}{t} \text{ Rv}$$

where  $\rho$  = volume resistivity in ohm-cm. t = sample thickness in cms. Rv = indicated volume resistance in ohms.

3-29. The cell construction utilizes a conducting plastic electrode for uniform contace without the inconvenience of liquid mercury. The top cover interlocks with test voltage for safe handling, voltage is applied only when the cover is snapped shut. In surface operation, voltage is applied to one side of the sample only, through guardring and center electrode. In volume, voltage is applied through both sides of the sample by way of the upper and center electrode. The ring provides normal guarding in volume measurement. (See Figure 3-4).

#### NOTE

The resistance accuracy of the 4329A is not guaranteed when measurement is performed with the 16008A.

# SECTION IV THEORY OF OPERATION

#### 4-1. GENERAL INFORMATION

4-2. This section is provided to assist the instrument user in understanding the Model 4329A for purposes of maintenance and calibration. The best tool for maintaining and calibrating any electronic instrument is a clear, practical understanding of the principles applied in the operation of the instrument's circuitry.

## 4-3. HIGH RESISTANCE MEASUREMENT

4-4. The measurement of high resistance is essentially a problem of measuring extremely small currents. Until recently, the electrometer vacuumtube, the vibrating reed capacitor, and the field-effect transistor have been the only devices available to provide the extremely high input impedances required. Further, it has been necessary to design do to ac convertors to provide ac amplification of the outputs of tubes and transistors used in electrometers. These convertors (or "choppers") are required to eliminate the errors inherent in dc amplification of such lowlevel signals. (Errors due to "drift" or changes in values of components with time, temperature, etc.) The combined inherent instabilities, drift tendencies, leakage currents, grid currents, and convertor problems have led to the application of an entirely new principle in this type of measurement. As used in the HP 4329A, this principle is called the "self-oscillating parametric impedance convertor". circuit provides both a high-input impedance and an ac output availabe for stable, drift-free amplification. Fig. 4-1 illustrates the basics of a high resistance measurement, showing how the HP circuit combines high impedance and dc to ac conversion in one functional circuit block.

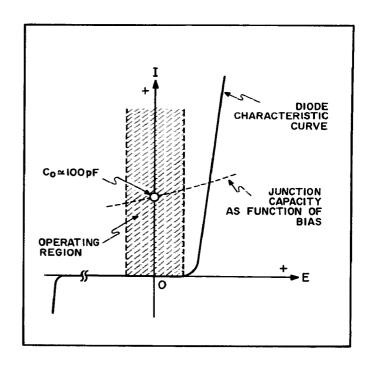



Figure 4-2. "Pico-diode" Characteristic

## 4-5. PRINCIPLE OF PARAMETRIC CONVERTOR

#### 4-6. PICO-DIODES

4-7. The 4329A utilizes a unique pair of "picodiodes". These diodes are essentially variable capacitance diodes designed to have a known junction-capacity characteristic, variable with applied diode voltage. Normally, this caracteristic is non-linear,

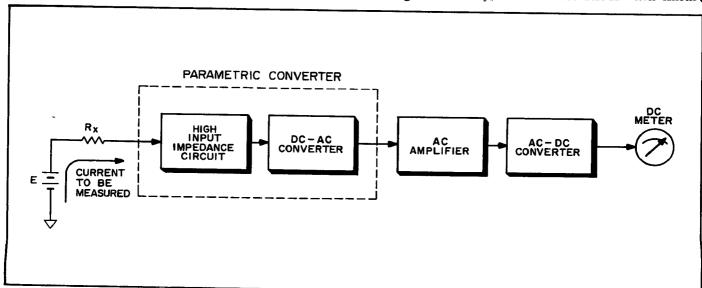



Figure 4-1. Basic High Resistance Measurement

and increases with increasing forward bias. The diodes used in the 4329A have been specially designed and produced to operate with less than 10-11 amps leakage current within the operating region used. As can be seen from Fig. 4-2, the pico-diodes are applied as variable-capacitors and not actually as diodes, as the forward bias does not extend into the conduction region of the diode.

## 4-8. BASIC PARAMETRIC CONVERTOR

4-9. The convertor circuit can be simplified for purposes of understanding its operation to a basic bridge circuit. (See Fig. 4-3). Cl and C2 are pico-diode "capacitors". The two resistance arms are equal. The bridge unbalance voltage is the input to an amplifier, the amplifier's output is the "supply" for the bridge. Assuming a simplified characteristic for C1, C2 as in Fig. 4-4, we can see that C1 does not equal C2 under the balanced, quiescent, ideal conditions shown in Fig. 4-3. That is, the 1 volt difference out of the amplifier does not divide equally over the two capacitors as it does over the two resistors, and the amplifier input could not be zero. The variable capacitor CT set at 20pf then is added to C2, setting both C1 and C2 to 110pf effectively bringing our imaginary bridge into balance. To understand the parametric convertor, we have only to consider the result of making a very small change in the value of CT. if for example, CT is varied upwards (towards a higher value), the net C in the lower arm now is greater than that of C1. Thus the voltage across the lower arm will tend to decrease to a value less than across C1. Point 1 tends to become more negative. This represents a bridge unbalance, and the amplifier sees this as a net negative-going signal at its input. This signal is inverted and amplified (amplifier has 180° phase shift) and the bridge "supply changes. This change in the net voltage between points 3 and 4 is seen by C1 as an increase in forward

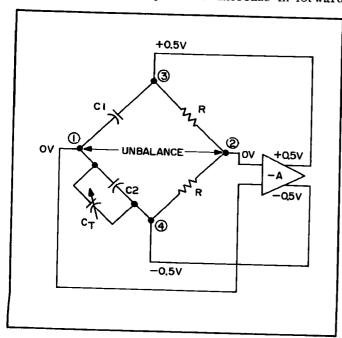



Figure 4-3. Basic Parametric Convertor Bridge Circuit

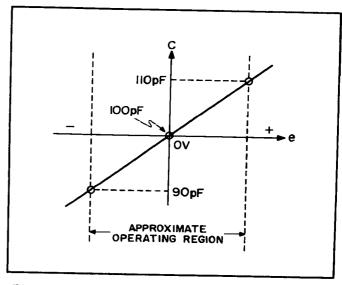



Figure 4-4. Simplified Pico-diode Characteristic

bias, and by C2 as a decrease in forward bias. C1, therefore tends to increase its capacitance, and C2 tends to decrease its capacitance. Thus the effect of the fed-back voltage is to cancel the initial unbalance due to the change in CT. However, the circuit constants (R, L, C) determine the speed at which the response can catch up with the initial unbalance, and by the time the bridge is rebalanced and "quiescent", the total C value of the upper arm is greater than that of the lower and the cycle repeats with all polarities reversed. This action continues as a normal oscillator, at a frequency and amplitude determined by the initial change in CT and by other component values.

4-10. This type of oscillation is called a parametric oscillation, in that the modulation of the reactance parameter ("C") determines the behaviour of the oscillator. In applying this concept to a practical highresistance measuring circuit, only a few simple changes are necessary. Point 1, the junction between C1 and C2 can be considered the "input" point, where a current to be measured is injected into the circuit. Any change in current at this point will be seen as a further unbalance in the bridge. This additional unbalance will be seen as an increase in signal to the amplifier and a resultant increase in the amplitude of oscillations. It remains only to develop a dc voltage proportional to the increase in oscillation amplitude, suitable for driving a meter circuit. The high impedance input is developed by the non-conducting picodiode 'capacitors', aided in a practical circuit by suitable isolating capacitors, high resistance circuit mountings, and augmented by negative feed-back. (See para. 4-18) The stable gain characteristic the 4329A is provided by the standard ac feedbackcontrolled amplifier approach, made possible by the conversion of the dc input current to a change in the amplitude of convertor oscillations.

## 4-11. ACTUAL CIRCUIT SIMPLIFIED

4-12. The actual circuit used in the HP4329A operates in a similar fashion to the analogous circuit described in para. 4-9. The following relates the

more complicated actual circuit to that of para. 4-9.

#### 4-13. PARAMETRIC CONVERTOR ASSEMBLY, A8

4-14. The convertor is comprised of a transformer bridge, pico-diodes CR1 and CR2 being two arms, and the two halves of center-tapped T1 primary winding being the remaining two arms. C6 and C7 isolate dc from the transformer windings. CT is the variable capacitor providing a slight unbalance to the bridge and is used to set the "no-input" oscillation amplitude. (∞ adjust)

4-15. Bridge unbalance is taken from the junction of CT and Co to oscillator/amplifier A9Q1/Q2 through series resonant circuit Co/Lo, which sets the oscillation frequency at approximately 100KHz. The amplifier's output is fed back to the bridge by transformer action (from M3 to M2, M1).

4-16. Oscillations are also transferred by transformer action to the input of meter amplifier A10Q1/Q2, rectified, and the resultant direct current drives the meter M. R9 sets the meter circuit current such

that 200mV at the convertor input gives full-scale deflection.

4-17. The dc negative feedback through the R-C network to the pair of 2 Meg resistors is provided to stabilize the circuit against variations in circuit parameters, particularly the pico-diode characteristics.

4-18. The dc feedback to the input point adds to the total effective insulation resistance of the insulator which isolates the convertor input lead from the leakage resistance of the printed circuit board. This feedback is equal in size and polarity to the input voltage itself, and is applied to the conducting surface around the periphery of the insulating cylinder containing the input junction point. Since the voltage at the inner surface of the cylinder is therefore equal to that at the outer surface, no leakage occurs through the teflon cylinder and its insulating qualities are enhanced. (See Fig. 4-6) The input conductor connects to the central "tie-point" within the teflon cylinder, the feedback connects to the printed-circuit conductor surrounding the teflon.

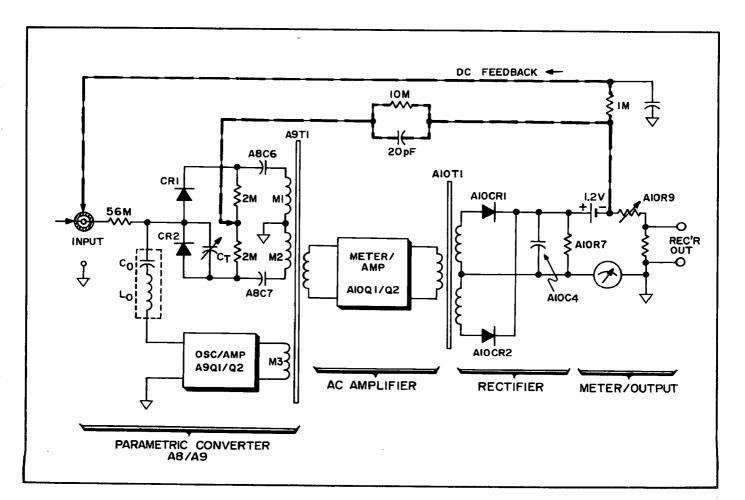



Figure 4-5. Simplified Circuit

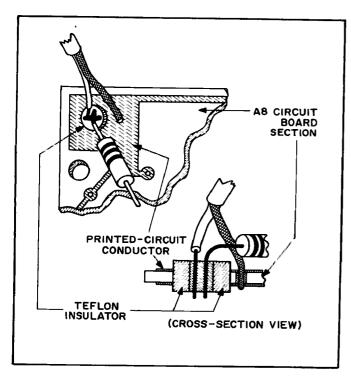



Figure 4-6. Input Insulator Detail

## 4-19. COMPLETE INSTRUMENT SIMPLIFIED

4-20. The complete high-resistance meter can be represented as shown in Fig. 4-7.

4-21. Test voltages from 10 to 1000VDC are generated to ±3% accuracies by the test voltage power supply A3. The front panel control "Test Voltage" selects the desired voltage by changing the total value of control resistance in the sensor amplifier input in the supply itself. Part of the same switch assembly (A4) selects the appropriate meter scale indicator to be lit. These are: Upper scale 1000V, 100V, 10V; middle scale 25V, 250V; lower scale 50V, 500V. The full-scale adjust sets the meter pointer to the "CAL" position, when the RANGE switch is set to CAL. When the range switch is in CAL, 10VDC is taken from the test voltage switch, divided down to 200mV, and applied to the input of the convertor.

4-22. The voltage selected is passed to the MODE switch assembly A5, where three possibilities are present, depending on the position of the front panel switch. In MEASURE the test voltage is passed directly to the plus side of the front and rear panel measuring terminals. The negative side of the measuring terminals is connected to the measuring circuits via the range switch assembly. In CHARGE, the test voltage is connected as in MEASURE, but the negative side is returned to circuit common. This provides rapid charging of the resistance under test. In DISCHARGE, the test voltage is disconnected from the sample, and the sample charge is allowed to discharge through a 1 Megohm resistor.

4-23. Current in the sample due to application of the test voltage flows through selected RANGE resistor

as determined by the setting of the front panel RANGE switch. The selected resistor shunts the input to the parametric convertor assembly determining therefore, the total current used to cause meter deflection. (These resistors have values up to 1011 ohms).

4-24. Selection of the desired range resistor, giving the most convenient scale will also select the correct multiplier ( $10^6$  to  $10^{15}$ ) by which to multiply the reading. The following shows which multipliers are used with each test voltage:

#### 4-25. ADDITIONAL CIRCUIT DETAILS.

4-26. Examination of the circuit diagrams in section VIII, and study of paragraphs 4-1 through 4-24 will provide an overall understanding of the 4329A circuit operation. Paras. 4-27 through 4-40 contain further detail. Reference to section V, covering maintenance, will further clarify the operation of circuits containing adjustable components.

## 4-27. PARAMETRIC CONVERTOR ASSEMBLY A8

4-28. C8 and R7, in the dc feedback path from the meter circuit provide appropriate phase and amplitude stability to the overall loop gain of the measuring circuit. C2, the infinity adjust, sets the "no-input" level of oscillation which is balanced by the ±1.2Vdc bias in the meter circuit, resulting in zero deflection at the meter.

## 4-29. OSCILLATOR/AMPLIFIER ASSEMBLY A9

4--30. Input is via the tuned series resonant circuit C1, L1 to the base of Q1, and signal levels of 20 to  $30\,\mu\text{V}$  are amplified to levels of 20 to  $30\,\text{mV}$  at the Q2 collector. The output of Q2 is fed back to the bridge circuit diodes by way of T1. Part of the signal is coupled across T1 into the meter amplifier assembly, A10. Diodes CR2 and CR3 are added as protection against excessively large signals, which could damage the bridge assembly pico-diodes. Excessive signal levels result if the input current is high due to inadvertent shorts at the front panel UNKNOWN terminals, with test voltage applied. CR1 derives a 6.5 Vdc level from the 12.5 V supply for Q1 and Q2 biasing.

## 4-31. AMPLIFIER, METER CIRCUIT ASS'Y A10

4-32. Amplifier Q1 and Q2 combined have a gain of about 100. The 20-30mV signal at Q1 base is amplified to about 2-3V (peak to peak) at Q2 collector. This signal is coupled to the rectifier (CR1 and CR2) by T1. The dc output of filter R7 C4 flows, through meter M1, deflecting the pointer in proportion to the resistance under test. The overall gain from the connector input to the filter output is equal to unity. The meter is calibrated to deflect full-scale if 200mV appears at

the negative terminal of the 1.2V supply with respect to common. Applying a dc signal of 200mV (with respect to circuit common) to the convertor input, then will cause full-scale deflection. Note that feedback to the bridge circuit is through the 1.2Vdc power supply. R8 is the RECORDER output resistance, setting the output impedance therefore, to 1K. The dc amplifier adjust, R9, sets the total meter current for full-scale deflection at a 200mVdc convertor input. This sets the circuit gain to unity.

#### 4-33. TEST VOLTAGE POWER SUPPLY ASS'Y A3

4-34. Essentially a 1000V supply, the remaining test voltages are derived from voltage divider A4R1-A4R6. Oscillator Q1 oscillates at about 25KHz, its output is stepped up by T1 from 26Vpp to 1100Vpp and rectified by diodes CR1/CR2. C2/R1/C3 provide filtering. Part of the dc output is fed back to amplifier Q8 across control resistor A1R1. This signal is passed to Q7 base, where it is compared to the reference voltage established at Q6 base by CR3. The difference, represented by the signal at Q1 collector, is passed to the complementary amplifier, Q4/Q3, where it is amplified and impedance-matched into the

Q1 base circuit. This signal therefore controls Q1 gain, and the resultant amplitude of oscillation in the T1 primary circuit. Thus, the power supply tends to resist changes in output voltage due to load and supply variations. Adjusting A1R1 sets the exact dc level at Q8 base, thus calibrating the power supply. Power supply calibration is checked and adjusted by switching to "Cal" and adjusting Full Scale Cal for full scale deflection.

## 4-35. LOW VOLTAGE POWER SUPPLY ASS'Y A2.

4-36. The low voltage power supply A2 is composed of 2 identical supplies, providing regulated  $\pm 12.5$  Vdc voltages, and an unregulated 1. 2Vdc supply. The  $\pm 12.5$  V circuits supply the working voltages for all the instrument functions including the high-voltage supply; the 1. 2V circuit acts merely as a bias in the meter circuit, to offset the meter current due to the "no-input" oscillations produced by the parametric convertor at quiescence. The  $\pm 12.5$  V circuits are feedback-controlled. Approximately 6V derived from the 12.5V outputs is compared to the 5.9V Zener outputs at CR5 and CR10. Any changes in the  $\pm 12.5$  V outputs will be seen as increases or decreases in col-




Figure 4-7. Simplified Block Diagram

lector current in Q1 or Q4. These current changes will increase or decrease the effective resistance of series regulators Q2 and Q5, thus compensating for the change in the supply output voltages. Q1 and Q4 are provided to impedance-match the current signal into the regulator base circuits.

