California Instruments BPS Series

30-180 kVA

Overview

150-400 V

• High Power AC Source

Programmable AC power for frequency conversion and product test applications

• Expandable Power Levels

Available output power of 30, 45, 75 and 90 kVA per unit and multi-unit configurations for power requirements up to 180 kVA and above

• Remote Control

Standard RS232, USB and IEEE-488 (GPIB) and optional LAN interfaces are available for automated test applications.

0-400 A / Phase

%	208	230	400
	480		

ETHERNET USB GPIB R\$232

Introduction

The BPS Series consists of multiple high power AC power systems that provide controlled AC output for ATE and product test applications.

This high power AC test system covers a wide spectrum of AC power applications at an affordable cost. Using state-of-the-art PWM switching techniques, the BPS Series combines compactness, robustness and functionality in a compact floor-standing chassis, no larger than a typical office copying machine. This higher power density has been accomplished without the need to resort to elaborate cooling schemes or additional installation wiring. Simply roll the unit to its designated location (using included casters), plug it in, and the BPS Series is ready to work for you.

Simple Operation

The BPS Series can be operated completely from its menu driven front panel controller. A backlit LCD display shows menus, setup data, and read-back measurements. IEEE-488, RS232C, USB and LAN remote control interfaces and instrument drivers for popular ATE programming environments are available. This allows the BPS Series to be easily integrated into an automated test system.

Configurations

The BPS is capable of delivering 30, 45, 75, 90, 150 or 180kVA of AC power. The 30 and 45kVA models come as dedicated single or three phase output while the 75, 90, 150 and 180kVA models are dedicated three phase.

For higher power requirements, simply parallel the BPS in multi-cabinet configuration. Multi cabinet systems always operate in three phase output mode commonly found in power systems.

Product Evaluation and Test

Increasingly, manufacturers of high power equipment and appliances are required to fully evaluate and test their products over a wide range of input line conditions. The built-in output transient generation and read-back measurement capability of the BPS Series offers the convenience of a powerful, and easy to use, integrated test system.

Avionics

With an output frequency range to 819 Hz, the BPS Series is well suited for aerospace applications. Precise frequency control and accurate load regulation are key requirements in these applications. The available remote control interfaces and SCPI command language provide for easy integration into existing ATE systems. The BPS Series eliminates the need for several additional pieces of test equipment, saving cost and space. Instrument drivers for popular programming environments such as National Instruments LabViewTM are available to speed up system integration.

Choice of voltage ranges

Standard voltage ranges are 150V L-N (259V L-L) and 300V (519V L-L) and are direct coupled output.

For applications requiring more than 300V L-N (or 519V L-L), the optional -HV output transformer provides a third additional 400V L-N and 693 V L-L output range which is internal to the AC chassis. No external magnetics modules are required.

Multi-Box Configurations

For high power applications, two BPS75 or BS90 chassis can be combined to provide 150kVA or 180kVA of output power. For higher power requirement please contact sales for custom configurations.

AMETEK Programmable Power 9250 Brown Deer Road San Diego, CA 92121-2267 USA

BPS Series

Simple transition from R&D to Manufacturing.

The California Instruments Mx and RS Series are high performance, feature rich Research and Development solutions. That level of advanced performance is not always required in production and lab environments. Since the BPS shares common code structure and performance characteristics as the Mx and RS the BPS is ideally suited to easily transition into cost effective production solutions.

High Crest Factor

With a crest factor of up to 4.5, the BPS Series AC source can drive difficult nonlinear loads with ease. Since many modern products use switching power supplies, they have a tendency to pull high repetitive peak currents.

Remote Control

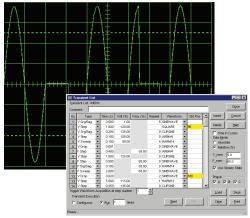
Standard RS232, USB and IEEE 488 (GPIB) along with optional LAN remote control interfaces allow programming of all instrument functions from an external computer. The popular SCPI command protocol is used for programming.

Application Software

Windows® application software is included. This software provides easy access to the power source's capabilities without the need to develop any custom code. The following functions are available through this GUI program:

- Steady state output control (all parameters)
- Create, run, save, reload and print transient programs
- Measure and log standard measurements
- Capture and display output voltage and current waveforms.
- Measure standard power measurements..
- Display IEEE-488, RS232C, USB and LAN bus traffic to and from the AC Source to help you develop your own test programs.

BPS Series - AC Transient Generation


The BPS Series controller has a powerful AC transient generation system that allows complex sequences of voltage and frequency to be generated. This further enhances the BPS's capability to simulate AC line conditions and disturbances. Transient generation is controlled independently yet time synchronized on all three phases. Accurate phase angle control and synchronized transient list execution provide unparalleled accuracy in positioning AC output events.

