

CERTIFICATE OF ACCREDITATION

The ANSI National Accreditation Board

Hereby attests that

Transcat - Toronto

1435 Norjohn Ct. #8-9 Burlington, ON L7L 0E6 Canada

Fulfills the requirements of

ISO/IEC 17025:2017

and national standards

ANSI/NCSL Z540-1-1994 (R2002), ANSI/NCSL Z540.3-2006 (R2013)

In the fields of

CALIBRATION AND DIMENSIONAL MEASUREMENT

This certificate is valid only when accompanied by a current scope of accreditation document. The current scope of accreditation can be verified at www.anab.org.

Jason Stine, Vice President

Expiry Date: 07 September 2027 Certificate Number: AC-2489.23

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2017 AND

ANSI/NCSL Z540-1-1994 (R2002) ANSI/NCSL Z540.3-2006 (R2013)

Transcat-Toronto

1435 Norjohn Ct. #8-9 Burlington, ON L7L 0E6 Sean Hastings 800-897-0067

CALIBRATION AND DIMENSIONAL MEASUREMENT

ISO/IEC 17025 Accreditation Granted: 29 August 2025

Certificate Number: AC-2489.23 Certificate Expiry Date: 07 September 2027

CALIBRATION

Acoustics and Vibration

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
	125 Hz to 2 kHz		
	(74 to 104) dB	0.45 dB	
Sound Level – Source ¹	4 kHz (74 to 104) dB 125 Hz to 2 kHz	0.72 dB	Comparison to General Radio 1986
	114 dB	0.33 dB	Sound Level Calibrator
	4 kHz		
	114 dB	0.6 dB	
	125 Hz to 2 kHz		
	(74 to 104) dB	0.46 dB	
	4 kHz		Comparison to
Sound Level – Measure ¹	(74 to 104) dB	0.73 dB	General Radio 1986
Sound Level – Weasure	125 Hz to 2 kHz		Sound Level Calibrator
	114 dB	0.35 dB	with Sound Level Meter
	4 kHz		
	114 dB	0.61 dB	

Chemical Quantities

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
	4 pH	0.013 pH	Comparison to
pH Meters ⁸	7 pH	0.012 pH	Accredited Buffer
	10 pH	0.012 pH	Solutions
	1 μS/cm	0.63 μS/cm	
	10 μS/cm	0.63 μS/cm	Comparison to
Conductivity Meters ⁸	100 μS/cm	2.1 μS/cm	Comparison to Accredited Conductivity
	1 000 μS/cm	4.8 μS/cm	Solutions
	10 000 μS/cm	43 μS/cm	Solutions
	100 000 μS/cm	370 μS/cm	

Electrical – DC/Low Frequency

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Sine Wave Flatness – Measure ¹	(0.1 to 3) V 10 Hz to 1 MHz (1 to 10) MHz (10 to 30) MHz	0.056 % of reading 0.069 % of reading 0.11 % of reading	Comparison to Thermal Voltage Converter,
	(30 to 50) MHz (50 to 80) MHz (80 to 100) MHz	0.19 % of reading 0.35 % of reading 0.46 % of reading	Keysight 3458A 8.5 Digit Multimeter
Capacitance – Source ¹ (Simulation)	(220 to 400) pF 10 Hz to 10 kHz (0.4 to 1.1) nF 10 Hz to 10 kHz (1.1 to 3.3) nF 10 Hz to 3 kHz (3.3 to 11) nF 10 Hz to 3 kHz (11 to 33) nF 10 Hz to 1 kHz (33 to 110) nF 10 Hz to 1 kHz	0.4 % of reading + 7.8 pF 0.4 % of reading + 7.8 pF 0.4 % of reading + 7.8 pF 0.21 % of reading + 7.8 pF 0.2 % of reading + 78 pF 0.21 % of reading + 78 pF	Comparison to Fluke 5522A Multiproduct Calibrator