## 4-37. RANGE SWITCH ASSEMBLY, A7

4-38. Resistors R1 to R9 are the current-dividers ("range" resistors) selected to set the appropriate full-scale meter current. Effectively, these resistors shunt the complete convertor and meter/amplifier circuit. Thus, for increasing current inputs (decreasing resistance under test) the maximum current into the meter remains equivalent to full-scale deflection.

## 4-39. INDICATOR (LAMP) ASSEMBLIES

4-40. All lamps are illuminated by the ac line voltage. Part of test voltage switch (A4S1), and parts of Range Switch (A7S1) are used to interconnect the ac line and the ac common to illuminate the appropriate lamp. (Reference to the schematic diagram, paras. 4-21 and paras. 4-24 will aid in understanding switching logic).

# SECTION V MAINTENANCE

#### 5-1. INTRODUCTION

5-2. This section outlines routine maintenance, performance checks, adjustments, calibration and troubleshooting for the 4329A High Resistance Meter. Performance checks may be used on incoming inspection to verify instrument specifications. The performance checks should also be used after any adjustments have been made.

#### 5-3. CAUTION

 $\mathcal{N}^{-1}$ 

If cleaning is necessary, it is recommended that contamination be removed from the circuit by swabbing lightly with alcohol. Any other method may cause adverse effects to the high resistance circuitry; however, since the high resistance meter runs at low levels and all critical circuits are shielded, it is unlikely that circuitry contamination will be a problem, except that which is caused from fingers or solder flux. The internal glass encapsulated resistor may be cleaned with the use of dry, soft cloth.

## 5-4. PERFORMANCE CHECKS

- 5-5. The performance checks are intended to determine whether the instrument is operating within its specifications. Should adjustments be required, refer to paragraph 5-16 to paragraph 5-18.
- 5-6. Recommended test equipment for use during checks and adjustments is listed in Table 5-1.

## 5-7. CHECK 1: FRONT PANEL INDICATORS

- a. Turn instrument on according to Turn-on procedure in Section  $\bf 3$ .
  - b. Set Mode to DISCHARGE
  - c. Set TEST VOLTAGE to 10V
  - d. Set RANGE to I MAX.
  - e. Set RESISTANCE CURRENT to RESISTANCE.

Table 5-1. Recommended Test Equipment

| Instrument                  | Specifications                                                            | Used for:                                | Recommended<br>Model                 |
|-----------------------------|---------------------------------------------------------------------------|------------------------------------------|--------------------------------------|
| Voltmeter                   | 20mVdc -<br>1000Vdc, ±1%<br>accuracy                                      | Checks, adjustments, and troubleshooting | HP 410C                              |
| Oscilloscope                | DC - 200kHz,<br>1mV/cm sensitivity                                        | Troubleshooting                          | HP 1740A                             |
| High Resistance<br>Standard | $10^{6}\Omega$ - $10^{11}\Omega$ , variable in decade steps, ±1% accuracy | Checks and adjustments                   | HP 16340A with furnished accessories |
| BNC Connector (male) 2 ea.  |                                                                           | Checks and adjustments                   | HP P/N: 1250-1233                    |

Table 5-2. Multiplier & Range Indicator Logic

| RANGE<br>SWITCH<br>POSITION | RESISTANCE FUNCTION |      |                  |                  |                  |       |      | CURRENT FUNCTION  |
|-----------------------------|---------------------|------|------------------|------------------|------------------|-------|------|-------------------|
|                             | TEST VOLTAGES (V)   |      |                  |                  |                  |       |      |                   |
|                             | 10                  | 25   | 50               | 100              | 250              | 500   | 1000 |                   |
| Imax                        | 10e                 | 107  | 107              | 107              | 108              | 108   | 108  | 10-6              |
| UPI                         | 107                 | 108  | 108              | 10e              | 109              | 109   | 109  | 10 - 7            |
| UP2                         | 10 <sup>8</sup>     | 109  | 109              | 10 <sup>9</sup>  | 1010             | 1010  | 1010 | 10 <sup>-8</sup>  |
| UP3                         | 109                 | 1010 | 1010             | 1010             | <u>.</u>         | 10 11 | 1011 | 10-9              |
| UP4                         | 1010                |      | 1011             | 1011             | 1012             | 1012  | 1015 | 10-10             |
| UP5                         | 1011                | 1012 | 1012             | 1012             | 1013             | 1013  | 1013 | 10-11             |
| UP6                         | 1015                |      | 10 <sup>13</sup> | 10 <sup>13</sup> | 1014             | 1014  | 1014 | 10-12             |
| Rmax                        | 10 <sup>13</sup>    | 1014 | 1014             | 10 <sup>14</sup> | 10 <sup>15</sup> | 1015  | 1015 | 10 <sup>-13</sup> |
|                             | 0                   | 3    | 2                | 0                | 3                | 2     | 0    | 4                 |
| METER<br>SCALE              | (1) (2) (3) (4)     |      |                  |                  |                  |       |      |                   |

f. Rotate RANGE through all positions from IMAX. to RMAX. noting that scale and multiplier indicators are illuminated in the order shown in Table 5-2. Repeat for all test voltages from 10V to 1000V.

## g. Set RESISTANCE - CURRENT to CURRENT.

h. Repeat (f) noting that CURRENT multiplier and scale indicators are illuminated correctly as given in Table 5-2.

## 5-8. CHECK 2: TEST VOLTAGES

5-9. Test Voltages are equal to values given on the front panel  $\pm 3\%$ . These values are measured by connecting a high input-impedance voltmeter between the UNKNOWN Rx + and GUARD terminals.

- a. Set RESISTANCE-CURRENT to RESISTANCE.
- b. Set TEST VOLTAGE to 0V.
- c. Connect the voltmeter leads to the UNKNOWN  $\mathbf{R}\mathbf{x}$  + and GUARD terminals, noting correct polarities.
  - d. Set MODE to CHARGE or MEASURE.
- e. Rotate TEST VOLTAGE switch through all Test Voltages; monitor values on the voltmeter for ±3% accuracy check.

## 5-10. CHECK 3 METER DEFLECTION

a. Set RANGE Switch to CAL.

- b. Check that the pointer indicates "CAL" mark on meter-face.
- c. Set RANGE to I max.; check that the pointer indicates  $\infty$ .

## 5-11. CHECK 4 ACCURACY

5-12. Using the  $10^6\Omega$  through  $10^{11}\Omega$  ranges of the HP 16340A RC Box, check the accuracy of the 4329A's internal range resistors at 10V. Meter readings should be  $\pm 10\,\%$  of indicated range value on the  $10^6$  through  $10^{11} \rm ranges$ . The procedure is as follows:

- a. Connect the triaxial male-to-BNC female adapter to the  $16340\,A^{\dagger}s$   $10^{10}$  --  $10^2$  triaxial terminal.
- b. Connect one BNC male connector to the triaxial-to-BNC adapter and the other BNC male connector to the corresponding BNC female connector on the 16340A.
- c. Connect the 4329A to the brass pins on the BNC connectors.
- d. Set RESISTANCE-CURRENT to RESISTANCE.
- e. Set TEST VOLTAGE to 10V, MODE to MEASURE, and RANGE to [MAX.
- f. Set the 16340A to the  $10^6\,range$  and verify that the meter reading is  $1\,M\Omega\pm10\,\%$  .
- g. Check the  $10^{\,7}{\rm through}~10^{11}{\rm \, ranges}$  in the same manner.

## 5-13. CHECK 5: RECORDER OUTPUT

5-14. Connect a voltmeter to the 4329A's recorder output terminals and set RANGE to CAL. The reading on the voltmeter should be  $100\,mV\pm5\%$  .

## 5-15. ADJUSTMENTS

5-16. Should performance checks reveal that adjustment is required, the following procedure should be

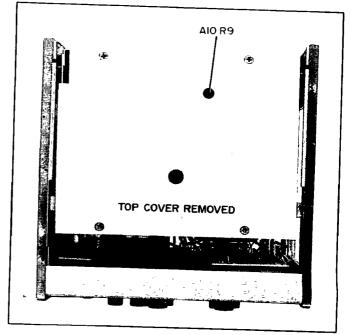



Figure 5-1. 4329A Adjustment Locations

used. 1. Set TEST VOLTAGE power supply, 2. full-scale CAL., ADJ., and AMPLIFIER SENSITIVITY ADJ, all of which are interdependent. Following this sequence, CHECK 2, CHECK 3, and CHECK 4 will verify correct adjustment.

a. Set TEST VOLTAGE to 0V and adjust A3R21 until the base of A3Q2 is  $-8.5 \text{V} \pm .3 \text{V}$ .

b. Connect a voltmeter to the Rx + and GUARD terminals of the 4329A. Set TEST VOLTAGE to 10V. The voltmeter should read  $10V\pm3\%$ . If it doesn't, adjust the rear panel FULL-SCALE CAL. ADJ until the voltage is correct. Repeat this procedure on the other TEST VOLTAGE ranges.

#### Note

If the correct test voltages cannot be obtained, adjust A3R21 again.

c. Set MODE to "MEASURE" and RANGE to IMAL., and apply 200mV de to the UNKNOWN Rx(-) BNC connector (center conductor is positive and outer conductor is negative) using suitable regulated power supply and attenuator combination. Note the deflection and set it to full-scale using AMP, SENS, ADJ. AloR9 (Remove top cover for access to adjustment through hole in circuit shield. See Figure 5-1). Disconnect 200mV.

d. Set RANGE to CAL. If the pointer doesn't indicate full-scale, set it to full-scale by adjusting AIR2.

e. Set RANGE to IMAX, and note deflection. Set it to infinity using rear panel  $\infty$  ADJ. The  $\infty$  ADJ, is a capacitor; use a plastic adjustment tool or other suitable tool for adjustment.

f. Should performance checks indicate that one or more ranges are outside accuracy specification limits this excess error may be due to slight changes in range resistor values. It is possible to adjust the gain of the meter amplifiers (A10R9) to bring the net

error within the accuracy limits. This will shift accuracies on all other ranges, so recalibration will be necessary. This will shift the deflection of full-scale "CAL." also, so readjustment of A1R2 is necessary.

(ie) 1. Set RANGE to out-of-tolerance setting.

 Using working standard resistor as UN-KNOWN, adjust A10R9 to bring reading into specified accuracy.

3. Recheck accuracies on all other ranges.

4. Repeat for any range not giving specified accuracy.

5. Set RANGE to CAL.

Adjust A1R2 for full-scale "CAL". meter deflection.

f. Figure 5-2 illustrates the relationship between the adjustments mentioned above and is a pictorial reference for the adjustment procedure.

#### 5-17. CALIBRATION

5-18. The 4329A calibration procedure is complete if the performance checks can be made satisfactorily for the instrument as described in paras. 5-7 thru 5-13. Should the instrument not perform as indicated, proceed to the adjustment in para. 5-15. Further difficulties will indicate that troubleshooting is required. Proceed to para. 5-20 for troubleshooting techniques.

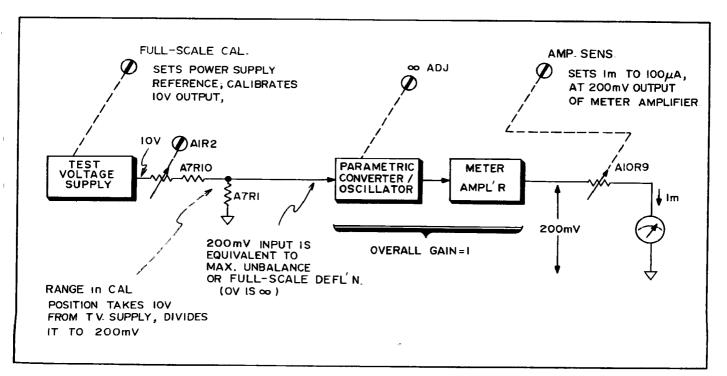



Figure 5-2. 4329A Adjustments

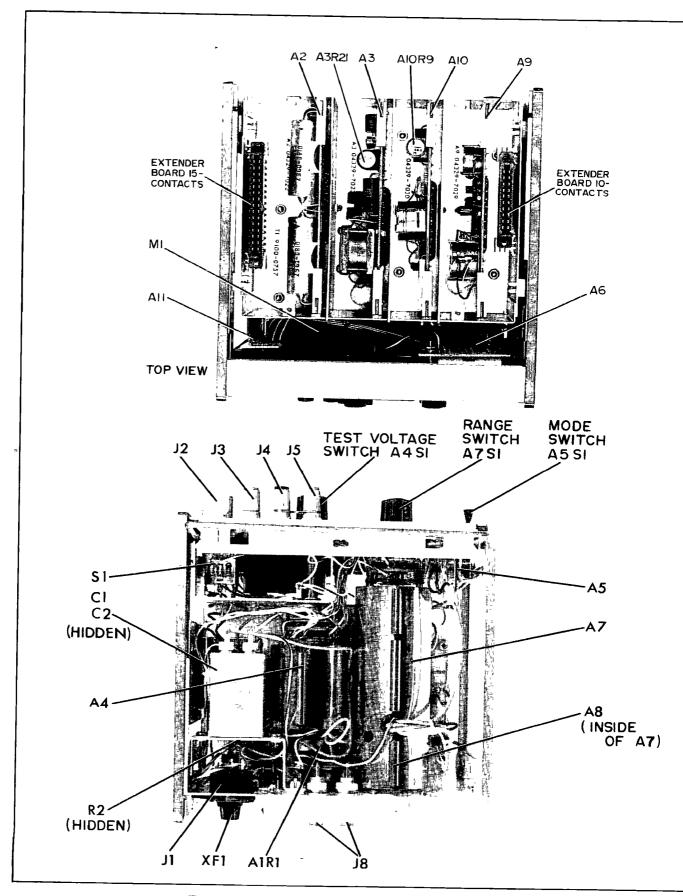



Figure 5-3A. Assembly Location (Top and Bottom View)

## 5-19. TROUBLESHOOTING

5-20. The information added here is to aid in locating malfunctions in the 4329A circuitry. For technicians troubleshooting this instrument, the following are the required tools in order of importance:

a. Familiarity with the principles of operation of the instrument circuits.

b. Ability to apply test equipment and this manual to instrument maintenace.

c. A logical troubleshooting approach.

The logical troubleshooting approach referred to above is specifically that described by D. Schuster in his book Logical Electronic Troubleshooting (McGraw-Hill). No amount of diagnostic guidelines to fault-

finding contained in this manual could duplicate the value of a logical troubleshooting approach by an experienced technician.

5-21. The 4329A is essentially composed of one very-high-resistance circuit and a number of conventional amplifiers, power supplies and dc circuits. Problems in troubleshooting will inevitably reduce to "Is the malfunction inside or outside the high-resistance-circuit?" (The high-resistance-circuit referred to is the parametric convertor assembly A8). If the malfunction can be determined to be outside the A8 assembly, then further diagnosis and parts replacement will be quite straightforward. However, if all indications and checks show that the A8 assembly itself is faulty, then it is recommended that the assembly be replaced as a complete unit(printed circuit assembly, HP Part No. 04329-7028), however it is highly un-

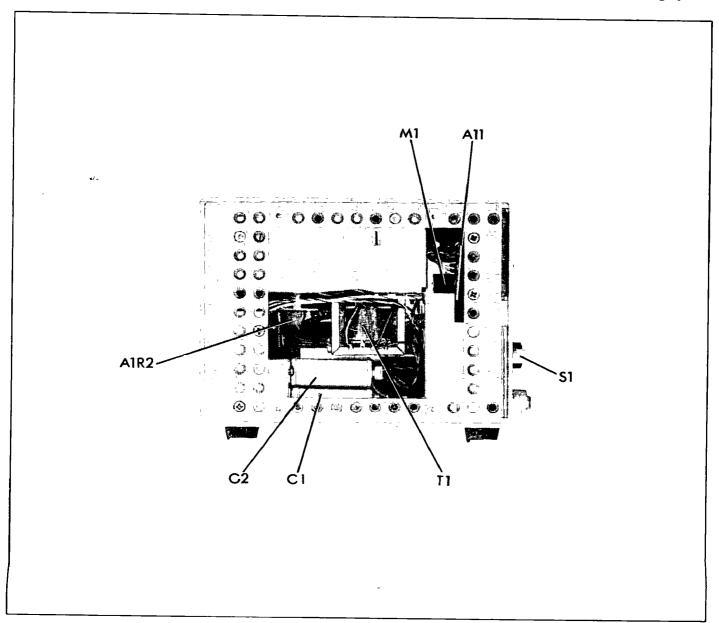



Figure 5-3B. Component Location (Left Side View)

likely that the A8 assembly will malfunction, because it contains no active components, is protected against overload, is completely enclosed, and operates at very low levels. If symptoms indicate A8 faults-doublecheck! Specifically, check connections and signal flow into and out of the convertor. The A8 assembly cannot be checked by conventional "low-im-pedance test-equipment. Attempts to "troubleshoot" or "repair" this board will prove extremely uneconomical. Complete replacement is recommended.

5-22. It is assumed that the technician troubleshooting the 4329A understands the essentials of operating the instrument, and will have no difficulty in determining whether or not apparent faults lie inside the High Resistance Meter, rather than being due to incorrect use of the controls, connectors or indicators by the operator.