Transient programming is easily accomplished from the front panel where clearly laid out menu's guide the user through the transient definition process.

The front panel provides a convenient listing of the programmed transient sequence and allows for transient execution Start, Stop, Abort and Resume operations. User defined transient sequences can be saved to non-volatile memory for instant recall and execution at a later time. The included Graphical User Interface program supports transient definitions using a spreadsheet-like data entry grid. A library of frequently used transient programs can be created and saved using this GUI program.

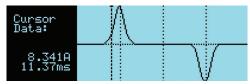
Transient List Data Entry from the front panel.

Transient List Data Entry in GUI program.

BPS Series 30–180 kVA

BPS Series - Measurement and Analysis

The BPS Series is much more than a programmable AC power source. It also incorporates an advanced digital signal processor based data acquisition system that continuously monitors all AC source and load parameters. This data acquisition system forms the basis for all measurement and analysis functions. These functions are accessible from the front panel and the remote control interface for the BPS Series.

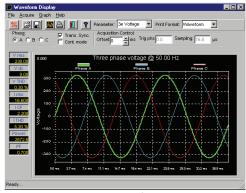

Conventional Measurements

Common AC measurement parameters are automatically provided by the data acquisition system. These values are displayed in numeric form on the front panel LCD display. The following measurements are available: Frequency, Vrms, Irms, Ipk, Crest Factor, Real Power (Watts), Apparent Power (VA) and Power Factor.

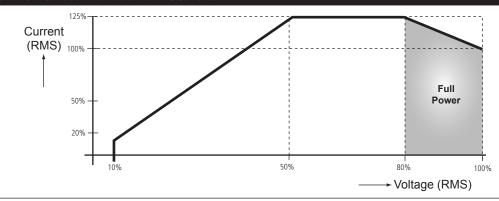
Waveform Acquisition

The measurement system is based on real-time digitization of the voltage and current waveforms using a 4K deep sample buffer. This time domain information provides detailed information on both voltage and current waveshapes. Waveform acquisitions can be triggered at a specific phase angle or from a transient program to allow precise positioning of the captured waveform with respect to the AC source output.

The front panel LCD displays captured waveforms with cursor readouts. The included GUI program also allows acquired waveform data to be displayed, printed, and saved to disk.


Acquired Current waveform (BPS Display).

Measurement data for single phase (BPS Display).


Measurement data for all three phases (BPS Display).

Acquired three phase voltage waveforms display on PC.

BPS Series : Specifications

Operating Modes									
BPS Series	AC								
AC Mode Output									
Frequency		Range: 16.00-819.0 Hz, -LF Option: 16.00-500.0 Hz, Resolution: 0.01 Hz: 16.00 - 81.91 Hz, 0.1 Hz: 82.0 Hz - 819.1 Hz							
Phase Outputs		1 or 3 Neutral: Floating, Coupling: DC (except for -HV option) Please specify Single (-1) or Three Phase (-3) for BPS30 and BPS45 at time of order.							
Total Power	BPS30-1/3	BPS30-1/3; 30kVA, BPS45-1/3: 45kVA, BPS75-3: 75kVA, BPS90-3: 90kVA, BPS150-3:150kVA, BPS180-3, 180kVA							
Load Power Factor	0 to unity a	0 to unity at full output current							
AC Mode Voltage									
Voltage Ranges	Range AC								
External Sense	Voltage dro	pp compensation (5%	Full Scale)						
Harmonic Distortion (Linear)	Less than 0	Less than 0.5% from 16 - 66 Hz, Less than 1% from 66 - 500 Hz, Less than 1.25% above 500 Hz							
DC Offset	< 20 mV								
Load Regulation	0.25% FS (0.25% FS @ - 100 Hz, 0.5% FS > 100 Hz							
External Amplitude Modulation	Depth: 0 -	Depth: 0 - 10 %, Frequency: DC - 2 KHz							
Voltage slew rate	200 μs for	200 µs for 10% to 90% of full scale change into resistive load, 0.5V / µSec							
AC Mode Current									
Output	Model	BPS30-1/3	BPS45-1/3	BPS75	BPS90	BPS150	BPS180		
		30 KVA	45 KVA	75 KVA	90 KVA	150 KVA	180 kVA		
		BPS30-1 V Lo:200 A V Hi: 100A Single phase	BPS45-1 V Lo:300 A V Hi: 150A Single phase	BPS75 V Lo: 166A V Hi: 83A per phase	BPS90 V Lo:200A V Hi: 100A per phase	BPS150 V Lo:332A V Hi: 166A per phase	BPS180 V Lo:400A V Hi: 200A per phase		
	V Lo: 66.7A V Lo: 100 V Hi: 33.3A V Hi: 50A per phase 3 phase per phase 3 phase Note: Constant power mode provides increased current at reduced voltage. See chart below								
Peak Repetitive AC Current		4.5 x RMS current for BPS30, 3.0 x RMS current for BPS45, 3.6 x RMS current for BPS75 and 3.0 x RMS current for BPS90. BPS150 is 2x BPS75 and BPS180 is 2x BPS90							
Programming Accuracy		Voltage (rms): \pm 0.3 Vrms, Frequency: \pm 0.01 % of programmed value, Current Limit: \pm 0 % to \pm 5 % of programmed value \pm 1A, Phase \pm 0.5° \pm 0.2°/ 100 Hz with balanced load							
Programming Resolution		Voltage (rms): 100 mV, Frequency: 0.01 Hz from 16 - 81.91 Hz, 0.1 Hz from 82.0 - 819 Hz, Current Limit: 0.1 A, 3 phase mode, 1.0 A, 1 phase mode, Phase: 0.1°							