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Capacitance – Source ¹ (Simulation)	(110 to 330) nF 10 Hz to 1 kHz (0.33 to 1.1) µF (10 to 600) Hz (1.1 to 3.3) µF (10 to 300) Hz (3.3 to 11) µF (10 to 150) Hz (11 to 33) µF (10 to 120) Hz (33 to 110) µF (10 to 80) Hz (110 to 330) µF DC to 50 Hz (0.33 to 1.1) mF DC to. 20 Hz (1.1 to 3.3) mF DC to 6 Hz (3.3 to 11) mF DC to 2 Hz (11 to 33) mF DC to 0.6 Hz (33 to 110) mF	0.2 % of reading + 0.2 nF 0.21 % of reading + 0.8 nF 0.21 % of reading + 2.3 nF 0.2 % of reading + 7.8 nF 0.32 % of reading + 23 nF 0.37 % of reading + 78 nF 0.38 % of reading + 0.2 μF 0.35 % of reading + 0.8 μF 0.35 % of reading + 2.3 μF 0.35 % of reading + 7.8 μF 0.35 % of reading + 7.8 μF	Comparison to Fluke 5522A Multiproduct Calibrator
Capacitance – Measure ¹	DC to 0.2 Hz 0.1 pF 100 kHz 1 pF 10 kHz 100 kHz 10 pF 1 kHz 100 kHz 100 hZ 1 kHz 100 hZ 1 kHz 100 hZ 1 kHz 100 hZ 1 kHz 100 kHz	0.85 % of reading + 78 μF 1.4 % of reading 1.4 % of reading 0.37 % of reading 1.4 % of reading 0.28 % of reading 0.28 % of reading 0.28 % of reading 0.23 % of reading 0.18 % of reading 0.21 % of reading 0.21 % of reading	Comparison to Agilent E4980A Precision LCR Meter

Page 3 of 45

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard Method, and/or Equipment
	1 nF		
	20 Hz	1.8 % of reading	
	100 Hz	0.3 % of reading	
	1 kHz	0.1 % of reading	
	10 kHz	0.1 % of reading	
	100 kHz	0.1 % of reading	
	10 nF		
	20 Hz	0.31 % of reading	
	100 Hz	0.12 % of reading	
	1 kHz	0.09 % of reading	
	10 kHz	0.09 % of reading	
	100 kHz	0.09 % of reading	
	100 nF	I A	Comparison to
	20 Hz	0.16 % of reading	
	100 Hz	0.09 % of reading	
	1 kHz	0.09 % of reading	
	10 kHz	0.09 % of reading	
Capacitance – Measure ¹	100 kHz	0.18 % of reading	Agilent E4980A
•	1 μF		Precision LCR Meter
	20 Hz	0.15 % of reading	
	100 Hz	0.09 % of reading	
	1 kHz	0.09 % of reading	
	10 kHz	0.18 % of reading	
	100 kHz	0.25 % of reading	
	10 μF		
	20 Hz	0.15 % of reading	
	100 Hz	0.09 % of reading	
	1 kHz	0.16 % of reading	
	10 kHz	0.28 % of reading	
	100 kHz	0.73 % of reading	
	100 μF	- The second sec	
	20 Hz	0.16 % of reading	
	100 Hz	0.17 % of reading	
	1 kHz	0.29 % of reading	
	10 kHz	0.8 % of reading	

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Capacitance – Measure ¹	Up to 2 nF (2 to 20) nF (20 to 200) nF (0.2 to 2) μF (2 to 20) μF (20 to 200) μF (0.2 to 2) mF (2 to 20) mF (2 to 20) mF (20 to 200) mF	0.19 % of reading + 1 pF 0.081 % of reading + 2 pF 0.049 % of reading + 10 pF 0.041 % of reading + 0.1 nF 0.042 % of reading + 1 nF 0.061 % of reading + 10 nF 0.061 % of reading + 0.1 μF 0.071 % of reading + 1 μF	Comparison to Fluke 8588A 8.5 Digit Multimeter
AC Current – Source ¹	Up to 220 μA (10 to 20) Hz (20 to 40) Hz 40 Hz to 1 kHz (1 to 5) kHz (5 to 10) kHz (0.22 to 2.2) mA (10 to 20) Hz (20 to 40) Hz 40 Hz to 1 kHz (1 to 5) kHz (5 to 10) kHz (2.2 to 22) mA (10 to 20) Hz (20 to 40) Hz 40 Hz to 1 kHz (1 to 5) kHz (20 to 40) Hz 40 Hz to 1 kHz (1 to 5) kHz (5 to 10) kHz (22 to 220) mA (10 to 20) Hz (20 to 40) Hz (20 to 40) Hz (20 to 40) Hz (10 to 5) kHz (5 to 10) kHz (1 to 5) kHz (5 to 10) kHz (1 to 5) kHz (5 to 10) kHz	0.031 % of reading + 16 nA 0.019 % of reading + 10 nA 0.015 % of reading + 8 nA 0.03 % of reading + 12 nA 0.11 % of reading + 65 nA 0.03 % of reading + 40 nA 0.018 % of reading + 35 nA 0.013 % of reading + 35 nA 0.013 % of reading + 0.1 μA 0.11 % of reading + 0.65 μA 0.039 % of reading + 0.4 μA 0.019 % of reading + 0.35 μA 0.014 % of reading + 0.35 μA 0.011 % of reading + 0.55 μA 0.011 % of reading + 5 μA 0.033 % of reading + 3.5 μA 0.014 % of reading + 3.5 μA 0.016 % of reading + 3.5 μA 0.017 % of reading + 30 μA 0.046 % of reading + 80 μA 0.7 % of reading + 0.16 mA	Comparison to Fluke 5720A Multiproduct Calibrator