## 5-23. ''IN-CABINET'' CHECKS

- 5-24. These tests are designed to aid the technician in determining whether faults lie in the test voltage supplies or within the measurement circuits.
- a. Set RANGE to CAL.; if meter deflects, the power supplies, and the meter circuits are operating.
- b. Measure Test Voltage (any setting) between UNKNOWN Rx + and GUARD terminals. If equal to value set, then  $\pm 12.5$  Vdc and Test Voltage power supplies are O. K. (This does not check the 1.2V supply).
- c. If faults are suspected in the meter itself, measure the recorder output. Note that this output voltage across  $1k\Omega$  is in series with the meter. For  $\infty$  readings, recorder output is 0V, for full-scale deflection, recorder output is  $100 \, \mathrm{m} \, \mathrm{Vdc}$ .

d. Correct operation of all circuits other than the Test Voltage supply can be verified by making a current measurement. A simple current measurement can be made using a dc power supply and a 10 megohm resistor. Set the supply to 1 Volt and connect its output, the  $10M\Omega$ , and the 4329A UNKNOWN terminals in series (note correct polarities). Meter should indicate I=1A, multiplier should indicate  $10^{-7}$ .(Range set to first position clockwise from IMAX.)

## 5-25. CIRCUIT CHECKS

5-26. If the operating tests made in para 5-24 indicate that a fault does exist in the instrument circuitry, proceed to troubleshoot either the low voltage and Test Voltage supplies or the measurement circuits. See Figure 5-4.

## 5-27. ASSEMBLY AND COMPONENT LOCATION

5-28. Each schematic diagram in Section VIII includes a photograph and component location grid of the assembly shown in the schematic. Figures 5-3 illustrate assembly locations.

## 5-29. POWER SUPPLY TROUBLESHOOTING

- a. Suspected problems in the ±12.5 Vdc supplies are rapidly confirmed by measuring the supply output values. Power supply faults can be further categorized into AC or DC circuit problems by checking the 16 V AC level at the rectifier inputs. If this AC is not present, check transformers and connections between line input and low voltage rectifiers. If the 16 V ac is present, proceed to troubleshoot the transistor regulator, transistor amplifier, and the full-wave rectifier portions of the supply. See Figure 5-5 and 5-6.
- b. Regulator/Amplifier Problems: If the low voltage power supply voltage output value is high, it

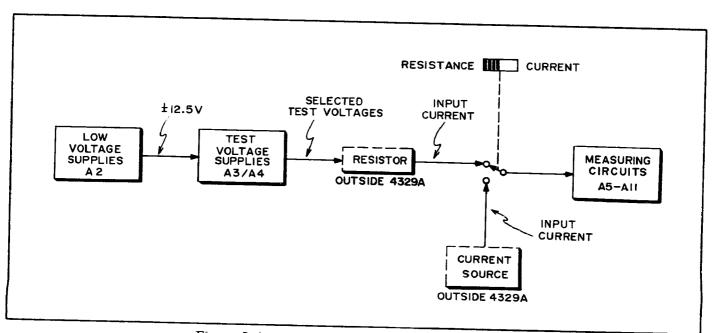



Figure 5-4. Signal Flow, Troubleshooting Approach

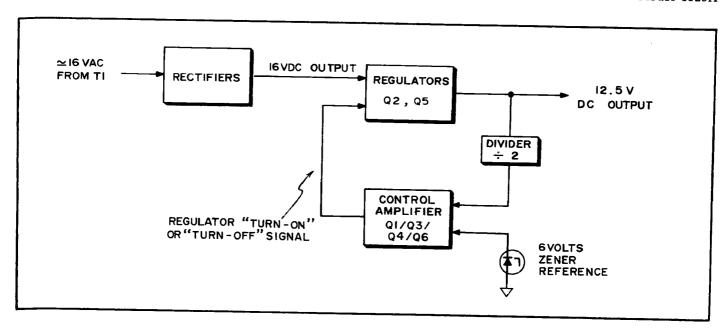



Figure 5-5. Low Voltage Power Supply

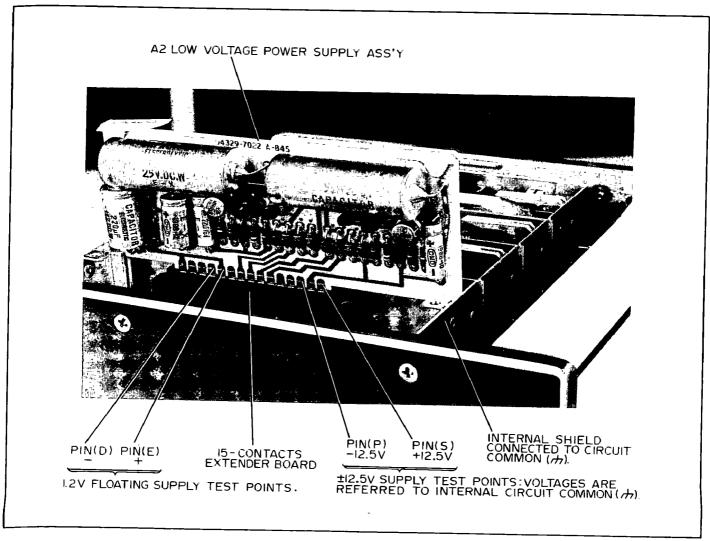



Figure 5-6. Low Voltage Power Supply Test Points

is likely that either the regulator transistor (Q2, or Q5) is shorted, or that "control amplifier" transistors (Q1/Q3 or Q4/Q6) are faulty. Shorted transistors can be verified by measuring 0 volts from collector to emitter. If, however the regulator transistor is conducting heavily, but not shorted, the control amplifier is at fault. This can be verified by monitoring the supply output and momentarily shorting emitter to base of the Q2 or Q5 regulator. If supply dips to a lower value the regulator is O. K. -troubleshoot the reference and amplifier section. For a "too-high" output the amplifier transistors Q6 or Q3 should give a very low voltage drop from collector to emitter, and more than 0.6V from base to emitter (Base more positive). Driver transistors Q4 and Q1 should be "off" or show a large voltage drop from collector to emitter if operating correctly under "too-high" output conditions. Their base to emitter voltages should be less than 0.6V.

#### Note

Do not replace transistors unless it can be verified that the transistor is actually faulty. Monitoring collector voltage values while determining if the base-emitter bias is forward or back-bias will indicate correct or incorrect operation. Silicon transistors require about 0.6V forward bias to "turn on" the transistor. If less, the device is not conducting. For germanium devices, 0.2V is required. This simple approach can be a powerful tool in dealing with dc, low-frequency,

and digital transistor circuits. Note that any transistor can be made to "turn off" by shorting its base lead to its emitter lead. For correctly operating devices, this will cause collector voltage to rise towards maximum. A transistor can be "turned-on" by driving more current into its base. This can be done easily by shunting the base-bias resistor with a similarly valued resistor. Correctly-operating devices should show a drop in value of collector voltage towards minimum, under these conditions. Remember, replacing 10 transistors is an uneconomical way of locating the one that failed.

c. In the absence of Low Voltage Supply (positive) output, the regulator Q2 may be either open or not conducting. If subsequent checks reveal no faulty regulator, the control circuit and associated amplifiers should then be checked. The same condition applies to the negative supply.

#### Note

The input to control amplifiers Q3 and Q6 is the junction of R3/R4 and R7/R8 respectively. For normal operation, the dc value of this input should be about 0.6V more than the zener reference value.

- 5-30. TEST VOLTAGE SUPPLY
- 5-31. Figure 5-7 illustrates the essential elements

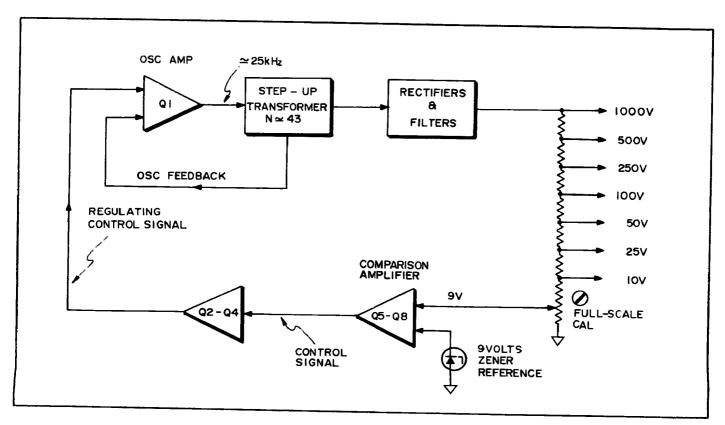



Figure 5-7. Test Voltage Supply

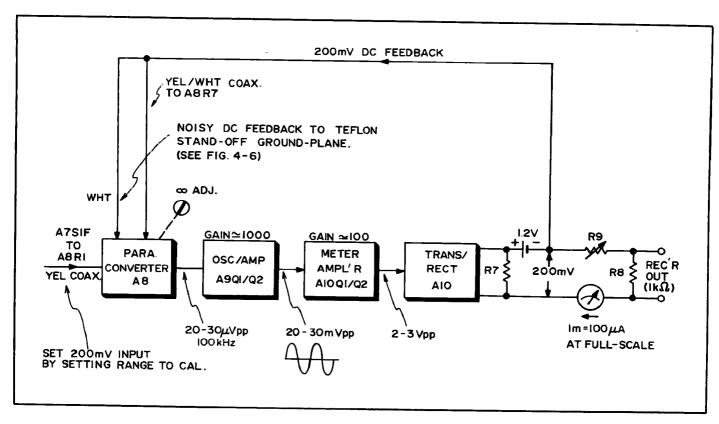



Figure 5-8. Troubleshooting Approach for Measurement Circuits.

of the test voltage circuit. Troubleshooting reduces to determining if the fault lies in the comparison amplifier or control circuit to generate the correct level of control signal to the base of Q1. Or, whether or not the Q1 oscillator the transformer and the rectifier circuit are at fault. Therefore the first check is to monitor the Q1 base while varying the FULL-SCALE CAL control, R1. Q1 should track R1; if it does, the amplifiers are O.K., and the problem is very likely in the oscillator or rectifiers circuits.

## 5-32. TROUBLESHOOTING THE MEASUREMENT CIRCUITS

- 5-33. If power supplies are free of faults, check the following. The "measurement circuits" are shown in Figure 5-8.
- 5-34. Use the diagram in Figure 5-8 as a guide to troubleshooting the measurement circuits. Set a known input to the A8 ass'y by setting RANGE to CAL. Verify that it is 200mV. Check now for a known output at R9 equal to 200mV. Depending on the exact nature of the fault, the R9 voltage will be indicative of what to do next. For example:
- a. Zero volts: Possible problem in 1.2V power supply: Could also be problem in A8. Doublecheck connections. Proceed to verify correct operation of A9 and A10 before considering A8 replacement.
  - b. 2-3V (at about 100kHz): Rectifier problem, If

- A10 rectifiers O. K. but high frequency signal persists, A8 could be bad.
- c. Approximately 200mV. A10R9 or A8C2 are slightly out of adjustment.
- d. Very low or negative voltage: Check out rectifiers and A9/A10 gain values.
- e. 1-2 volts rms at 60 cycles: Indicates problem in 1.2V power supply.
- 5-35. After verifying that the 1.2V power supply is not at fault and that the meter is 0. K. proceed to check the amplifier chain from A9Q1 base to A10R9. Inject a 100kHz signal at very low level ( $20\mu \text{Vp-p}$ ) using a suitable signal generator or oscillator /voltmeter/attenuator combination. Trace this signal through to R9, where it should be 200mV. This should locate any amplifier, transformer, or rectifier problems.
- 5-36. If the amplifiers, etc. are not faulty, then follow the 100kHz signal from A9T1 back to the blk, wht coax input to A8. The A3 TEST VOLTAGE Ass'y should be removed while performing this check.
- 5-37. The foregoing should verify whether or not the possibility of replacing the A8 ass'y should be considered, or that you have discovered a fault elsewhere. Should replacement of A8 be decided upon, however,

the following lists the steps to remove and replace the board.

- a. Remove all instrument side-covers.
- b. Remove rear panel retaining screws.
- c. Remove screw holding rear panel to A7 range switch assembly.
  - d. Unsolder rear-panel UNKNOWN coax cable.
  - e. Tilt back panel out.
- f. Carefully remove cylindrical shield on A7 ass'y by prying rubber grommet out, and sliding off two retaining clips.
  - g. Remove the two screws which secure the A8

board under the shield section at rear of A7 switch ass'y.

- h. Record color and locations of all connections to A8 board, unsolder and remove.
- i. Install new board; reassemble carefully using same procedure in reverse. Do not handle or contaminate parts or the printed circuit itself while installing.
- 5-38. None of the previous paragraphs included possible faults between test voltage and measurement circuits. The switch assemblies and indicator lamp assemblies may tend to confuse the above analysis if they are faulty. However, a fault in one of these assemblies should be reasonably easy to detect and locate.

## SECTION VI REPLACEABLE PARTS

## 6-1. INTRODUCTION

- 6-2. This section contains information for ordering replacement parts. Table 6-2 lists parts in alphanumerical order of their reference designators and indicates the description (see Table 6-1 for abbreviations used) and HP Part number of each part, together with any applicable notes.
- 6-3. Miscellaneous parts associated with each assembly are listed at the end of each assembly listing. Others are listed at the end of Table 6-2.

#### 6-4. ORDERING INFORMATION

- 6-5. To obtain replacement parts, address order or inquiry to your local Hewlett-Packard Field Office (see lists at rear of this manual for addresses). Identify parts by their Hewlett-Packard Part numbers.
- 6-6. To obtain a part that is not listed, include:
  - a. Instrument model number.
  - b. Instrument serial number.
  - c. Description of the part.
  - d. Function and location of the part.

Table 6-1. List of Reference Designators and Abbreviations

|              |   |                             |          |   | REFERENCE DESI         | GNATORS |   | œ.                   |         |   |                          |
|--------------|---|-----------------------------|----------|---|------------------------|---------|---|----------------------|---------|---|--------------------------|
| A            | _ | assembly                    | E        | = | misc electronic part   | P       | = | plug                 | v       | = | vacuum, tube, neon       |
| В            |   | motor                       | F        | æ | fuse                   | Q       | = | transistor           |         |   | bulb, photocell, etc.    |
| BT           |   | battery                     | FL       | = | filter                 | R       | = | resistor             | VR      | = | voltage regulator        |
| C            |   | capacitor                   | J _      | = | jack                   | RT      | = | thermistor           | w       | = | cable                    |
| CP           |   | coupler                     | ĸ        | = | relav                  | S       | = | switch               | x       | = | socket                   |
| CR           |   | diode                       | ï.       | = |                        | T       | = | transformer          | Y       | = | crystal                  |
| DL           | _ | delay line                  | M        | = | meter                  | ТВ      | = | terminal board       |         |   |                          |
| DS<br>DS     | = | device signaling (lamp)     | MP       | = | mechanical part        | TP      | = | test point           |         |   |                          |
|              |   |                             |          |   | ABBREVIAT              | IONS    |   |                      |         |   |                          |
|              |   |                             |          |   |                        |         |   |                      | D140    |   |                          |
| A            | = | amperes                     | H        |   | henries                | NPN     | = | negative-positive-   | RMS     |   | root-mean square         |
| A.F.C.       | = | automatic frequency control | HEX      | = | hexagonal              |         |   | negative             | RWV     | = | reverse working          |
| AMPL         | = | amplifier                   | HG       | = | mercury                | NRFR    | = | not recommended for  |         |   | voltage                  |
|              |   |                             | HR       | = | hour(s)                |         |   | field replacement    | S-B     | _ | slow-blow                |
| B. F. O.     |   | beat frequency oscillator   | IF       | _ | intermediate freq      | NSR.    | = | not separately       | SCR     | _ | SCTEW SCTEW              |
| BE CU        |   | beryllium copper            |          |   |                        |         |   | replaceable          | SE      | = | selenium                 |
| BH           |   | binder head                 | IMPG     | = | impregnated            |         |   | _                    | SECT    | _ |                          |
| BP           |   | bandpass                    | INCD     | = | Tire chairman a cris   |         |   |                      | SEMICON | _ | semiconductor            |
| BRS          |   | brass                       | INCL     | = | include(s)             | OBD     |   | order by description |         |   | silicon                  |
| BWO          | = | backward wave oscillator    | INS      | = | insulation(ed)         | ОН      | = | oval head            | SI      |   |                          |
|              |   |                             | INT      | = | internal               | ox      | = | oxide                | SIL     |   | silver                   |
| CCW          | = | counter-clockwise           | к        | = | kilo = 1000            |         |   |                      | SL      |   | slide                    |
| CER          | _ | ceramic                     | v        | - | K110 - 1000            |         |   |                      | SPG     |   | spring                   |
| CMO          | = | cabinet mount only          | LH       | = | left hand              | P       | = | pezk                 | SPL     | = | special                  |
| COEF         |   | coefficient                 | LIN      | = | linear taper           | PC      | = | printed circuit      | SST     |   | stainless steel          |
| COM          |   | common                      | LK WASH  | = | lock washer            | PF      | = | picofarads = 10      | SR      | = | split ring               |
| COMP         | = |                             | LOG      | = | logarithmic taper      |         |   | farads               | STL     | = | steel                    |
|              |   | complete                    | LPF      | = |                        | PH BRZ  | = | phosphor bronze      | TA      | _ | tantalum                 |
| CONN         |   | connector                   |          |   | •                      | PHL     | = | Phillips             |         | _ | time delay               |
| CP           |   | cadmium plate               | M        | = | $milli = 10^{-3}$      | PIV     | = | peak inverse voltage | TD      | = |                          |
| CRT          |   | cathode-ray tube            | MEG      | = | meg = 10 <sup>6</sup>  | PNP     |   | positive-negative-   | TGL     | = | toggle                   |
|              |   | clockwise                   | MET FLM  | = | metal film             | 2 142   |   | positive             | THD     | = | thread                   |
| CW           | = | crockwise                   | MET OX   | = | metallic oxide         | P/O     | _ | part of              | TI      | = | titanium                 |
| DEPC         | = | deposited carbon            | MFR      | = | manufacturer           | POLY    | = | polystyrene          | TOL     | = | tolerance                |
| DR           |   | drive                       | MINAT    | = | miniature              | PORC    | = | porcelain            | TRIM    | = | trimmer                  |
|              |   |                             | MOM      | = | momentary              | POS     | = | position(s)          | TWT     | = | traveling wave tube      |
|              |   | electrolytic                | MTG      | = | mounting               | POT     | = |                      |         |   |                          |
|              |   | encapsulated                | MY       | = | "mylar"                |         | = | potentiometer        | U       | = | micro = 10 <sup>-6</sup> |
| EXT          | = | external                    |          |   |                        | PP      | = | peak-to-peak         | VAR     | _ | variable                 |
| F            |   | farads                      | N        | = | nano (10-9)            | PT      | = | point                |         | = |                          |
| r<br>FH      | = | flat head                   | N/C      | = | normally closed        | PWV     | = | peak working voltage | VDCW    | = | CC MOLETUR AOTER         |
| FIL H        | = |                             | NE<br>NE | = | neon                   |         |   |                      | W/      | = | with                     |
| FIL H<br>FXD |   | fixed                       | NI PL    | - | nickel plate           | RECT    | = | rectifier            | w       | = | watts                    |
| LYD          | = | HARU                        | N/O      | _ | normally open          | RF      |   | radio frequency      | wiv     | = | working inverse          |
|              |   |                             | NPO      | Ξ | negative positive zero | RH      |   | round head or        |         |   | voltage                  |
| GE           | = | B                           | NPO      | = | (zero temperature      | An      | _ | right hand           | ww      | = | wirewound                |
| GL<br>GRD    |   | glass<br>ground(ed)         |          |   | coefficient)           | RMO     |   | rack mount only      | w/o     |   | without                  |