Note: Specifications are subject to change without notice. Specifications are warranted over an ambient temperature range of 25° ± 5° C. Unless otherwise noted, specifications are per phase for a sinewave with a resistive load and apply after a 30 minute warm-up period. For three phase configurations, all specifications are for L-N. Phase angle specifications are valid under balanced load conditions only.

^{© 2009} AMETEK Programmable Power All rights reserved. AMETEK Programmable Power is the trademark of AMETEK Inc., registered in the U.S. and other countries. Elgar, Sorensen, California Instruments, and Power Ten are trademarks of AMETEK Inc., registered in the U.S.

BPS Series : Specifications

C Measurements)										
C Measurements)			1		1		1	1	•	1
· 1 -	Parameter Free	quency		RMS Current	Peak Current	Crest Factor	Real Power	Apparent Power	Power Factor	Phase
(Ac incusurements)	Range 16-	100 Hz		0-300 A	0-800 A	0.00-6.00	90 kW	90 kW	0.00-1.00	0.0-360.0
-)-820 Hz								
	Accuracy* 0.01	1% + 0.01 Hz	0.05V+0.02%	0.15A+.02%	0.15A+0.02%	0.05	30 W + 0.1%	30 VA + 0.1%	0.01	2.0°
			0.1V + 0.02%	0.3A+.02%	0.3A + .02%	0.05	60 W + 0.1%	60 VA + 0.1%	0.02	3.0°
		1 Hz / 0.1 Hz	10 mV	10 mA	10 mA	0.01	10 W	10 VA	0.01	0.1°
	* Measurement system bandwidth = DC to 6.7 kHz. Accuracy specifications are valid above 100 counts. Current and Power Accuracy and Range specifications are times									
			180 in single phas						and Kange spec	ilications are times
rotection										
	Constant Current or Constant Voltage mode									
	Automatic shutdown									
	Automatic Shut	JUWII								
corage	16.				n: 1.1					
on Volatile Mem. storage	16 instrument s	etups, 20	0 user defined	wavetorms [Pi only]					
'aveforms										
aveform Types	Std: Sine Wave									
stem Interface										
	Remote shutdov	Νn								
	Function Strobe		OUT							
emote Control	. anction strobe	, mggci								
	IEEE-488 (GPIB)					, RL2, SH1, SI	R1, T6, IEEE-4	188.2 SCPI Syn	tax	
	9 pin D-shell co	,	- 1 1		i)					
	Ethernet Interfa									
	Version: USB 1.	• •								
	Push button cor	ntrolled or	bus controlled	output rela	/					
C Input										
	Must be specified $480 \pm 10\%$ VAC		of order. All in	puts are L-L,	3ø, 3 wire + 0	ind. 208 ± 10)% VAC, 230	± 10% VAC, 4	10% \u00bb	AC,
Input Line Current (per phase)		1								
out Line Current (per phase)	BPS30-1/3	3	BPS45-1/3		BPS75	ВР	S90	BPS150		BPS180
-	BPS30-1/3 116 ARMS @ 18		BPS45-1/3 75 ARMS @ 187	7 VLL 285 <i>A</i>	BPS75 RMS @187 VLL			BPS150 Each BPS75 cha		BPS180 h BPS90 chassis
-	116 ARMS @ 18 105 ARMS @ 20	37 VLL 1	75 ARMS @ 187 57 ARMS @ 207	7 VLL 256 A	.RMS @187 VLI .RMS @ 207 VL	350 ARMS L 314 ARMS	@ 187 VLL @ 207 VLL	Each BPS75 cha requires its own	assis Eacl	h BPS90 chassis uires its own AC
-	116 ARMS @ 18 105 ARMS @ 20 60 ARMS @ 360	37 VLL 1 07 VLL 1 0 VLL 9	75 ARMS @ 187 57 ARMS @ 207 0 ARMS @ 360	7 VLL 256 A VLL 147 A	RMS @187 VLL RMS @ 207 VL RMS @ 360 VL	350 ARMS L 314 ARMS L 180 ARMS	@ 187 VLL @ 207 VLL @ 360 VLL	Each BPS75 cha requires its owr service. Total Lii	assis Eacl n AC requ ne serv	h BPS90 chassis uires its own AC ice. Total Line