ANSI National Accreditation Board

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
AC Current – Source ¹	(2.2 to 11) A 40 Hz to 1 kHz (1 to 5) kHz (5 to 10) kHz	0.048 % of reading + 0.17 mA 0.096 % of reading + 0.38 mA 0.36 % of reading + 0.75 mA	Comparison to Fluke 5720A Multiproduct Calibrator, Fluke 5725A Amplifier
AC Current – Source ¹	(11 to 20.5) A (45 to 100) Hz 100 Hz to 1 kHz (1 to 5) kHz	0.09 % of reading + 4 mA 0.12 % of reading + 4 mA 2.3 % of reading + 4 mA	Comparison to Fluke 5522A Multiproduct Calibrator
AC Current – Source ¹	(20.5 to 40) A (10 to 100) Hz 100 Hz to 1 kHz (1 to 5) kHz	0.14 % of reading + 11 mA 0.17 % of reading + 11 mA 2.3 % of reading + 11 mA	Comparison to (2) Fluke 5520A Multiproduct Calibrators in Parallel
AC Current – Source ¹ Extended Frequency Ranges	(29 to 330) µA (10 to 30) kHz (0.33 to 3.3) mA (10 to 30) kHz (3.3 to 33) mA (10 to 30) kHz (33 to 330) mA (10 to 30) kHz	1.2 % of reading + 0.3 μA 0.78 % of reading + 0.5 μA 0.31 % of reading + 3.1 μA 0.31 % of reading + 0.2 mA	Comparison to Fluke 5522A Multiproduct Calibrator
AC Current – Source ¹	Up to 60 Hz Up to 20 A (20 to 100) A 60 Hz to 1 kHz Up to 20 A (20 to 100) A	0.12 % of reading + 3.5 mA 0.056 % of reading + 4.6 mA 0.056 % of reading + 1.2 mA 0.05 % of reading + 2.3 mA	Comparison to Current Source, Ohms Labs CS-100 Current Shunt, Keysight 3458A 8.5 Digit Multimeter
AC Current – Source ¹	(10 to 65) Hz (20 to 33) A (33 to 40) A (40 to 60) A (60 to 100) A (65 to 300) Hz (20 to 33) A (33 to 60) A (60 to 100) A 300 Hz to 1 kHz (20 to 33) A (33 to 60) A (60 to 100) A	0.029 % of reading + 24 mA 0.037 % of reading + 36 mA 0.038 % of reading + 36 mA 0.034 % of reading + 36 mA 0.042 % of reading + 36 mA 0.05 % of reading + 45 mA 0.052 % of reading + 45 mA 0.12 % of reading + 0.12 A 0.12 % of reading + 0.12 A 0.12 % of reading + 0.12 A	Comparison to Fluke 52120A Transconductance Amplifier, Fluke 5520A Multiproduct Calibrator

This Scope of Accreditation, version 007, was last updated on: 29 August 2025 and is valid only when accompanied by the Certificate.