Table 6-2, Reference Designation Index

| Reference<br>Designation                             | Part No.                                                                   | Description                                                                                                                                                                              | Note |
|------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| A1                                                   | 04329-7021<br>04329-8701                                                   | MOTHER BOARD ASS'Y<br>BOARD: BLANK P.C.                                                                                                                                                  |      |
| A1R1<br>A1R2                                         | 2100-1181<br>2100-0942                                                     | R: VAR W.W. 10kΩ 1% RA-30<br>R:VAR 50kΩ 3/4W                                                                                                                                             |      |
| A1XA1<br>A1XA2<br>A1XA3<br>A1XA4                     | 1251-1633<br>1251-1631<br>1251-1631<br>1251-1631                           | CONNECTOR: PRINTED CIRCUIT 15 CONTACTS CONNECTOR: PRINTED CIRCUIT 10 CONTACTS CONNECTOR: PRINTED CIRCUIT 10 CONTACTS CONNECTOR: PRINTED CIRCUIT 10 CONTACTS                              |      |
|                                                      | 5040-4529                                                                  | MISCELLANEOUS<br>EXTRACTOR: GRAY 2REQ'D                                                                                                                                                  |      |
| A2                                                   | 04329-7022<br>04329-8702                                                   | LOW VOLTAGE POWER SUPPLY ASS'Y BOARD. BLANK P.C.                                                                                                                                         |      |
| A2C1<br>A2C2<br>A2C3<br>A2C4<br>A2C5<br>A2C6         | 0180-0967<br>0180-0756<br>0180-0967<br>0180-0756<br>0180-0947<br>0180-0936 | C: FXD ALUM ELECT 470µF 25VDCW C: FXD ALUM ELECT 22µF 16VDCW C: FXD ALUM ELECT 470µF 25VDCW C: FXD ALUM ELECT 22µF 16VDCW C: FXD ALUM ELECT 220µF 16VDCW C: FXD ALUM ELECT 220µF 6.3VDCW |      |
| A2CR1<br>A2CR2<br>A2CR3<br>A2CR4<br>A2CR5            | 1901-0230<br>1901-0230<br>1901-0230<br>1901-0230<br>1902-3110              | DIODE: SILICON TOSHIBA 1S1888 DIODE: SILICON TOSHIBA 1S1888 DIODE: SILICON TOSHIBA 1S1888 DIODE: SILICON TOSHIBA 1S1888 DIODE: SILICON BREAKDOWN 5, 9V                                   |      |
| A2CR6<br>A2CR7<br>A2CR8<br>A2CR9<br>A2CR10<br>A2CR11 | 1901-0230<br>1901-0230<br>1901-0230<br>1901-0230<br>1902-3110<br>1901-0040 | DIODE: SILICON TOSHIBA 1S1888 DIODE: SILICON TOSHIBA 1S1888 DIODE: SILICON TOSHIBA 1S1888 DIODE: SILICON TOSHIBA 1S1888 DIODE: SILICON BREAKDOWN 5.9V DIODE: SILICON                     |      |
| A2Q1<br>A2Q2<br>A2Q3<br>A2Q4<br>A2Q5<br>A2Q6         | 1854-0071<br>1854-0003<br>1854-0071<br>1854-0071<br>1854-0003<br>1854-0071 | TRANSISTOR: SILICON 2N3391 TRANSISTOR: SILICON TRANSISTOR: SILICON 2N3391 TRANSISTOR: SILICON 2N3391 TRANSISTOR: SILICON TRANSISTOR: SILICON TRANSISTOR: SILICON 2N3391                  |      |
| A2R1<br>A2R2<br>A2R3<br>A2R4<br>A2R5                 | 0683-1245<br>0683-3925<br>0683-5635<br>0683-5635<br>0683-1245              | R: FXD COMP 120kΩ 5% 1/4W R: FXD COMP 3. 9kΩ 5% 1/4W R: FXD COMP 56kΩ 5% 1/4W R: FXD COMP 56kΩ 5% 1/4W R: FXD COMP 120kΩ 5% 1/4W                                                         |      |

Table 6-2, Reference Designation Index

| Reference<br>Designation | Part No.               | Description                                                         | Note |
|--------------------------|------------------------|---------------------------------------------------------------------|------|
|                          |                        |                                                                     |      |
|                          | 2000 2005              |                                                                     |      |
| A2R6                     | 0683-3925              | R: FXD COMP 3. 9kΩ 5% 1/4W                                          |      |
| A2R7                     | 0683-5635              | R: FXD COMP $56k\Omega$ $5\%$ $1/4W$                                |      |
| A2R8                     | 0683-5635              | R: FXD COMP $56k\Omega$ $5\%$ $1/4W$                                |      |
| A2R9                     | 0683-4715              | R: FXD COMP $470\Omega$ $5\%$ $1/4W$                                | •    |
| A2R10                    | 0683-1315              | R: FXD COMP 130 $\Omega$ 5 $\%$ 1/4W                                |      |
|                          | 5040-3304              | MISCELLANEOUS<br>HOLDER: CAPACITOR C1 AND C3                        |      |
|                          | 5040-4529              | EXTRACTOR: GRAY                                                     |      |
|                          | 5040-4529              | EXTRACTOR: GRAY                                                     |      |
| A3                       | 04329-7023             | HIGH VOLTAGE POWER SUPPLY ASS'Y                                     |      |
| "                        | 04329-8703             | BOARD: BLANK P.C.                                                   |      |
| 4001                     | 0150 0015              | C. DVD CED A ALLE ALVERGE                                           |      |
| A3C1                     | 0150-0012              | C: FXD CER 0.01µF 1kVDCW                                            |      |
| A3C2                     | 0150-0012              | C: FXD CER 0. 01µF 1kVDCW                                           |      |
| A3C3                     | 0150-0012              | C: FXD CER 0, 01µF 1kVDCW                                           |      |
| A3C4                     | 0160-1333              | C: FXD MYLAR 0. 1µF 100VDCW                                         |      |
| A3C5                     | 0180-0376              | C: FXD TANT ELECT 0.47μF 35VDCW                                     |      |
| A3C6                     | 0180-1025              | C: FXD TANT ELECT 22µF 6VDCW                                        |      |
| A3C7                     | 0180-0210              | C: FXD TANT ELECT 3. 3μF 15VDCW                                     | ]    |
| A3C8                     | 0160-0128              | C: FXD CER 2. $2\mu$ F 20% 25VDCW                                   |      |
| A3CR1                    | 1901-0231              | DIODE: SILICON SANKEN SF-1                                          |      |
| A3CR2                    | 1901-0231              | DIODE: SILICON SANKEN SF-1                                          | _    |
| A3CR3                    | 1902-0785              | DIODE: SILICON BREAKDOWN 9V 1N936                                   |      |
| A3CR4                    | 1902-0057              | DIODE: SILICON BREAKDOWN 6, 49V                                     |      |
| A3Q1                     | 1854-0022              | TRANSISTOR: SILICON                                                 |      |
| A3Q2                     | 1854-0071              | TRANSISTOR: SILICON 2N3391                                          |      |
| A3Q2<br>A3Q3             | 1854-0071              | TRANSISTOR: SILICON 2N3391 TRANSISTOR: SILICON 2N3391               |      |
| A3Q4                     | 1853-0010              | TRANSISTOR: SILICON TRANSISTOR: SILICON                             |      |
| A3Q5                     | 1854-0071              | TRANSISTOR: SILICON 2N3391                                          |      |
| -                        |                        |                                                                     |      |
| A3Q6                     | 1854-0071              | TRANSISTOR: SILICON 2N3391                                          |      |
| A3Q7                     | 1854-0071              | TRANSISTOR: SILICON 2N3391                                          |      |
| A3Q8                     | 1854-0071              | TRANSISTOR: SILICON 2N3391                                          | j    |
| A3R1                     | 0683-1045              | R: FXD COMP 100kΩ 5% 1/4W                                           |      |
| A3R1<br>A3R2             | 0683-4705              | R: FXD COMP 100kM 5% 1/4W<br>R: FXD COMP 47Ω 5% 1/4W                |      |
|                          |                        | R: FXD COMP $470.5\%$ $1/4W$<br>R: FXD COMP $5.1k\Omega.5\%$ $1/4W$ |      |
| A3R3                     | 0683-5125<br>0683-5605 | R: FXD COMP 5. $182.5\%$ 1/4W                                       |      |
| A3R4<br>A3R5             | 0683-3035              | R: FXD COMP $560 5\% 1/4W$<br>R: FXD COMP $30k\Omega 5\% 1/4W$      |      |
| A3R6                     | 0683-1035              | R: FXD COMP 10kΩ 5% 1/4W                                            |      |
| A3R7                     | 0683-2245              | R: FXD COMP 220kΩ 5% 1/4W                                           |      |
| A3R8                     | 0683-3025              | R: FXD COMP $3k\Omega$ $5\%$ $1/4W$                                 |      |
| A3R9                     | 0683-1635              | R: FXD COMP $16k\Omega$ $5\%$ $1/4W$                                |      |
| A3R10                    | 0683-1035              | R: FXD COMP 10kM $5\%$ $1/4W$                                       |      |
| 1101110                  | 0000 1220              | III IIII OOMI II BMW O U I/ IVI                                     |      |
| -                        |                        | •                                                                   |      |
|                          | Ì                      |                                                                     |      |
|                          |                        |                                                                     |      |

Table 6-2, Reference Designation Index (Cont'd)

| Reference<br>Designation | Part No.               | Description                                                                        | Note |
|--------------------------|------------------------|------------------------------------------------------------------------------------|------|
|                          |                        |                                                                                    |      |
|                          |                        |                                                                                    |      |
| A3R11                    | 0683-9135              | R: FXD COMP 91k $\Omega$ 5% 1/4W                                                   |      |
| A3R12                    | 0683-7535              | R: FXD COMP 75kΩ 5% 1/4W                                                           |      |
| A3R13                    | 0683-1055              | R: FXD COMP 1MΩ 5% 1/4W                                                            |      |
| A3R14                    | 0683-1835              | R: FXD COMP $18k\Omega$ 5% $1/4W$                                                  |      |
| A3R15                    | 0683-1835              | R: FXD COMP $18k\Omega$ 5% $1/4W$                                                  |      |
| A3R16                    | 0683-2045              | R: FXD COMP 200k $\Omega$ 5% 1/4W                                                  |      |
| A3R17                    | 0683-7535              | R: FXD COMP $75k\Omega$ 5% $1/4W$                                                  |      |
| A3R18                    | 0683-1055              | R: FXD COMP $1M\Omega 5^{o_0} 1/4W$                                                |      |
| A3R19                    | 0698-1477              | R: FXD MET. FILM $10k\Omega$ $1\%$ $1/4W$                                          |      |
| A3R20                    | 0698-1478              | R: FXD MET. FILM $105k\Omega$ $1\%$ $1/4W$                                         |      |
| A3R21                    | 2100-0942              | R: VAR MET. FILM $10580 1\% 1/4W$                                                  |      |
| А3Т1                     | 04329-8604             | TRANSFORMER: OSCILLATOR                                                            |      |
|                          |                        |                                                                                    |      |
| 1                        | 5040-4529              | MISCELLANEOUS                                                                      |      |
|                          | 1205-0033              | EXTRACTOR: GRAY HEAT SINK FOR A3Q1                                                 |      |
| A4                       | 04329-7024             | TEST VOLTAGE SWITCH ASS'Y                                                          |      |
| A4C1                     | 0150-0012              | C: FXD CER 0. 01 µF 1KVDCW                                                         |      |
|                          |                        | 9                                                                                  |      |
| A4R1                     | 0698-1479              | R: FXD MET. FILM $150 \mathrm{k}\Omega~1\%~1/2\mathrm{W}$                          |      |
| A4R2                     | 0698-1480              | R: FXD MET. FILM $250k\Omega \ 1\% \ 1/2W$                                         |      |
| A4R3                     | 0698-1482              | R: FXD MET. FILM 500kΩ 1% 1/2W                                                     |      |
| A4R4                     | 0698-1483              | R: FXD MET. FILM 1.5M $\Omega$ 1% 1/2W                                             |      |
| A4R5                     | 0698-1484              | R: FXD MET. FILM 1.5M $\Omega$ 1% 1/2W                                             |      |
| A4R6                     | 0698-1485              | R: FXD MET. FILM $5M\Omega$ 1% 1W                                                  |      |
| A4R7                     | 0683-6245              | R: FXD COMP 620kΩ 5% 1/4W                                                          |      |
| A4S1                     | 3100-1177              | SWITCH: ROTARY                                                                     |      |
|                          |                        | MISCELLANEOUS                                                                      |      |
| ŀ                        | 04329-1030             | SHIELD: ROTARY SWITCH                                                              |      |
|                          | 04204-3021             | KEY: SHIELD                                                                        |      |
| A5                       | 04290 7005             |                                                                                    |      |
|                          | 04329-7025             | MODE SWITCH ASS'Y                                                                  |      |
| A5R1<br>A5R2             | 0683-1055<br>0683-5145 | R. FXD COMP $1M\Omega$ $5^{\circ}_{0}$ $1/4W$ R:FXD COMP $510k\Omega$ $5\%$ $1/4W$ |      |
|                          |                        | 1.TAD COMP STURM 5/0 1/4W                                                          |      |
| A5S1                     | 3101-0252              | SWITCH: LEVER                                                                      |      |
|                          |                        |                                                                                    |      |
|                          |                        |                                                                                    |      |
|                          | 1                      |                                                                                    |      |
| 1                        |                        |                                                                                    |      |

Table 6-2, Reference Designation Index (Cont'd).