-	116 ARMS @ 18 105 ARMS @ 20	37 VLL 1 07 VLL 1 0 VLL 9	75 ARMS @ 187 57 ARMS @ 207	7 VLL 256 A VLL 147 A	.RMS @187 VLI .RMS @ 207 VL	350 ARMS L 314 ARMS L 180 ARMS	@ 187 VLL @ 207 VLL @ 360 VLL @ 432 VLL	Each BPS75 cha requires its own	assis Eacl n AC requ ne serv	h BPS90 chassis uires its own AC ice. Total Line ents are 2 x
-	116 ARMS @ 18 105 ARMS @ 20 60 ARMS @ 360 50 ARMS @ 432	37 VLL 1 07 VLL 1 0 VLL 9	75 ARMS @ 187 57 ARMS @ 207 0 ARMS @ 360	7 VLL 256 A VLL 147 A	RMS @187 VLL RMS @ 207 VL RMS @ 360 VL	350 ARMS L 314 ARMS L 180 ARMS	@ 187 VLL @ 207 VLL @ 360 VLL @ 432 VLL	Each BPS75 charequires its owr service. Total Lii currents are 2 x	assis Each n AC requ ne serv curr	h BPS90 chassis uires its own AC ice. Total Line ents are 2 x
ne Frequency	116 ARMS @ 18 105 ARMS @ 20 60 ARMS @ 360 50 ARMS @ 432 47 - 63 Hz	37 VLL 1 07 VLL 1 0 VLL 9	75 ARMS @ 187 57 ARMS @ 207 0 ARMS @ 360	7 VLL 256 A VLL 147 A	RMS @187 VLL RMS @ 207 VL RMS @ 360 VL	350 ARMS L 314 ARMS L 180 ARMS	@ 187 VLL @ 207 VLL @ 360 VLL @ 432 VLL	Each BPS75 charequires its owr service. Total Lii currents are 2 x	assis Each n AC requ ne serv curr	h BPS90 chassis uires its own AC ice. Total Line ents are 2 x
ne Frequency 2	116 ARMS @ 18 105 ARMS @ 26 60 ARMS @ 360 50 ARMS @ 432 47 - 63 Hz 85 % typical	37 VLL 1 07 VLL 1 0 VLL 9	75 ARMS @ 187 57 ARMS @ 207 0 ARMS @ 360	7 VLL 256 A VLL 147 A	RMS @187 VLL RMS @ 207 VL RMS @ 360 VL	350 ARMS L 314 ARMS L 180 ARMS	@ 187 VLL @ 207 VLL @ 360 VLL @ 432 VLL	Each BPS75 charequires its owr service. Total Lii currents are 2 x	assis Each n AC requ ne serv curr	h BPS90 chassis uires its own AC ice. Total Line ents are 2 x
ne Frequency 2 ficiency 8 wer Factor (116 ARMS @ 18 105 ARMS @ 20 60 ARMS @ 360 50 ARMS @ 432 47 - 63 Hz	37 VLL 1 07 VLL 1 0 VLL 9	75 ARMS @ 187 57 ARMS @ 207 0 ARMS @ 360	7 VLL 256 A VLL 147 A	RMS @187 VLL RMS @ 207 VL RMS @ 360 VL	350 ARMS L 314 ARMS L 180 ARMS	@ 187 VLL @ 207 VLL @ 360 VLL @ 432 VLL	Each BPS75 charequires its owr service. Total Lii currents are 2 x	assis Each n AC requ ne serv curr	h BPS90 chassis uires its own AC ice. Total Line ents are 2 x
ne Frequency 4 ficiency 8 wer Factor (C Service	116 ARMS @ 18 105 ARMS @ 20 60 ARMS @ 360 50 ARMS @ 432 47 - 63 Hz 85 % typical 0.95 typical	37 VLL 1 27 VLL 1 20 VLL 9 20 VLL 7	75 ARMS @ 187 57 ARMS @ 207 0 ARMS @ 360	7 VLL 256 A VLL 147 A	RMS @187 VLL RMS @ 207 VL RMS @ 360 VL	350 ARMS L 314 ARMS L 180 ARMS	@ 187 VLL @ 207 VLL @ 360 VLL @ 432 VLL	Each BPS75 charequires its owr service. Total Lii currents are 2 x	assis Each n AC requ ne serv curr	h BPS90 chassis uires its own AC ice. Total Line ents are 2 x
ne Frequency ficiency Wer Factor C Service puts/Outputs F	116 ARMS @ 18 105 ARMS @ 20 60 ARMS @ 360 50 ARMS @ 432 47 - 63 Hz 85 % typical 0.95 typical	137 VLL	75 ARMS @ 18: 57 ARMS @ 207 0 ARMS @ 360 5 ARMS @ 432	7 VLL 256 A VLL 147 A VVLL 122 A	RMS @187 VLI RMS @ 207 VL RMS @ 360 VL RMS @ 432 VL	350 ARMS L 314 ARMS L 180 ARMS L 150 ARMS	@ 187 VLL @ 207 VLL @ 360 VLL @ 432 VLL	Each BPS75 charequires its owr service. Total Lii currents are 2 x	assis Each n AC requ ne serv curr	h BPS90 chassis uires its own AC ice. Total Line ents are 2 x