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
AC Clamp-on Ammeters (Toroidal Type) Transformer Type Sensor ¹	(20 to 150) A (45 to 65) Hz (65 to 440) Hz (150 to 1 000) A (45 to 65) Hz (65 to 440) Hz	0.3 % of reading + 26 mA 0.83 % of reading + 47 mA 0.35 % of reading + 0.1 A 1.1 % of reading + 0.2 A	Comparison to Fluke 5522A Multiproduct Calibrator, 50-turn Coil
AC Clamp-on Ammeters (Non-Toroidal Type) Hall Effect Sensor ¹	(20 to 150) A (45 to 65) Hz (65 to 440) Hz (150 to 1 000) A (45 to 65) Hz (65 to 440) Hz	0.57 % of reading + 0.2 A 1 % of reading + 0.2 A 0.6 % of reading + 0.9 A 1.3 % of reading + 0.9 A	Comparison to Fluke 5522A Multiproduct Calibrator, 50-turn Coil
AC Clamp-on Ammeters (Non-Toroidal Type) Hall Effect Sensor ¹	(1 000 to 6 000) A (10 to 300) Hz (300 to 440) Hz	0.77 % of reading 0.77 % of reading	Comparison to Fluke 52120A Transconductance Amplifier, Fluke 5520A Multiproduct Calibrator, 3 kA or 6 kA Coil
AC Current – Measure ¹	(1 to 20) A (> 0 to 100) Hz (100 to 300) Hz 300 Hz to 1 kHz (1 to 3) kHz (3 to 4) kHz (4 to 5) kHz	0.02 % of reading 0.03 % of reading 0.03 % of reading 0.06 % of reading 0.07 % of reading 0.09 % of reading	Comparison to Fluke Y5020 Precision AC Current Shunt, Precision Digital Multimeter
AC Current – Measure ¹	Up to 60 Hz Up to 20 A (20 to 100) A 60 Hz to 1 kHz Up to 20 A (20 to 100) A	0.12 % of reading + 3.5 mA 0.056 % of reading + 4.6 mA 0.056 % of reading + 1.2 mA 0.05 % of reading + 2.3 mA	Comparison to Ohms Labs CS-100 Current Shunt, Keysight 3458A 8.5 Digit Multimeter
AC High Current – Measure ¹	(1 to 5 000) A 60 Hz (1 to 8 000) A 60 Hz	0.23 % of reading 0.35 % of reading	Comparison to Rocoil 6142 (SX-170) Rogowski Coil with Integrator

This Scope of Accreditation, version 007, was last updated on: 29 August 2025 and is valid only when accompanied by the Certificate.

Page 7 of 45

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
AC Current – Measure ¹	Up to 100 μA (10 to 20) Hz (20 to 45) Hz (45 to 100) Hz 100 Hz to 5 kHz	0.46 % of reading + 35 nA 0.17 % of reading + 35 nA 0.072 % of reading + 35 nA 0.072 % of reading + 35 nA	Comparison to Agilent 3458A 8.5 Digit Multimeter
AC Current – Measure ¹	(0.1 to 1) mA (10 to 20) Hz (20 to 45) Hz (45 to 100) Hz 100 Hz to 5 kHz (1 to 10) mA (10 to 20) Hz (20 to 45) Hz (45 to 100) Hz 100 Hz to 5 kHz (10 to 100) mA (10 to 20) Hz (20 to 45) Hz (45 to 100) Hz (20 to 45) Hz (45 to 100) Hz 100 Hz to 5 kHz 100 mA to 1 A (10 to 20) Hz (20 to 45) Hz (45 to 100) Hz 100 mA to 1 A (10 to 20) Hz (20 to 45) Hz (45 to 100) Hz 100 Hz to 5 kHz	0.46 % of reading + 0.23 μA 0.17 % of reading + 0.23 μA 0.071 % of reading + 0.23 μA 0.038 % of reading + 0.23 μA 0.46 % of reading + 2.3 μA 0.17 % of reading + 2.3 μA 0.071 % of reading + 2.3 μA 0.038 % of reading + 2.3 μA 0.038 % of reading + 23 μA 0.17 % of reading + 23 μA 0.17 % of reading + 23 μA 0.071 % of reading + 23 μA 0.071 % of reading + 23 μA 0.071 % of reading + 23 μA 0.097 % of reading + 0.23 mA 0.19 % of reading + 0.23 mA 0.19 % of reading + 0.23 mA	Comparison to Agilent 3458A 8.5 Digit Multimeter
AC Current – Measure ¹	(0.2 to 20) μA 1 Hz to 2 kHz (2 to 10) kHz (10 to 30) kHz (20 to 200) μA 1 Hz to 2 kHz (2 to 10) kHz (10 to 30) kHz (30 to 100) kHz	0.2 % of reading + 2.5 nA 0.2 % of reading + 2.5 nA 0.2 % of reading + 2.5 nA 0.28 mA/A + 5 nA 0.53 mA/A + 5 nA 0.74 mA/A + 5 nA 4.1 mA/A + 10 nA	Comparison to Fluke 8588A 8.5 Digit Multimeter