| Part No.  04329-7026 04239-8706  2140-0535  0683-1045  04329-7027  0757-0839 0757-0839 0757-0367 0757-0059 0698-2289  0698-2290 | Description  MULTIPLIER INDICATOR ASS'Y BOARD:BLANK P.C.  LAMP:GLOW NE-2  R: FXD COMP 100kΩ 5% 1/4W  RANGE SWITCH ASS'Y  R:FXD MET. FILM 10kΩ 1% 1/2W R:FXD MET. FILM 10kΩ 1% 1 2W R:FXD MET. FILM 10kΩ 1% 1 2W R:FXD MET. FILM 100kΩ 1% 1 2W R:FXD MET. FILM 1MΩ 1% 1 2W R:FXD MET. FILM 1MΩ 1% 1 2W R:FXD METAL GLAZE 10MΩ 1% 100mW                              | Note                            |
|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| 04239-8706  2140-0535  0683-1045  04329-7027  0757-0839 0757-0839 0757-0367 0757-0059 0698-2289  0698-2290                      | BOARD:BLANK P.C.  LAMP:GLOW NE-2  R: FXD COMP 100kΩ 5% 1/4W  RANGE SWITCH ASS'Y  R·FXD MET. FILM 10kΩ 1% 1/2W R.FXD MET. FILM 10kΩ 1% 1 2W R·FXD MET. FILM 10kΩ 1% 1 2W R·FXD MET. FILM 100kΩ 1% 1/2W R:FXD MET. FILM 100kΩ 1% 1/2W                                                                                                                                |                                 |
| 0683-1045<br>04329-7027<br>0757-0839<br>0757-0839<br>0757-0367<br>0757-0059<br>0698-2289<br>0698-2290                           | R: FXD COMP 100kΩ 5% 1/4W  RANGE SWITCH ASS'Y  R.FXD MET. FILM 10kΩ 1% 1/2W R.FXD MET. FILM 10kΩ 1% 1 2W R.FXD MET. FILM 100kΩ 1% 1 2W R.FXD MET. FILM 100kΩ 1% 1/2W R:FXD MET. FILM 1MΩ 1% 1/2W                                                                                                                                                                   |                                 |
| 04329-7027<br>0757-0839<br>0757-0839<br>0757-0367<br>0757-0059<br>0698-2289<br>0698-2290                                        | RANGE SWITCH ASS'Y  R.FXD MET. FILM $10k\Omega$ $1\%$ $1/2W$ R.FXD MET. FILM $10k\Omega$ $1\%$ 1 2W R.FXD MET. FILM $100k\Omega$ $1\%$ 1 /2W R.FXD MET. FILM $1M\Omega$ $1\%$ 1 /2W                                                                                                                                                                                |                                 |
| 0757-0839<br>0757-0839<br>0757-0367<br>0757-0059<br>0698-2289                                                                   | R FXD MET. FILM $10k\Omega$ $1\%$ $1/2W$ R.FXD MET. FILM $10k\Omega$ $1\%$ 1 2W R FXD MET. FILM $100k\Omega$ $1\%$ 1/2W R:FXD MET. FILM $1M\Omega$ $1\%$ 1/2W                                                                                                                                                                                                      |                                 |
| 0757-0839<br>0757-0367<br>0757-0059<br>0698-2289                                                                                | R.FXD MET. FILM $10k\Omega$ $1\%$ 1 2W R.FXD MET. FILM $100k\Omega$ $1\%$ 1/2W R.FXD MET. FILM $1M\Omega$ $1\%$ 1/2W                                                                                                                                                                                                                                               |                                 |
| 0000 0001                                                                                                                       | R.FXD METAL GLAZE $100 \mathrm{M}\Omega~1\%~10 \mathrm{mW}$                                                                                                                                                                                                                                                                                                        |                                 |
| 0698-2291<br>0698-2292<br>0698-2293<br>0698-3260                                                                                | R.FXD METAL GLAZE $1000 \mathrm{M}\Omega$ $1\%$ $1 \mathrm{m}W$ R FXD METAL GLAZE $10,000 \mathrm{M}\Omega$ $1\%$ $100 \mu \mathrm{W}$ R.FXD METAL GLAZE $100,000 \mathrm{M}\Omega$ $1\%$ $10 \mu \mathrm{W}$ R.FXD MET. FILM $464 \mathrm{k}\Omega$ $1\%$ $1/8 \mathrm{W}$                                                                                        |                                 |
| 3100-1180                                                                                                                       | SWITCH:ROTARY                                                                                                                                                                                                                                                                                                                                                      |                                 |
|                                                                                                                                 | MISCELLANEOUS                                                                                                                                                                                                                                                                                                                                                      |                                 |
| 04329-1031<br>04204-3021<br>04329-3021<br>04329-1033<br>04329-1038                                                              | SHIELD:ROTARY SWITCH CR KEY:SHIELD LONG KEY:SHIELD SHORT 2 REQ'D SHIELD:ROTARY SWITCH CR BRACKET:ROTARY SWITCH UR                                                                                                                                                                                                                                                  |                                 |
| 04329-7028<br>04329-8708                                                                                                        | PARAMETRIC CONVERTER ASS'Y LOCATED IN A7 BOARD:BLANK P.C. RANGE SWITCH ASS'Y                                                                                                                                                                                                                                                                                       |                                 |
| 0160-1584<br>0121-0493<br>0160-1584<br>0160-1583<br>0160-1584                                                                   | C:FXD STYCON 100pF 125VDCW C:VAR AIR 1.7-11.8pF C:FXD STYCON 100pF 10% 125VDCW C:FXD STYCON 20pF 10% 125VDCW C:FXD STYCON 100pF 10% 125VDCW                                                                                                                                                                                                                        |                                 |
| 0160-1165<br>0160-1165<br>0160-1583<br>0212-0528<br>0150-0059                                                                   | C·FXD STYCON 1000pF 10% 125VDCW<br>C.FXD STYCON 1000pF 10% 125VDCW<br>C:FXD STYCON 20pF 10% 125VDCW<br>C:VAR AIR 1.6pF~9pF<br>C:FXD DER 3.3pF ± 0.25pF                                                                                                                                                                                                             |                                 |
| 0122-0104                                                                                                                       | DIODE-VAR CAP. SELECTED PAIR                                                                                                                                                                                                                                                                                                                                       |                                 |
|                                                                                                                                 | 0698-2291<br>0698-2292<br>0698-2293<br>0698-3260<br>3100-1180<br>04329-1031<br>04204-3021<br>04329-3021<br>04329-1038<br>04329-7028<br>04329-7028<br>04329-8708<br>0160-1584<br>0160-1583<br>0160-1584<br>0160-1583<br>0160-1584<br>0160-1583<br>0160-1583<br>0160-1583<br>0160-1583<br>0160-1583<br>0160-1583<br>0160-1583<br>0160-1583<br>0160-1583<br>0160-1583 | R FXD METAL GLAZE 100MΩ 1% 10mW |

Table 6-2, Reference Designation Index (Cont'd)

| Reference<br>Designation | Part No.               | Description                                                                    | Note |
|--------------------------|------------------------|--------------------------------------------------------------------------------|------|
|                          |                        |                                                                                |      |
| A0D1                     | 0008 5404              |                                                                                |      |
| A8R1                     | 0687-5661              | R FXD COMP $56M\Omega$ $10\%$ $1/2W$                                           | Į.   |
| A8R2                     | 0683-3955              | R: FXD COMP 3.9M $\Omega$ 5% 1/4W                                              | - [  |
| A8R3                     | 0683-1065              | R: FXD COMP $10\text{M}\Omega$ $5\%$ $1/4\text{W}$                             | ĺ    |
| A8R4                     | 0683-1065              | R: FXD COMP $10M\Omega$ 5% $1/4W$                                              |      |
| A8R5                     | 0683-2055              | R: FXD COMP 2M $\Omega$ 5% 1/4W                                                |      |
| A8R6                     | 0683-2055              | R: FXD COMP $2M\Omega$ $5\%$ $1/4W$                                            |      |
| A8R7                     | 0683-1065              | R: FXD COMP $10M\Omega$ $5\%$ $1/4W$                                           | 1    |
| A8R8                     | 0683-1065              | R:FXD COMP 10MΩ 5% 1/4W                                                        |      |
|                          |                        | MISCELLANEOUS                                                                  |      |
| ĺ                        | 0340-0060              | INSULATOR: TEFLON CLOVER LEAF TEN REQ'D                                        |      |
| A9                       | 04329-7029             | OSCILLATOR/AMPLIFIER ASS'Y                                                     |      |
|                          | 04329-8709             | BOARD: BLANK P.C.                                                              | i    |
| 40C1 ±                   | 0160 6000              |                                                                                |      |
| A9C1*                    | 0160-0362              | C: FXD DIPPED MICA 510pF 5% 300VDCW                                            |      |
| A9C2*                    | 0140-0192              | C: FXD DIPPED MICA 68pF 5% 300VDCW                                             |      |
| A9C3                     | 0180-1029              | C: FXD TANT ELECT $1\mu F$ 15VDCW                                              |      |
| A9C4                     | 0160-0346              | C: FXD DIPPED MICA 5100pF 5% 300VDCW                                           |      |
| A9CR1                    | 1000 0057              | DIODE CITYOUT DE LA COMPANIA                                                   |      |
|                          | 1902-0057              | DIODE: SILICON BREAKDOWN 6, 49V                                                |      |
| A9CR2                    | 1901-0040              | DIODE: SILICON                                                                 | ĺ    |
| A9CR3                    | 1901-0040              | DIODE: SILICON                                                                 |      |
| A9L1                     | 04329-8601             | COIL: 16mH                                                                     |      |
| A9Q1                     | 1854-0114              | TRANSISTOR: SILICON TOSHIBA 2SC752 RED                                         |      |
| A9Q2                     | 1854-0014              | TRANSISTOR: SILICON TOSHIBA 2SC752 RED                                         |      |
| A9R1                     | 0609 0495              | D. DVD COMP. 04. 0. 7 <sup>(7)</sup> 4 /477                                    |      |
|                          | 0683-2435              | R: FXD COMP 24kΩ 5% 1/4W                                                       |      |
| A9R2<br>A9R3             | 0683-1035              | R: FXD COMP 10kΩ 5% 1/4W                                                       | 1    |
| A9R3<br>A9R4             | 0683-5115              | R: FXD COMP 510Ω 5% 1/4W                                                       |      |
| A9R4<br>A9R5             | 0683-5135<br>0683-1525 | R: FXD COMP $51k\Omega$ $5\%$ $1/4W$<br>R: FXD COMP 1.5k $\Omega$ $5\%$ $1/4W$ |      |
| A9R6                     | 0683-2025              | R: FXD COMP 2kΩ 5% 1/4W                                                        |      |
| A9R7                     | 0683-1525              | R: FXD COMP $280.5\%$ $1/4W$                                                   |      |
| A9T1                     | 04329-8602             | TPANSFORMED, OSCILLATION (AMPLITUDE)                                           |      |
|                          | 01020-0002             | TRANSFORMER: OSCILLATOR/AMPLIFIER                                              |      |
|                          | 5040-4529              | MISCELLANEOUS<br>EXTRACTOR: GRAY                                               |      |
|                          |                        | Zaridic Poit, Gital                                                            |      |
|                          |                        |                                                                                |      |
|                          |                        |                                                                                |      |
|                          |                        |                                                                                |      |
| -                        |                        |                                                                                |      |

Table 6-2, Reference Designation Index (Cont'd)

| Table 6-2, Reference Designation Index (cont. 4) |                                                               |                                                                                                                                                                                                              |      |  |  |
|--------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--|--|
| Reference<br>Designation                         | Part No.                                                      | Description                                                                                                                                                                                                  | Note |  |  |
| A10                                              | 04329-7030<br>04329-8710                                      | AMPLIFIER, METER CIRCUIT ASS'Y BOARD: BLANK P.C.                                                                                                                                                             |      |  |  |
| A10C1<br>A10C2<br>A10C3*<br>A10C4<br>A10C5       | 0160-1548<br>0160-1548<br>0160-1544<br>0160-1333<br>0160-1548 | C. FXD MYLAR 0. $22\mu F ~10\% ~200VDCW$ C: FXD MYLAR 0. $22\mu F ~10\% ~200VDCW$ C FXD MYLAR 4700pF $10\% ~100VDCW$ C: FXD MYLAR 0. $1\mu F ~10\% ~100VDCW$ C FXD MYLAR 0. $22\mu F ~10\% ~200VDCW$         |      |  |  |
| A10CR1<br>A10CR2                                 | 1910-0016<br>1910-0016                                        | DIODE: GERMANIUM<br>DIODE: GERMANIUM                                                                                                                                                                         |      |  |  |
| A10Q1<br>A10Q2                                   | 1854-0114<br>1854-0114                                        | TRANSISTOR: SILICON TOSHIBA 2SC752 RED<br>TRANSISTOR: SILICON TOSHIBA 2SC752 RED                                                                                                                             |      |  |  |
| A10R1<br>A10R2<br>A10R3<br>A10R4<br>A10R5        | 0683-1035<br>0683-5605<br>0683-1035<br>0683-2435<br>0683-3015 | R: FXD COMP $10k\Omega$ $5\%$ $1/4W$<br>R: FXD COMP $56\Omega$ $5\%$ $1/4W$<br>R: FXD COMP $10k\Omega$ $5\%$ $1/4W$<br>R: FXD COMP $24k\Omega$ $5\%$ $1/4W$<br>R: FXD COMP $300\Omega$ $5\%$ $1/4W$          |      |  |  |
| A10R6<br>A10R7<br>A10R8<br>A10R9<br>A10R10       | 0683-1035<br>0683-3925<br>0757-0280<br>2100-1759<br>0683-1055 | R: FXD COMP $10k\Omega$ $5\%$ $1/4W$<br>R: FXD COMP 3. $9k\Omega$ $5\%$ $1/4W$<br>R: FXD MET. FILM $1k\Omega$ $1\%$ $1/8W$<br>R: VAR W. W. LIN $2k\Omega$ $10\%$ $1W$<br>R: FXD COMP $1M\Omega$ $5\%$ $1/4W$ |      |  |  |
| A10T1                                            | 04329-8603                                                    | TRANSFORMER OUTPUT                                                                                                                                                                                           |      |  |  |
|                                                  | 0340-0060                                                     | MISCELLANEOUS<br>EXTRACTOR GRAY                                                                                                                                                                              |      |  |  |
| A11                                              | 04329-7031<br>04329-8711                                      | METER SCALE INDICATOR ASS'Y<br>BOARD: BLANK P.C.                                                                                                                                                             |      |  |  |
| A11DS1-<br>A11DS4                                | 2140-0123                                                     | LAMP: GLOW                                                                                                                                                                                                   |      |  |  |
| A11R1                                            | 0683-4335                                                     | R: FXD COMP 43kΩ 5 <sup>cg</sup> 1/4W                                                                                                                                                                        |      |  |  |
|                                                  | 5040-3313                                                     | MISCELLANEOUS<br>HOLDER: LAMP                                                                                                                                                                                |      |  |  |
| C1<br>C2                                         | 0160-1646<br>0160-1647                                        | C: FXD PAPER 0.5 μF 1000VDCW<br>C FXD PAPER 0.3 μF 1500VDCW                                                                                                                                                  |      |  |  |
| F1                                               | 2110-0234                                                     | FUSE: SLOW BLOW 100mAT                                                                                                                                                                                       |      |  |  |
| J1                                               | 1251-8695                                                     | CONN-AC POWER MALE                                                                                                                                                                                           |      |  |  |

Table 6-2, Reference Designation Index (Cont'd)

| Reference<br>Designation | Part No.                             | Description                                                                | Note |
|--------------------------|--------------------------------------|----------------------------------------------------------------------------|------|
| Ј2                       | 1250-0118                            | CONNECTOR:BNC FEMALE FOR ''UNKNOWN''                                       |      |
|                          | 5040-0345<br>04329-5125              | INSULATOR:COVER                                                            |      |
| Ј3                       | 1510-0091<br>3050-0067               | CONNECTOR:BINDING POST RED FOR "UNKNOWN"<br>INSULATOR                      |      |
| J4                       | 1510-0107<br>3050-0067               | CONNECTOR:BINDING POST BLACK FOR "GND" INSULATOR                           |      |
| J5                       | 5000-4206<br>1510-0091<br>3050-0067  | SHORTING LINK<br>CONNECTOR:BINDING POST BLACK FOR ''GUARD''<br>INSULATOR   |      |
| J6<br>(OPT C10)          | 1250-0118<br>5040-0345               | CONNECTOR:BNC FEMALE FOR "UNKNOWN", REAR INSULATOR                         |      |
|                          | 04329-5125<br>04329-5126             | INSULATOR COVER<br>CAP:BNC MALE INSULATED                                  |      |
| J7<br>(OPT C10)          | 1510-0091<br>3050-0067               | CONNECTOR:BINDING POST RED FOR "UNKNOWN", REAR INSULATOR                   |      |
| J8                       | 1510-0091<br>3050-0067               | CONNECTOR FOR RECORDER INSULATOR                                           |      |
|                          |                                      |                                                                            |      |
|                          |                                      |                                                                            |      |
| М1                       | 1120-0760                            | METER 100 μA SPEC                                                          |      |
| R1                       | 0757-0465                            | R:FXD COMP 100kΩ 5% 1/4W                                                   |      |
| S1<br>S2<br>S3           | 3101-2139<br>3101-1235<br>04329-7032 | SWITCH:LINE PUSH ON-OFF<br>SWITCH:SLIDE DPDT 115/230V<br>SWITCH:SLIDE 8PDT |      |
| T1                       | 9100-0757                            | TRANSFORMER:POWER                                                          |      |
| W1                       | 8120-1378<br>1251-0048               | CABLE ASS'Y POWER CORD<br>ADAPTER:THREE PRONG TO TWO PRONG                 |      |
| XF1                      | 2110-0564<br>2110-0565               | HOLDER, FUSE<br>CAP                                                        |      |
|                          | 2110-0569                            | NUT                                                                        |      |
|                          |                                      |                                                                            |      |
|                          |                                      |                                                                            |      |

Table 6-2, Reference Designation Index (Cont'd)

| Reference<br>Designation | Part No.                                                                        | Description                                                                                                                | Note |
|--------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|------|
|                          |                                                                                 | MISCELLANEOUS                                                                                                              |      |
|                          | 16117A<br>04329-00202<br>04329-00201<br>04329-1049<br>04329-10022<br>04329-1044 | TEST LEAD: LOW NOISE PANEL: FRONT (HP) PANEL: FRONT (YHP) PLATE: POWER TRANS PANEL: REAR PANEL: REQR (OPT C10)             |      |
|                          | 04329-5024<br>04329-8521<br>04329-5022<br>0370-0287<br>0370-0288                | SEPARATOR: MULTIPLIER INDICATOR FILM: MULTIPLIER INDICATOR KNOB: LEVER FOR MODE SWITCH KNOB: WING WHITE LINE BLK CAP: KNOB |      |
|                          | 5040-4555<br>6960-0001                                                          | GUIDE:BOARD ASS'YGRAY 8REQ'D PLUG HOLE FOR $\infty$ ADJ AND FULL SCALE ADJ                                                 |      |
|                          |                                                                                 |                                                                                                                            |      |
|                          |                                                                                 |                                                                                                                            |      |
|                          |                                                                                 |                                                                                                                            |      |
| ļ                        |                                                                                 | •                                                                                                                          |      |
|                          |                                                                                 |                                                                                                                            |      |
|                          |                                                                                 |                                                                                                                            |      |
|                          |                                                                                 |                                                                                                                            |      |
|                          |                                                                                 |                                                                                                                            |      |
| :                        |                                                                                 |                                                                                                                            |      |
| -                        |                                                                                 | -                                                                                                                          |      |

## SECTION VII MANUAL CHANGES AND OPTIONS

## 7-1. OPTIONS

7-2. Options are standard modifications performed on HP instruments at the factory. No options for the Model 4329A are offered at the present time.