ne Frequency ficiency wer Factor C Service puts/Outputs gulatory I	116 ARMS @ 18 105 ARMS @ 20 60 ARMS @ 360 50 ARMS @ 432 47 - 63 Hz 85 % typical 0.95 typical Rear panel conn	87 VLL	75 ARMS @ 18: 57 ARMS @ 207 0 ARMS @ 360 5 ARMS @ 432 N50082-2, CE	7 VLL 256 A VLL 147 A VVLL 122 A	RMS @187 VLI RMS @ 207 VL RMS @ 360 VL RMS @ 432 VL	350 ARMS L 314 ARMS L 180 ARMS L 150 ARMS	@ 187 VLL @ 207 VLL @ 360 VLL @ 432 VLL	Each BPS75 charequires its owr service. Total Lii currents are 2 x	assis Each n AC requ ne serv curr	h BPS90 chassis uires its own AC ice. Total Line ents are 2 x
ne Frequency 4 ficiency 8 wer Factor (C C Service puts/Outputs F gulatory I	116 ARMS @ 18 105 ARMS @ 20 60 ARMS @ 360 50 ARMS @ 432 47 - 63 Hz 85 % typical 0.95 typical Rear panel conr IEC61010, EN5 CISPR 11, Grou	87 VLL 1 107 VLL 1 10 VLL 9 2 VLL 7	75 ARMS @ 18: 57 ARMS @ 207 0 ARMS @ 360 5 ARMS @ 432 N50082-2, CE A	7 VLL 256 A VLL 147 A VLL 122 A	RMS @187 VLI RMS @ 207 VL RMS @ 360 VL RMS @ 432 VL	350 ARMS L 314 ARMS L 180 ARMS L 150 ARMS	@ 187 VLL @ 207 VLL @ 360 VLL @ 432 VLL	Each BPS75 charequires its owr service. Total Lii currents are 2 x	assis Each n AC requ ne serv curr	h BPS90 chassis uires its own AC ice. Total Line ents are 2 x
ne Frequency ficiency wer Factor C Service puts/Outputs gulatory Al onnectors	116 ARMS @ 18 105 ARMS @ 20 60 ARMS @ 360 50 ARMS @ 432 47 - 63 Hz 85 % typical 0.95 typical Rear panel conn	87 VLL 1 107 VLL 1 10 VLL 9 2 VLL 7	75 ARMS @ 18: 57 ARMS @ 207 0 ARMS @ 360 5 ARMS @ 432 N50082-2, CE A	7 VLL 256 A VLL 147 A VLL 122 A	RMS @187 VLI RMS @ 207 VL RMS @ 360 VL RMS @ 432 VL	350 ARMS L 314 ARMS L 180 ARMS L 150 ARMS	@ 187 VLL @ 207 VLL @ 360 VLL @ 432 VLL	Each BPS75 charequires its owr service. Total Lii currents are 2 x	assis Each n AC requ ne serv curr	h BPS90 chassis uires its own AC ice. Total Line ents are 2 x
ne Frequency 4 ficiency 8 wer Factor (C C Service puts/Outputs F gulatory I	116 ARMS @ 18 105 ARMS @ 20 60 ARMS @ 360 50 ARMS @ 432 47 - 63 Hz 85 % typical 0.95 typical Rear panel conr IEC61010, EN5 CISPR 11, Grou	87 VLL	75 ARMS @ 18: 57 ARMS @ 207 0 ARMS @ 360 5 ARMS @ 432 N50082-2, CE A	7 VLL 256 A VLL 147 A VLL 122 A	RMS @187 VLI RMS @ 207 VL RMS @ 360 VL RMS @ 432 VL	350 ARMS L 314 ARMS L 180 ARMS L 150 ARMS	@ 187 VLL @ 207 VLL @ 360 VLL @ 432 VLL	Each BPS75 charequires its owr service. Total Lii currents are 2 x	assis Each n AC requ ne serv curr	h BPS90 chassis uires its own AC ice. Total Line ents are 2 x
ne Frequency 2 ficiency 3 wer Factor C Service 5 outs/Outputs 6 gulatory 7 III 7 onnectors 7 nysical Dimensions 8 PS 30/45 Dimensions	116 ARMS @ 18 105 ARMS @ 20 60 ARMS @ 360 50 ARMS @ 432 47 - 63 Hz 85 % typical 0.95 typical Rear panel conr IEC61010, EN50 CISPR 11, Grou All remote inter	nection 0081-2, E p1 , Class face conn	75 ARMS @ 18: 57 ARMS @ 20: 0 ARMS @ 360 5 ARMS @ 432 N50082-2, CE A ections availab	FMC and Sale from the I	RMS @187 VLI RMS @ 207 VL RMS @ 360 VL RMS @ 432 VL fety Mark requ ear panel.	350 ARMS 314 ARMS 180 ARMS 150 ARMS	@ 187 VLL @ 207 VLL @ 360 VLL @ 432 VLL	Each BPS75 cha requires its own service. Total Lin currents are 2 x BPS75	assis Each n AC requ ne serv curr	h BPS90 chassis uires its own AC ice. Total Line ents are 2 x