## 7-3. SPECIAL INSTRUMENTS

7-4. "Specials" are standard HP instruments that are modified according to customer specifications. A separate insert sheet is included with the manual for special instruments having electrical changes. Make the changes specified in addition to any other changes that are necessary.

## 7-5. MANUAL CHANGES

7-6. This manual applies directly to the Model 4329A with serials prefixed 2111. The following paragraphs explain how to adapt this manual to apply to later instruments with higher serial prefix, or earlier instruments with lower serial prefix or number. Technical corrections to this manual (if any) are called errata and are listed on a separate "Manual Changes" sheet supplied with this manual.

7-7. <u>LATER INSTRUMENTS</u>: If the serial prefix of your Model 4329A is above 2111, refer to a separate "Manual Changes" sheet supplied with this manual. Locate the serial prefix of your instrument and make the indicated changes.

7-8. EARLIER INSTRUMENTS(Backdating Changes). If the serial prefix of your Model 4329A is below 2111, refer to Table 7-1 for the changes necessary to adapt this manual to your particular instrument. Locate the serial prefix of number of your instrument in the table and make the indicated changes. Note that instrument-component values that differ from those in this manual, yet are not listed in this backdating changes, should be replaced using the part number given in this manual.

Table 7-1. Backdating Changes.

|                                    | T                     |
|------------------------------------|-----------------------|
| Instrument Serial Prefix or Number | Make Changes          |
| 831/832-00195 and below            | l thru 22             |
| 831/832-00230 and below            | 2 thru 22             |
| 831/832-00350 and below            | 3 thru 22             |
| 941/942- and below                 | 4 thru 22             |
| 947/948-00470 and below            | 5 thru 22             |
| 947/948-00550 and below            | 6 thru 22             |
| 947/948-00710 and below            | 7 thru 22             |
| 1051/1052-00980 and below          | 8 thru 22             |
| 1207/1208- and below               | 9 thru 22             |
| 1230 and below                     | 10 thru 22            |
| 1304 and below                     | 11 thru <sup>22</sup> |
| 1311 and below                     | 12 thru 22            |
| 1325 and below                     | 13 thru 22            |
| 1512 and below                     | 14 thru 22            |
| 1521J00291 and below               | 15 thru 22            |
| 1521J02230 and below               | 16 thru 22            |
| 1804J and below                    | 17 thru 22            |
| 1804J03700 and below               | 18 thru 22            |
| 1830J03770 and below               | 19 thru <sup>22</sup> |
| 1836J04881 and below               | 20 thru 22            |
| 2111J05080 and below               | 21 and 22             |
| 2111J05420 and below               | 22 only               |

## CHANGE 1

Page 6-4, Table 6-2

Change A3R3 to HP Part No. 0683-1535; R:FXD COMP  $15k\Omega$  5% 1/4W.

Page 6-6, Table 6-2

Change A7R10 to HP Part No. 0698-1481; R:FXD MET FILM 490k $\Omega$  1% 1/8W.

Page 6-8, Table 6-2

Change A11DS1 through A11DS4 to HP Part No. 2140-0018; LAMP:GLOW NE-2. Change A11R1 to HP Part No. 0683-3335, R:FXD COMP  $33k\Omega$  5% 1/4W.

Page 6-9, Table 6-2

Delete R2.

## CHANGE 1 (Cont'd)

Page 5-2, Paragraphs 5-15 and 5-16, ADJUSTMENT

Delete Steps (c) to (g).

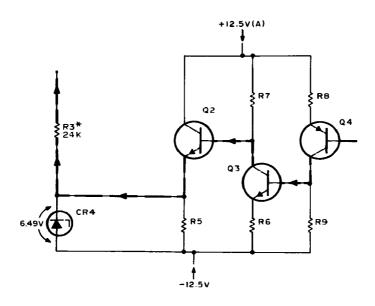
Add Steps (c) to (e) as following:

- c. Set RANGE to CAL.; if the pointer does not indicate full-scale, set it to full-scale using the AMP. SENS. ADJ. A10R9(Remove top cover for access to adjustment through hole in circuit shield. See Figure 5-1).
- e. Figure 5-2 illustrates the relationship between the three adjustments and is a pictorial reference for the adjustment procedure.

Page 5-3, Figure 5-2

Delete R2.

## CHANGE 2


Page 6-7, Table 6-2

Delete asterisk (\*) from A9C1.

Page 8-7, Figure 8-5, Oscillator/Amplifier Ass'y A9
Delete asterisk (\*) from A9C1.

## CHANGE 3

Page 8-9, Figure 8-6, High Voltage Power Supply Ass'y A3 Change the circuit as shown in partial schematic below.



Page 6-8, Table 6-2

Delete C2.

Page 8-5, Figure 8-4

Delete C2 from circuit.

#### CHANGE 5

Page 6-8, Table 6-2

Change A10C3 to HP Part No. 0160-1568; C:FXD MYLAR 6800pF 10% 100VDCW and delete asterisk (\*) from A10C3.

Page 8-7, Figure 8-5, Amplifier/Meter Circuit Ass'y A10

Change values of A10C3 to 6800pF, and delete asterisk (\*) from A10C3.

## CHANGE 6

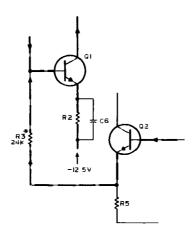
Page 6-4, Table 6-2

Change A3R3 to HP Part No. 0683-2435; R:FXD COMP  $24k\Omega$  5% 1/4W and add asterisk (\*) to A3R3.

Page 6-5, Table 6-2

Delete A3R21.

Page 6-8, Table 6-2


Change C2 to HP Part No. 0160-1318; C:FXD PAPER 0.5 $\mu F$  1000VDCW.

Page 8-9, Figure 8-6, Test Voltage Power Supply Ass'y A3

Change the circuit as shown in partial schematic below.

Page 8-5, Figure 8-4

Change value of C2 to  $0.5\mu F$ .



Page 5-2, Paragraphs 5-15 and 5-16, ADJUSTMENT Delete Step (a).

Page 6-8, Table 6-2

Change HP Part No. of F1 to 2110-0110.

Change HP Part No. of J1 to 1251-0148.

Page 6-9, Table 6-2

Change HP Part No. of S1 to 3101-0100.

Change HP Part No. of S2 to 3101-0033.

Change HP Part No. of W1 to 8120-0078.

Page 6-10, Table 6-2

Change HP Part No. of PANEL: FRONT (HP) to 04329-1021.

Change HP Part No. of PANEL: REAR to 04329-1022.

## **CHANGE 8**

Page 6-9, Table 6-2

Change HP Part No. of INSULATOR for J2 and J6 to 5040-0702.

Change HP Part No. of COVER for J2 and J6 to 04329-5025.

Change HP Part No. of CAP for J6 to 04329-5026.

Change HP Part No. of WI to 8120-1348.

Page 6-10, Table 6-2

Change HP Part No. of PANEL: FRONT to 04329-1041.

## CHANGE 9

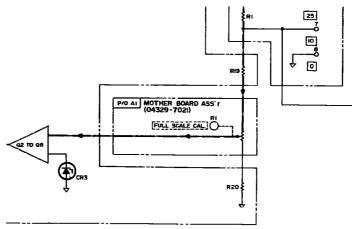
Page 6-8, Table 6-2

Change C1 to HP Part No. 0160-1318; C-F Paper 0.5 $\mu$ F 1000VDCW.

Change C2 to HP Part No. 0160-1604; C-F Paper 0.3 $\mu$ F 1500VDCW.

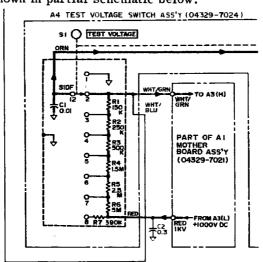
## **CHANGE 10**

Page 6-4, Table 6-2


Delete A3C8 0160-0128, C:FXD CER 2.2 $\mu$ F 20% 25VDCW.

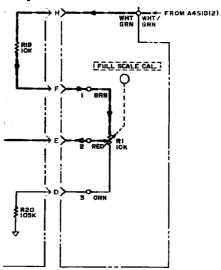
Page 6-3, Table 6-2

Delete A1R2 2100-0942; R:VAR  $50k\Omega \ 3/4W$ .


Page 8-3, Figure 8-3

Change the circuit as shown in partial schematic below.




Page 8-5, Figure 8-4

Change the circuit as shown in partial schematic below.

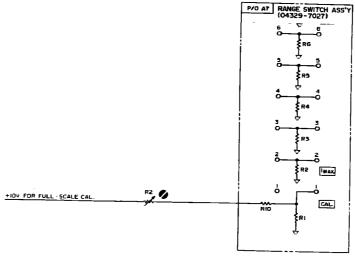


Page 8-9, Figure 8-6

Change the circuit as shown in partial schematic below.

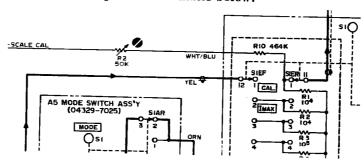


## Page 6-6, Table 6-2


Change HP Part No. of BRACKET: ROTARY SWITCH to 04329-1032.

## Page 6-9, Table 6-2

Delete J8 04260-5028; CONNECTOR FOR RECORDER.
Add J8 1510-0008; CONNECTOR BINDING POST RED.
0340-0221; INSULATOR.
04260-5022; INSULATOR.
Add J9 1510-0009; CONNECTOR BINDING POST BLACK.
0340-0221; INSULATOR.
04260-5022; INSULATOR.
Add R2 2100-1084; R:VAR C-FILM 50kΩ TYPE B.


## Page 8-3, Figure 8-3

Change the circuit as shown in partial schematic below.



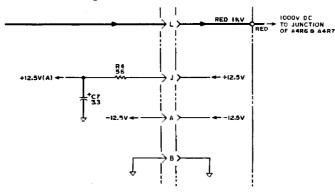
Page 8-5, Figure 8-4

Change the circuit as shown in partial schematic below.



Page 6-10, Table 6-2

Change HP Part No. of PANEL:REAR to 04329-1042.


## CHANGE 11

## Page 6-10, Table 6-2

Change HP Part No. of PANEL:REAR to 04329-1042. Delete HP Part No. of CONNECTOR:FOR RECORDER 04260-5028.

## Page 8-9, Figure 8-6

Change the circuit as shown in partial schematic below.



CHANGE 12

## Page 6-6, Table 6-2

Change HP Part No. of A4S1 to 3100-1140.

Change HP Part No. of A7S1 to 3100-1139.

Change HP Part No. of A8C1 to 0160-1582; C:FXD STYCON 100pF 125VDCW.

Delete A8C9 0121-0060; C:VAR CER 2-8pF.

## Page 6-7, Table 6-2

Delete A8R8 0683-1065; R:FXD COMP  $10M\Omega$  5% 1/4W.

## Page 6-8, Table 6-2

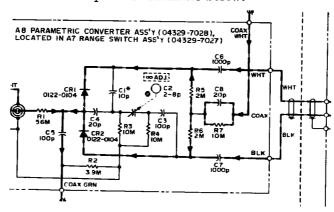
Change HP Part No. of C1 to 0160-1617.

Change HP Part No. of C2 to 0160-1618.

Change HP Part No. of A1XA1 to 1251-1558.

Change HP Part No. of A1XA1 THRU A1XA4 to 1251-1557.

## Page 6-10, Table 6-2


Change HP Part No. of REAR PANEL to 04329-1039.

## Page 8-7, Figure 8-5

Change value of A8C1 to 10pF.

## Page 8-7, Figure 8-5

Change the circuit as shown in partial schematic below.



Page 5-4, Figure 5-3A, Figure 5-3B, page 6-7, Table 6-2, page 8-2, Figure 8-2A, Figure 8-2B, page 8-3, Figure 8-3, and page 8-5, Figure 8-4

Add C1 0160-1646; C: FXD PAPER 0.5 µF 1000 VDCW.

Page 6-8, Table 6-2

Delete HP Part No. 04329-1049; PLATE: POWER TRANS.

Page 6-6, Table 6-2 and page 8-5, Figure 8-4

Change A4R7 to HP Part No. 0683-3945 ; R:FXD COMP 390k $\Omega$  5% 1/4W.

#### CHANGE 14

Page 6-4, Table 6-2, page 8-3, Figure 8-3 and page 8-5, Figure 8-4

Delete A5R2.

Page 6-8, Table 6-2

Change HP Part No. of J3 to 1510-0008, and of INSULATOR to 0340-0221. Change HP Part No. of J4 to 04329-7033, and of INSULATOR to 0340-0221. Change HP Part No. of J5 to 1510-0009, and of INSULATOR to 0340-0221. Add INSULATOR HP Part No. 04260-5022 to J3. Change HP Part No. of J7 to 1510-0008, and of INSULATOR to 0340-0221. Change HP Part No. of J8 to 04260-5028, and Delete 3050-0067 INSULATOR.

Page 6-9, Table 6-2

Change HP Part No. of PANEL FRONT to 04329-1141. Change HP Part No. of PANEL REAR to 04329-1044.

## CHANGE 15

Page 6-5, Table 6-2, page 8-3, Figure 8-3 and page 8-7, Figure 8-5

Delete A8Clo. Change A8Clo to HP Part No. 0121-0059; C: VAR CER 2-8pF. Change A8Clo to HP Part No. 0121-0060; C: VAR CER 2-8pF.

## CHANGE 16

Page 6-9, Table 6-2

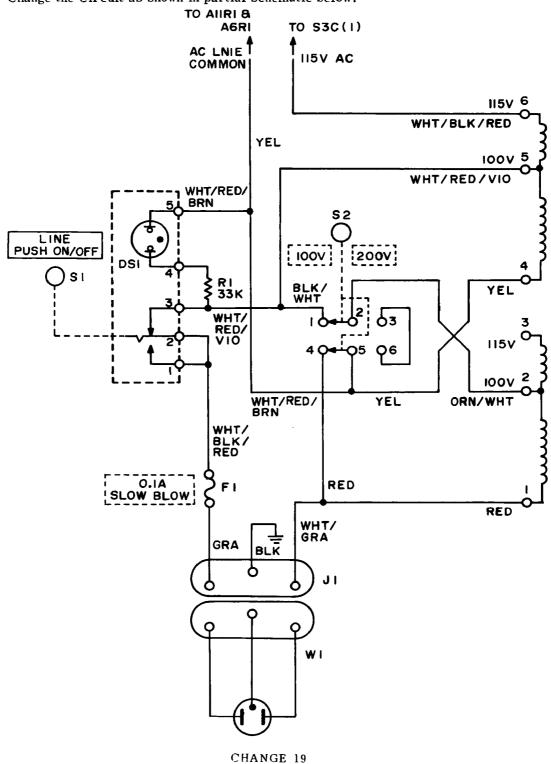
Change the P/N for KNOB: WING WHITE LINE BLK to 0370-0227. Change the P/N for CAP: KNOB to 0370-0228.

### CHANGE 17

Page 5-4, Figure 5-3A, Figure 5-3B, page 6-7, Table 6-2, page 8-2, Figure 8-2A, Figure 8-2B, page 8-3, Figre 8-3, and page 8-5, Figure 8-4: Delete C1 0160-1646; C: FXD PAPER  $0.5\,\mu\text{F}$  1000VDCW.

Page 3-2, Figure 3-2, page 3-6, Figure 3-5, page 3-7, Figure 3-6, page 3-8, Figure 3-7 and page 3-9, figure 3-8: Delete WARNING SILK.

## CHANGE 18


Page 6-8, Table 6-2

Change R1 to HP Part No. 0683-3335 ; R : FXD COMP 33k  $\Omega$  5% 1/4W Change S1 to HP Part No. 3101-1248 ;SWITCH: LINE PUSH ON-OFF

Page 6-9, Table 6-2

Change PANEL FRONT (HP) to HP Part No. 04329-10021 Change PANEL FRONT (YHP) to HP Part No. 04329-10020

Page 8-9, Figure 8-6
Change the Circuit as shown in partial schematic below.