ne Frequency 2 ficiency 3 wer Factor C Service 5 outs/Outputs 6 gulatory 7 III 7 onnectors 7 nysical Dimensions 2 S30/45 Dimensions 8 PS30/45 Weight	116 ARMS @ 18 105 ARMS @ 20 60 ARMS @ 360 50 ARMS @ 432 47 - 63 Hz 85 % typical 0.95 typical Rear panel conr IEC61010, EN50 CISPR 11, Grou All remote inter Height: 50" 127 Per Chassis: Net	nection nec	75 ARMS @ 18: 57 ARMS @ 20: 0 ARMS @ 360 5 ARMS @ 432 N50082-2, CE A ections availab idth: 28.75" 7: s / 522 Kg appi	FMC and Sale from the roximately, S	RMS @187 VLI RMS @ 207 VL RMS @ 360 VL RMS @ 432 VL fety Mark requ ear panel. n: 34.5" 876m hipping: 1231	350 ARMS 314 ARMS 180 ARMS 150 ARMS	@ 187 VLL @ 207 VLL @ 360 VLL @ 432 VLL	Each BPS75 cha requires its own service. Total Lin currents are 2 x BPS75	assis Each n AC requ ne serv curr	h BPS90 chassis uires its own AC ice. Total Line ents are 2 x
ne Frequency ficiency wer Factor C Service buts/Outputs Figulatory II Onnectors PS30/45 Dimensions FS30/45 Weight FS75/90 Dimensions	116 ARMS @ 18 105 ARMS @ 20 60 ARMS @ 360 50 ARMS @ 432 47 - 63 Hz 85 % typical 0.95 typical Rear panel conr IEC61010, EN50 CISPR 11, Grou All remote inter	nection nec	75 ARMS @ 18: 57 ARMS @ 20: 0 ARMS @ 360 5 ARMS @ 432 N50082-2, CE A ections availab idth: 28.75" 7: s / 522 Kg appi	FMC and Sale from the roximately, S	RMS @187 VLI RMS @ 207 VL RMS @ 360 VL RMS @ 432 VL fety Mark requ ear panel. n: 34.5" 876m hipping: 1231	350 ARMS 314 ARMS 180 ARMS 150 ARMS	@ 187 VLL @ 207 VLL @ 360 VLL @ 432 VLL	Each BPS75 cha requires its own service. Total Lin currents are 2 x BPS75	assis Each n AC requ ne serv curr	h BPS90 chassis uires its own AC ice. Total Line ents are 2 x
ne Frequency ficiency wer Factor C Service buts/Outputs Figulatory II Onnectors PS30/45 Dimensions FS30/45 Weight FS75/90 Dimensions	116 ARMS @ 18 105 ARMS @ 20 60 ARMS @ 360 50 ARMS @ 432 47 - 63 Hz 85 % typical 0.95 typical Rear panel conr IEC61010, EN50 CISPR 11, Grou All remote inter Height: 50" 127 Per Chassis: Net	87 VLL 1 107 VLL 1 10 VLL 9 2 VLL 7	75 ARMS @ 18: 57 ARMS @ 20: 0 ARMS @ 360 5 ARMS @ 432 N50082-2, CE A ections availab idth: 28.75" 7: s / 522 Kg appi idth: 32.0" 81:	EMC and Sale from the I	RMS @187 VLI RMS @ 207 VL RMS @ 360 VL RMS @ 432 VL fety Mark requ ear panel. n: 34.5" 876m hipping: 1231 40.0" 1016m	350 ARMS 314 ARMS 180 ARMS 150 ARMS	@ 187 VLL @ 207 VLL @ 360 VLL @ 432 VLL	Each BPS75 charequires its own service. Total Lit currents are 2 x BPS75	assis Each n AC requ ne serv curr	h BPS90 chassis uires its own AC ice. Total Line ents are 2 x
ne Frequency ficiency wer Factor C Service Duts/Outputs Figulatory MI Connectors PS30/45 Dimensions FS30/45 Weight FS75/90 Dimensions FS75/90 Weight	116 ARMS @ 18 105 ARMS @ 26 60 ARMS @ 360 50 ARMS @ 432 47 - 63 Hz 85 % typical 0.95 typical Rear panel conn IEC61010, EN50 CISPR 11, Group All remote inter Height: 50" 127 Per Chassis: Net Height: 76" 193 Per Chassis: Net Casters and forl	87 VLL 1 107 VLL 1 10 VLL 9 2 VLL 7 80 VLL 7 92 VLL 7	75 ARMS @ 18: 57 ARMS @ 20: 0 ARMS @ 360 5 ARMS @ 432 N50082-2, CE A ections availab idth: 28.75" 7: s / 522 Kg appridth: 32.0" 81: s / 748 Kg apprings.	EMC and Sale from the I	RMS @187 VLI RMS @ 207 VL RMS @ 360 VL RMS @ 432 VL fety Mark requ ear panel. hipping: 1231 40.0" 1016m hipping: 1731	350 ARMS 14 ARMS 180 ARMS 150 ARMS IBb / 560 Kg m Ibs / 785 Kg	@ 187 VLL @ 207 VLL @ 360 VLL @ 432 VLL approximatel	Each BPS75 charequires its own service. Total Lit currents are 2 x BPS75	assis Eacl n AC required services services BPS	h BPS90 chassis uires its own AC ice. Total Line ents are 2 x
ne Frequency ficiency wer Factor C Service Duts/Outputs Figulatory MI Connectors PS30/45 Dimensions FS30/45 Weight FS75/90 Dimensions FS75/90 Weight	116 ARMS @ 18 105 ARMS @ 26 60 ARMS @ 360 50 ARMS @ 432 47 - 63 Hz 85 % typical 0.95 typical Rear panel conn IEC61010, EN50 CISPR 11, Group All remote inter Height: 50" 127 Per Chassis: Net Height: 76" 193 Per Chassis: Net	87 VLL 1 107 VLL 1 10 VLL 9 2 VLL 7 80 VLL 7 92 VLL 7	75 ARMS @ 18: 57 ARMS @ 20: 0 ARMS @ 360 5 ARMS @ 432 N50082-2, CE A ections availab idth: 28.75" 7: s / 522 Kg appridth: 32.0" 81: s / 748 Kg apprings.	EMC and Sale from the I	RMS @187 VLI RMS @ 207 VL RMS @ 360 VL RMS @ 432 VL fety Mark requ ear panel. hipping: 1231 40.0" 1016m hipping: 1731	350 ARMS 14 ARMS 180 ARMS 150 ARMS IBb / 560 Kg m Ibs / 785 Kg	@ 187 VLL @ 207 VLL @ 360 VLL @ 432 VLL approximatel	Each BPS75 charequires its own service. Total Lit currents are 2 x BPS75	assis Eacl n AC required services services BPS	h BPS90 chassis uires its own AC ice. Total Line ents are 2 x
ne Frequency ficiency wer Factor C Service puts/Outputs fingulatory II Onnectors PS30/45 Dimensions PS30/45 Weight PS75/90 Dimensions PS75/90 Weight finassis foration and Shock II II II II II II II II II	116 ARMS @ 18 105 ARMS @ 26 60 ARMS @ 360 50 ARMS @ 432 47 - 63 Hz 85 % typical 0.95 typical Rear panel conn IEC61010, EN50 CISPR 11, Group All remote inter Height: 50" 127 Per Chassis: Net Height: 76" 193 Per Chassis: Net Casters and forl	nection nec	75 ARMS @ 18: 57 ARMS @ 207 0 ARMS @ 360 5 ARMS @ 432 N50082-2, CE A ections availab idth: 28.75" 73 s / 522 Kg appridth: 32.0" 812 s / 748 Kg apprings.	EMC and Sale from the I	RMS @187 VLI RMS @ 207 VL RMS @ 360 VL RMS @ 432 VL fety Mark requ ear panel. hipping: 1231 40.0" 1016m hipping: 1731	350 ARMS 14 ARMS 180 ARMS 150 ARMS IBb / 560 Kg m Ibs / 785 Kg	@ 187 VLL @ 207 VLL @ 360 VLL @ 432 VLL approximatel	Each BPS75 charequires its own service. Total Lit currents are 2 x BPS75	assis Eacl n AC required services services BPS	h BPS90 chassis uires its own AC ice. Total Line ents are 2 x
ne Frequency ficiency wer Factor C Service puts/Outputs gulatory II Onnectors PS30/45 Dimensions PS30/45 Weight PS75/90 Dimensions PS75/90 Weight FS75/90 Weight	116 ARMS @ 18 105 ARMS @ 20 60 ARMS @ 360 50 ARMS @ 432 47 - 63 Hz 85 % typical 0.95 typical Rear panel conn IEC61010, EN5 CISPR 11, Group All remote inter Height: 50" 122 Per Chassis: Net Height: 76" 193 Per Chassis: Net Casters and forl Designed to me	nection 0081-2, E p1 , Class face conn 70 mm, W 1: 1150 lb 80 mm, W 1: 1650 lb klift openi et NSTA png, front a	75 ARMS @ 18: 57 ARMS @ 207 0 ARMS @ 360 5 ARMS @ 432 N50082-2, CE A ections availab idth: 28.75" 7: s / 522 Kg appr idth: 32.0" 812 s / 748 Kg appr ngs. project 1A trans iir intake, rear ea	EMC and Sale from the I	RMS @187 VLI RMS @ 207 VL RMS @ 360 VL RMS @ 432 VL fety Mark requ ear panel. hipping: 1231 40.0" 1016m hipping: 1731	350 ARMS 14 ARMS 180 ARMS 150 ARMS IBb / 560 Kg m Ibs / 785 Kg	@ 187 VLL @ 207 VLL @ 360 VLL @ 432 VLL approximatel	Each BPS75 charequires its own service. Total Lit currents are 2 x BPS75	assis Eacl n AC required services services BPS	h BPS90 chassis uires its own AC ice. Total Line ents are 2 x