Page 6-9, Table 6-2
Add HP Part No. 5060-3998:EXTENDER:BOARD 10PINS
Add HP Part No. 5060-3999;EXTENDER:BOARD 15PINS

Page 6-7, Table 6-2, Page 8-7, Figure 8-5

Change AlOR2 to HP Part No. 0683-1015 R : FXD  $100\Omega$  5% 1/4W

## CHANGE 21

Page 6-5, Table 6-2, Page 8-5 Figure 8-4

Change A6R1 to HP Part No. 0683-3335 R: FXD 33kΩ 5% 1/4W

## **CHANGE 22**

Page 6-5, Table 6-2, Reference Designation Index:

Change the part numbers and descriptions for A8C9 and A8C10 to read:

A8C9 0121-0235

C: VAR AIR 1.3 7.2pF

A8C10 0160-2240

C: FXD CER 2pF 2.5% 500VDCW

Page 8-7, Figure 8-5:

Change the indicated values of A8C9 and A8C10 to 1.3 \ 7.2pF and 2pF, respectively.

# SECTION VIII CIRCUIT DIAGRAMS

- 8-1. INTRODUCTION
- 8-2. This section includes the following:
- a. General Notes for schematic diagrams.
- b. Functional Overall Block Diagram (Figure 8-3).
- c. Schematic Diagrams and Parts Location Illustrations. Waveforms and voltages at indicated test points are also included.
- 8-3. GENERAL NOTES.
  - a. Unless otherwise indicated, resistance is in ohms, capacitance is in microfarads, and inductance is in microhenries.
  - b. Components assigned and asterisk (\*) are factory selected, average values shown.

- c. The components mounted on chassis or mainframe parts are not assigned an assembly designation (ie. R1, Q1 etc.).
- d. Reference designations (R1, Q1, etc.) within assembly (A1, A2, ..... etc.) use assembly designation as prefix to form complete designation (ie. R1 in A1 assembly is A1R1).
- e. WHT/YEL/VIO indicates wire color. First color identifies ground color, second color identifies wide stripe, and third color identifies narrow stripe.
- 8-4. Additional notes are shown in Figure 8-1.

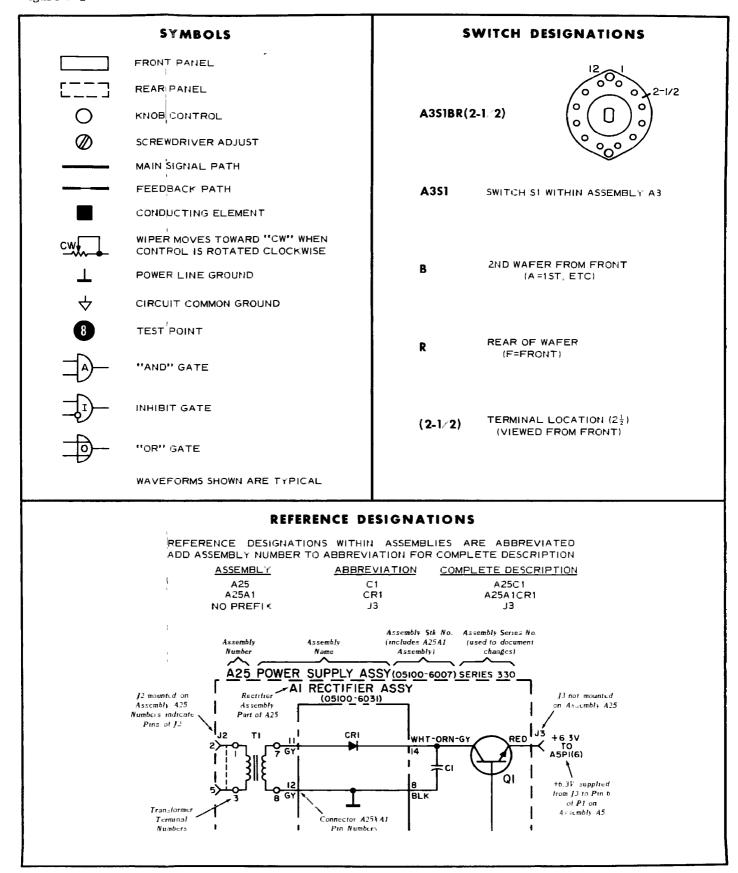
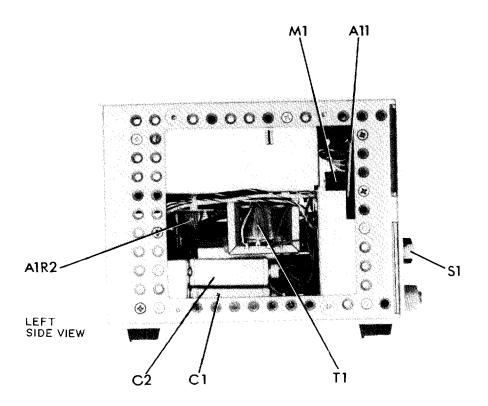




Figure 8-1. Schematic Diagram Notes



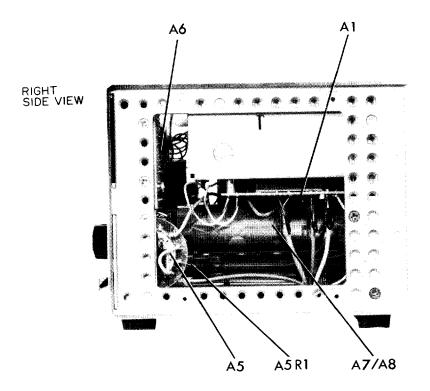
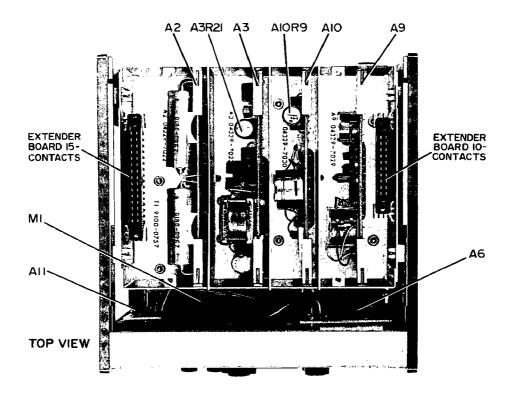



Figure 8-2A. Assembly and Component Location (Side View)




Section VIII

CIRCUIT DIAGRAMS

Figure 8-1

SCHEMATIC DIAGRAM NOTES



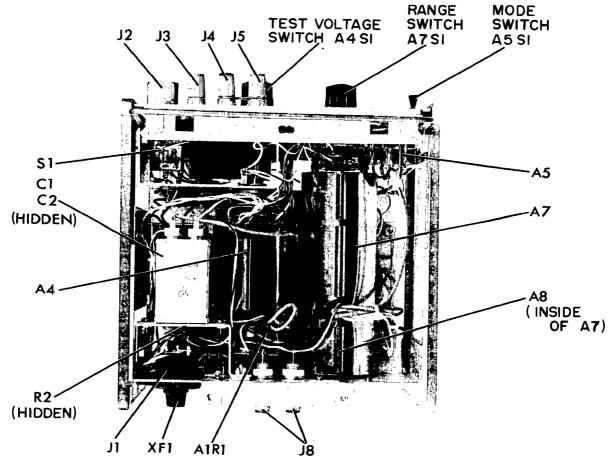
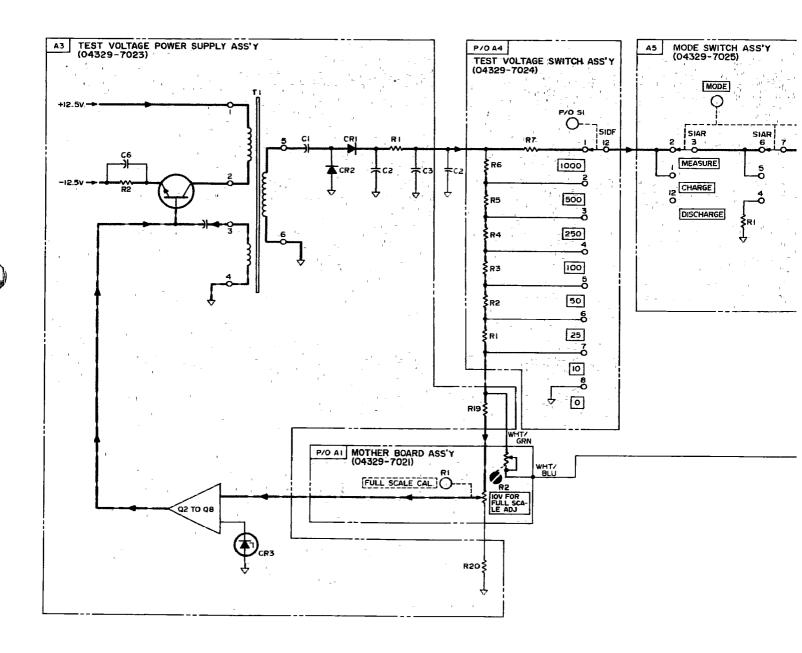
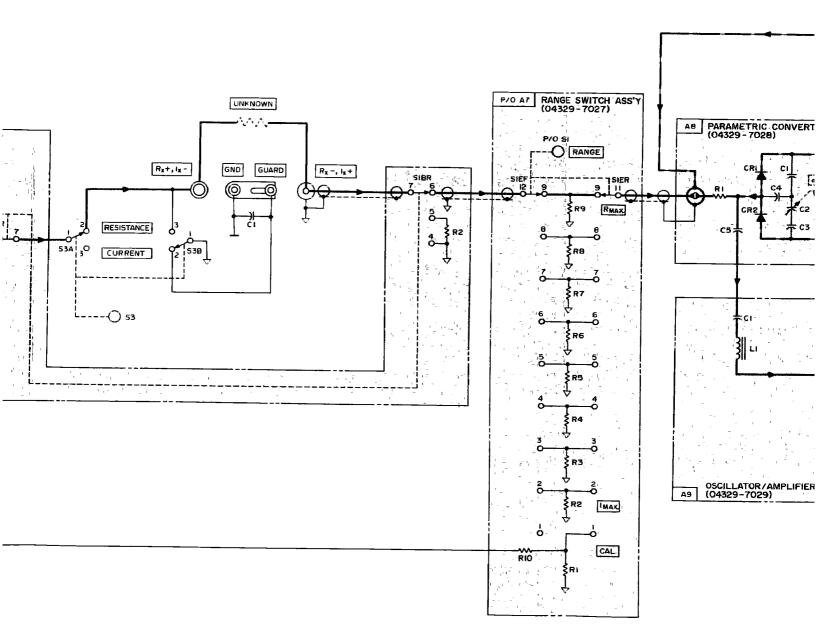





Figure 8-2B. Assembly and Component Location (Top and Bottom View)









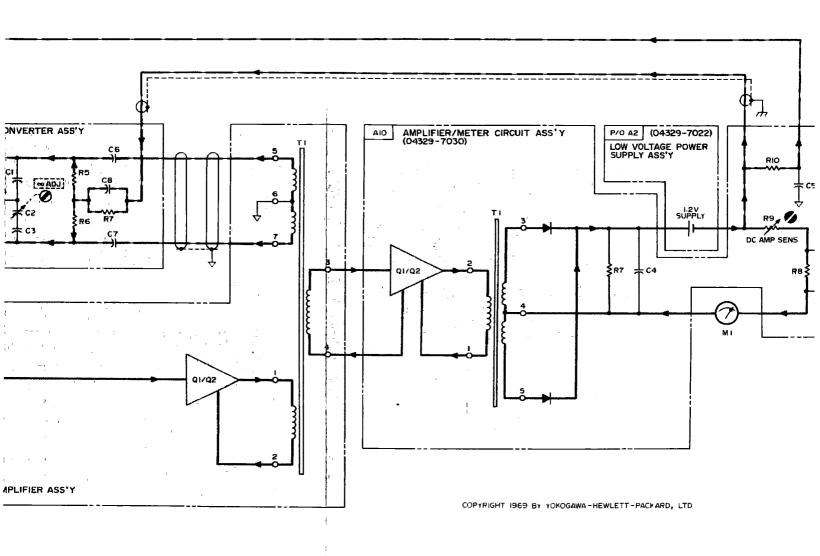
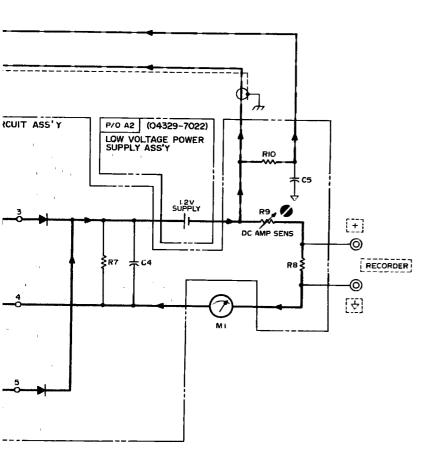




Figure 8-3. Functional Overall Bloc



1969 BY YOKOGAWA-HEWLETT-PACKARD, LTD.

Figure 8-3. Functional Overall Block Diagram

BLK/WHT

A6DSI

A6DS5

A6 MULTIPLIER INDICATOR ASS'Y COMPONENT LOCATION AGDS2 AGDS9
AGDS4 AGDS10

A6DS7

A6DSII

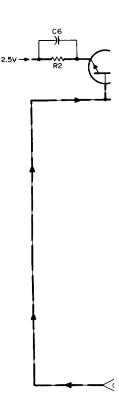
A6056 A60512

WHT/ BLK/ BRN

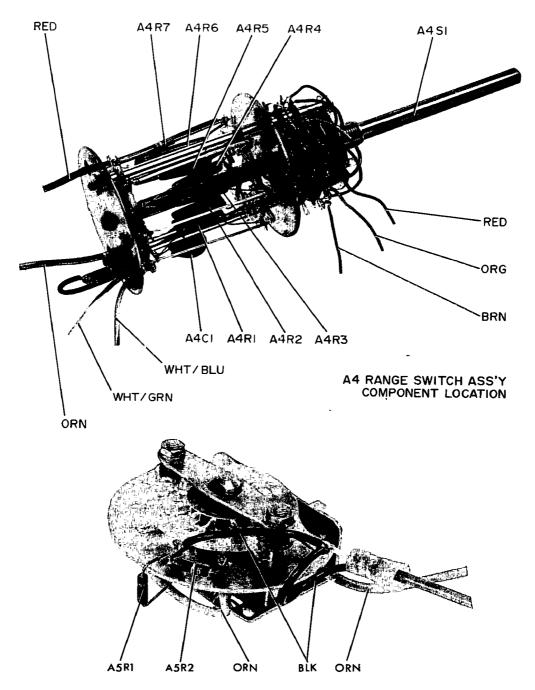
All METER SCALE INDICATOR ASS'Y COMPONENT LOCATION

AHRI

AHDS4


AIIDS3

AIIDS2


AIIDSI

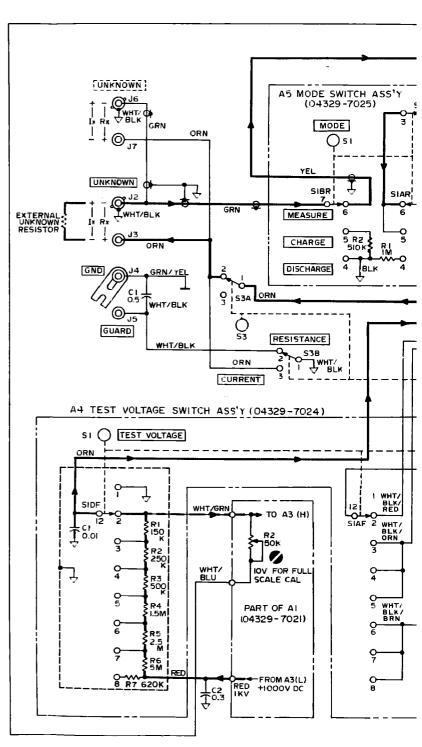
TEST VOLTAGE POWEI (04329-7023)



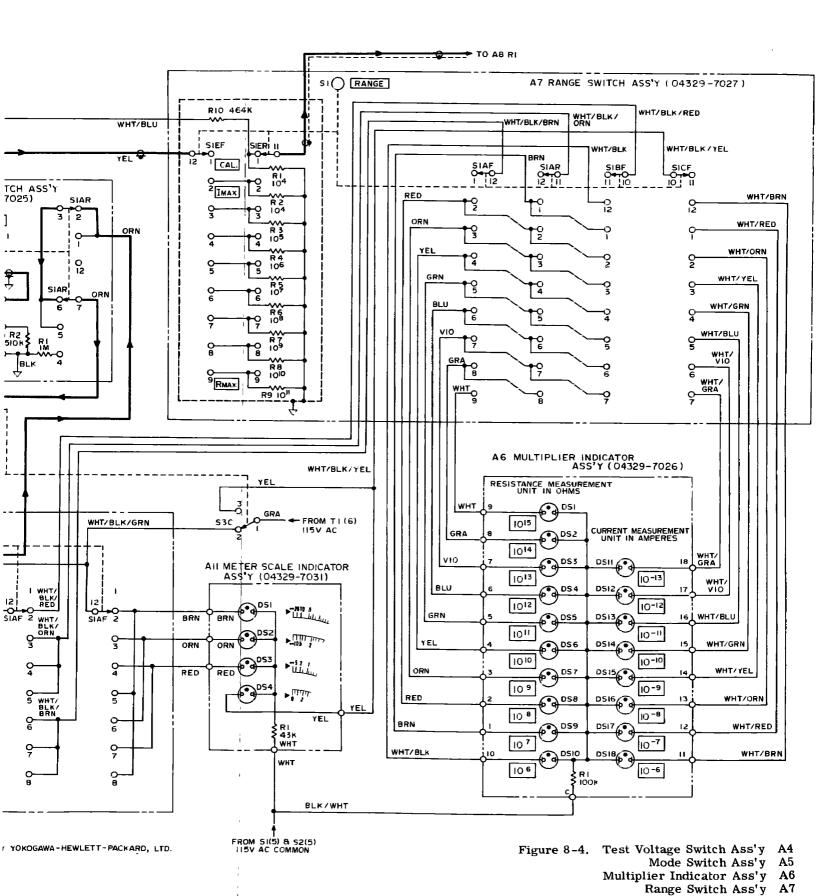







A5 MODE SWITCH ASS'Y COMPONENT LOCATION




| REFERENCE DESIGNATIONS |          |                     |               |
|------------------------|----------|---------------------|---------------|
| NO<br>PREFIX           | AT ASS'Y | A4 A55'Y            | A5 ASS'Y      |
| J2 – J7<br>R2<br>S3    | R2       | CI<br>RI - R7<br>SI | RI - R2<br>SI |

DELETED;

| A6 ASS'Y         | A7 A55'Y       | All ASS'Y       |
|------------------|----------------|-----------------|
| DSI - DSIB<br>RI | RI - RIO<br>SI | DSI - DS4<br>R1 |
| DELETED;         | •              |                 |



COPYRIGHT 1969 BY YOKOGAWA-HE



Meter Scale Indicator Ass'y A11

1

Figure 5-4
TEST VOLTAGE SWITCH ASS'Y A4
MODE SWITCH ASS'Y A5
MULTIPLIER SWITCH ASS'Y A6
RANGE SWITCH ASS'Y A7
METER SCALE INDICATOR ASS'Y A1

-

SEE INSIDE

A O AMPLIFIER/ METER CIRCUIT ASS'Y COMPONENT LOCATION

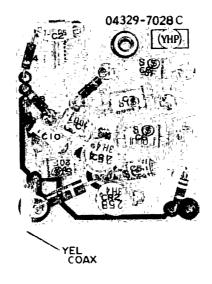
ច

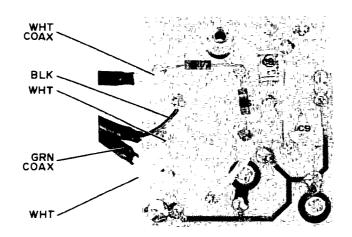
F

CRI CR2 R7

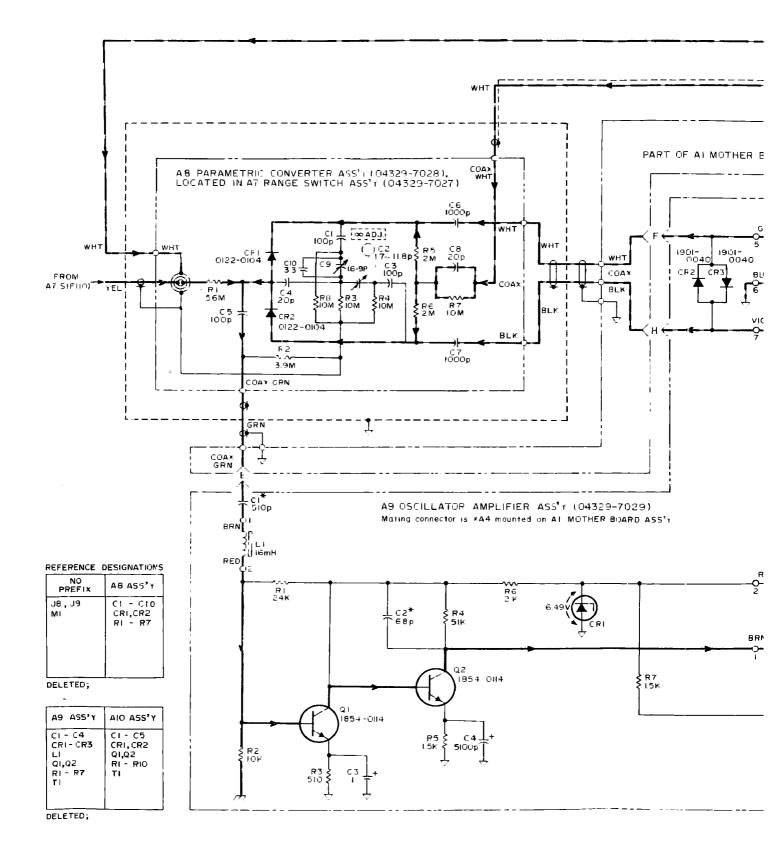
8

Section 2


ABCDEFHJKL


88

8


A9 OSCILLATOR/ AMPL.FIER ASS'Y COMPONENT LOCATION

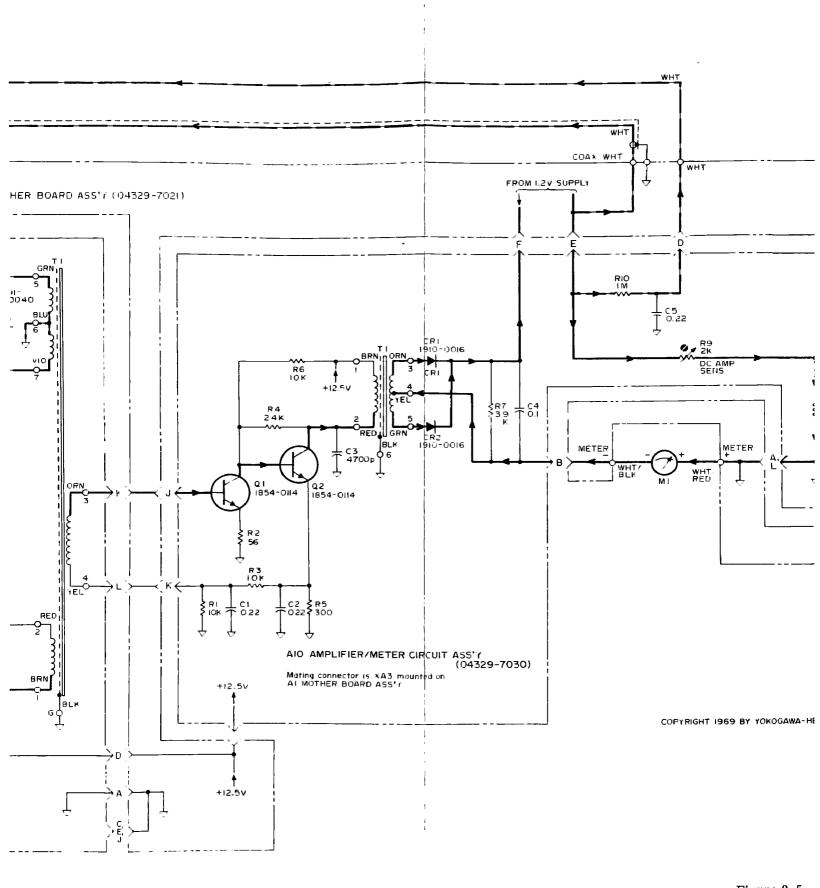
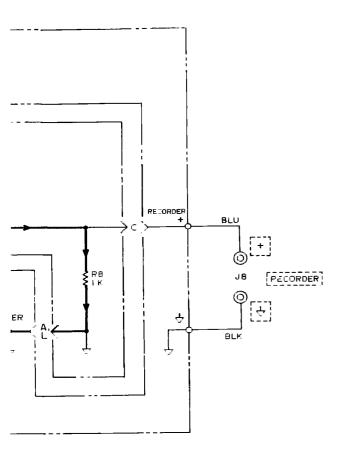
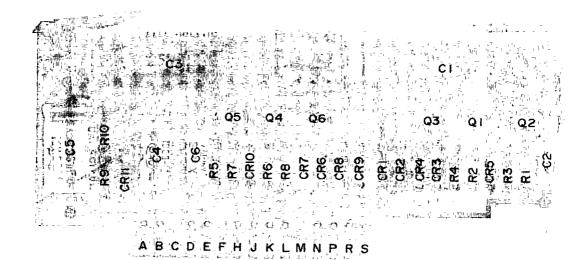
ABCDEFHUKL

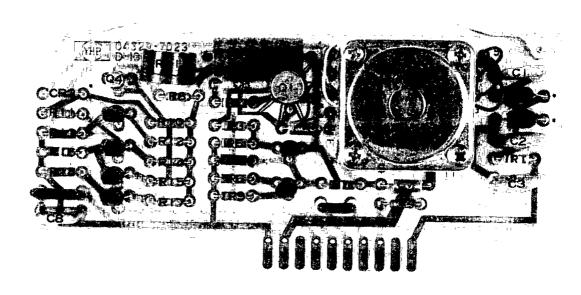




A8 PARAMETRIC CONVERTER ASSY COMPONENT LOCATION





Figure 8-5.



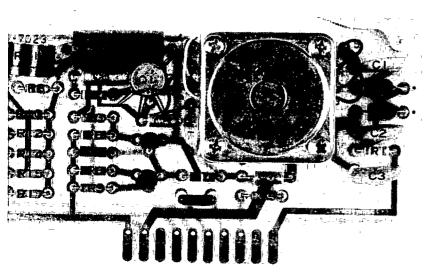
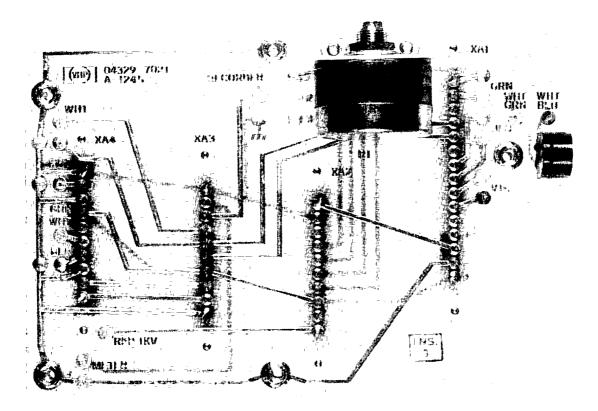

BY YOKOGAWA-HEWLETT-PACKARD, LTD

Figure 8-5. Parametric Converter Ass'y A8
Oscilator Amplifier Ass'y A9
Amplifier/Meter Circuit Ass'y A10





A2 LOW VOLTAGE POWER SUPPLY ASS'Y COMPONENT LOCATION




A3 HIGH VOLTAGE POWER SUPPLY ASS'Y COMPONENT LOCATION

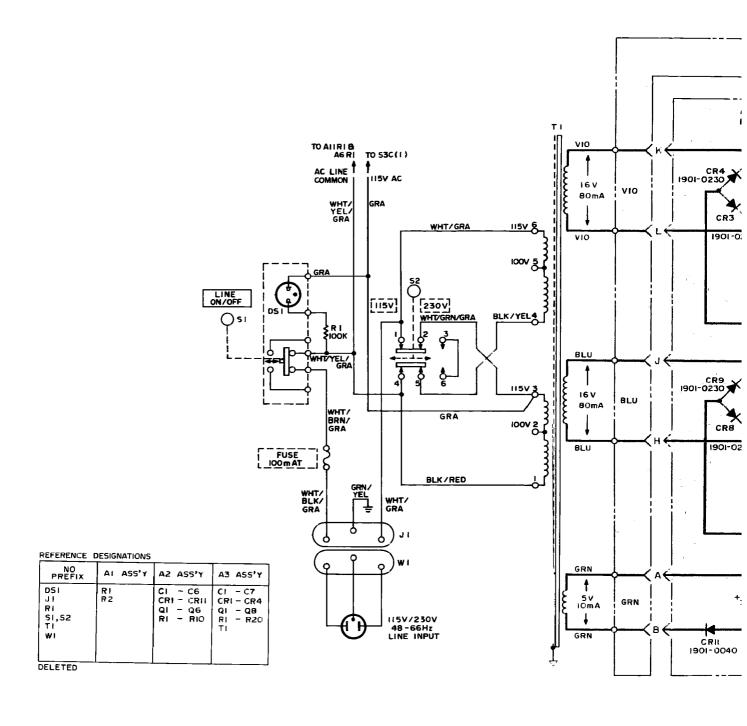
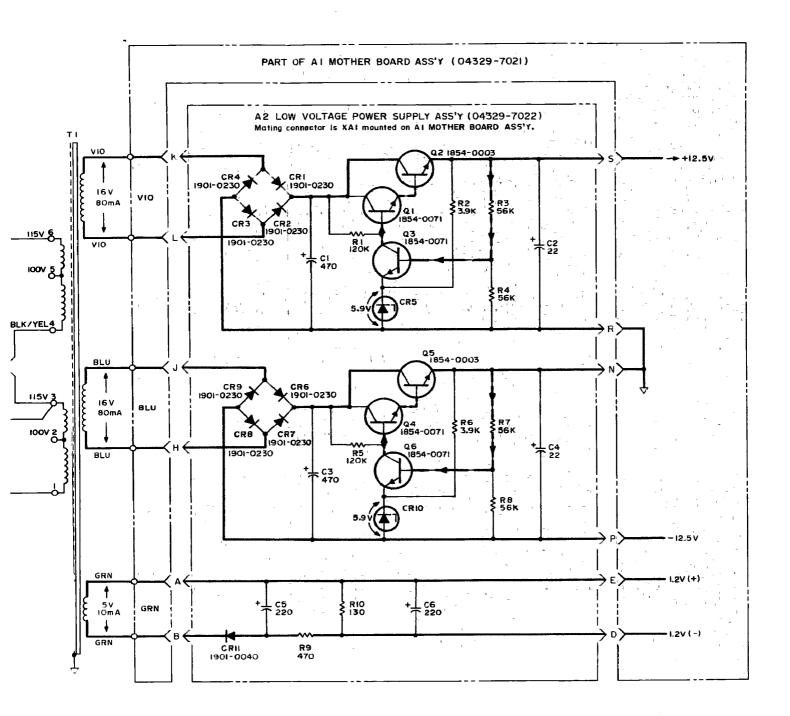
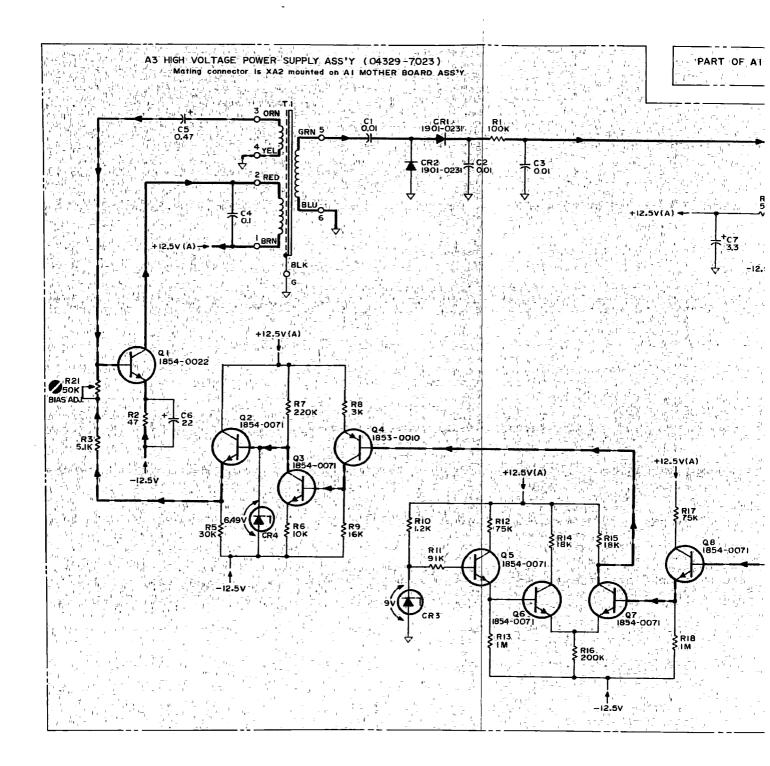



Figure 8-5


PARAMETRIC CONVERTER ASS'Y A8 OSCILLATOR/AMPLIFIER ASS'Y A9 AMPLIFIER/METER CIRCUIT ASS'Y AIO




AI MOTHER BOARD ASS'Y COMPONENT LOCATION



1





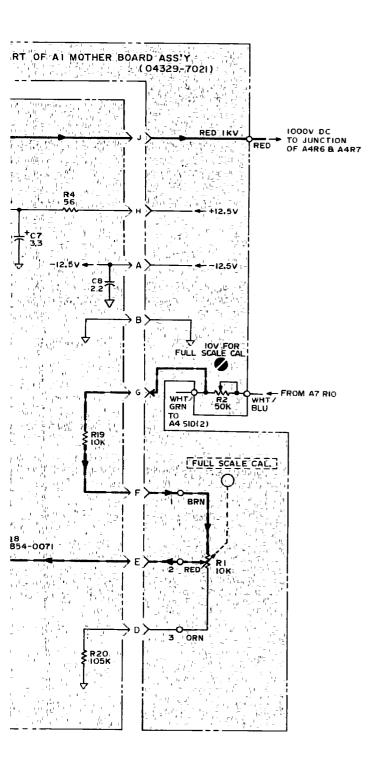



Figure 8-6. Mother Board Ass'y A1
Low Voltage Power Supply Ass'y A2
Test Voltage Power Supply Ass'y A3