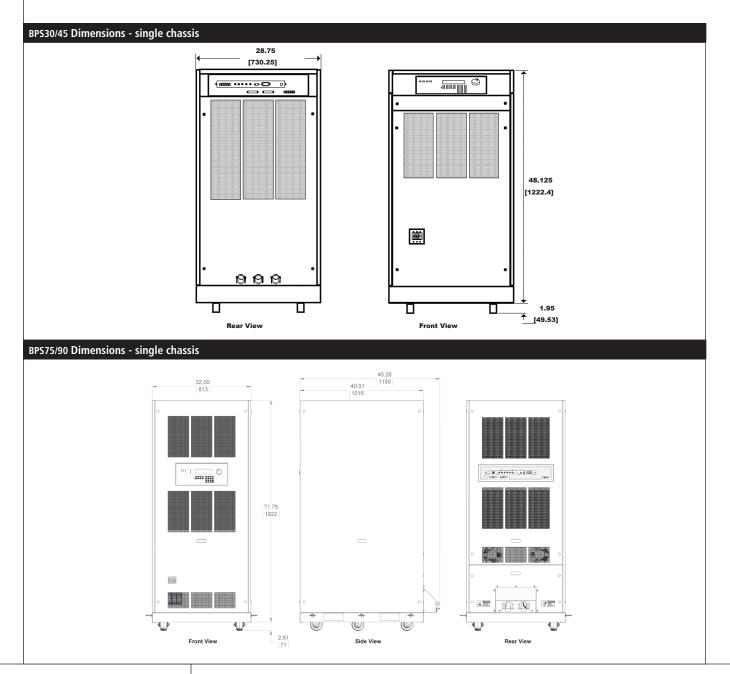
BPS Series

Supplied with

Standard: User/Programming Manual and Software on CD ROM. RS232C serial cable.

Input Voltage Settings

Specify input voltage (L-L) setting for each BPS system at time of order:


208 Configured for 208 V ± 10 % L-L, 4 wire input. 230 Configured for 230 V ±10 % L-L, 4 wire input. 380 Configured for 380V +/- 10% L-L, 4 Wire Input 400 Configured for 400 V \pm 10 % L-L, 4 wire input. 480 Configured for 480 V ±10 % L-L, 4 wire input

Standard Model Options

- -LF Limits maximum frequency to 500 Hz.
- -FC Modifies output frequency control to \pm 0.25%
- -LAN Ethernet Interface.
- -HV Adds 400 V L-N AC-only output range.

Packaging and Shipment

All BPS systems are packaged in re-usable protective wooden crates for shipment.