ANSI National Accreditation Board

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
AC Current – Measure ¹	(0.2 to 2) mA 1 Hz to 2 kHz (2 to 10) kHz (10 to 30) kHz (30 to 100) kHz (2 to 20) mA 1 Hz to 2 kHz (2 to 10) kHz (10 to 30) kHz (30 to 100) kHz (30 to 100) kHz (20 to 200) mA 1 Hz to 2 kHz (2 to 10) kHz (10 to 30) kHz (0.2 to 2) A 1 Hz to 2 kHz (2 to 10) kHz (10 to 30) kHz (2 to 10) kHz (2 to 10) kHz (10 to 30) kHz (2 to 10) kHz (2 to 20) A 10 Hz to 2 kHz (2 to 10) kHz (20 to 30) A 10 Hz to 2 kHz (20 to 30) A	0.28 mA/A + 50 nA 0.53 mA/A + 50 nA 0.74 mA/A + 50 nA 4.1 mA/A + 0.1 μA 0.28 mA/A + 0.5 μA 0.53 mA/A + 0.5 μA 0.74 mA/A + 0.5 μA 4.1 mA/A + 1 μA 0.28 mA/A + 5 μA 0.52 mA/A + 5 μA 0.74 mA/A + 5 μA 0.74 mA/A + 0.1 mA 0.86 mA/A + 0.1 mA 0.84 mA/A + 0.5 mA 0.84 mA/A + 0.5 mA 0.84 mA/A + 12 mA 1.2 mA/A + 12 mA	Comparison to Fluke 8588A 8.5 Digit Multimeter
DC Current – Source ¹	Up to 220 μA (0.22 to 2.2) mA (2.2 to 22) mA (22 to 220) mA (0.22 to 2.2) A	0.004 % of reading + 6 nA 0.003 6 % of reading + 7 nA 0.003 5 % of reading + 40 nA 0.004 8 % of reading + 0.7 μA 0.008 4 % of reading + 12 μA	Comparison to Fluke 5720A Multiproduct Calibrator
DC Current – Source ¹	(2.2 to 11) A	0.036 % of reading + 0.48 mA	Comparison to Fluke 5720A Multiproduct Calibrator, Fluke 5725A Amplifier
DC Current – Source ¹	(11 to 20.5) A	0.093 % of reading + 0.58 mA	Comparison to Fluke 5520 Multiproduct Calibrator

This Scope of Accreditation, version 007, was last updated on: 29 August 2025 and is valid only when accompanied by the Certificate.

Page 9 of 45

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
DC Current – Source ¹	(20.5 to 22) A (22 to 40) A	0.072 % of reading + 0.55 mA 0.13 % of reading + 0.82 mA	Comparison to (2) Fluke 5520A Multiproduct Calibrators in Parallel
DC Current – Source ¹	Up to 100 A	0.008 7 % of reading + 0.58 mA	Comparison to Current Source, Ohms Labs CS-100 Current Shunt, Keysight 3458A 8.5 Digit Multimeter
DC Current – Source ¹	(11 to 100) A	0.012 % of reading + 5 mA	Comparison to Fluke 5520A Multiproduct Calibrator, Fluke 52120A Transconductance Amplifier
DC Clamp-on Ammeter (Non-Toroidal Type) Hall Effect Sensor ¹	(20 to 150) A (150 to 1 000) A	0.51 % of reading + 0.14 A 0.51 % of reading + 0.5 A	Comparison to Fluke 5520A Multiproduct Calibrator, 50-turn Coil
DC Clamp-on Ammeter (Non-Toroidal Type) Hall Effect Sensor ¹	(1 000 to 5 000) A	0.58 % of reading	Comparison to Fluke 5520A Multiproduct Calibrator, Fluke 52120A Transconductance Amplifier, 3 kA or 6 kA Coil
DC Current – Measure ¹	Up to 100 μA (0.1 to 1) mA (1 to 10) mA (10 to 100) mA (0.1 to 1) A	0.003 3 % of reading + 0.92 nA 0.002 9 % of reading + 5.8 nA 0.002 9 % of reading + 58 nA 0.004 6 % of reading + 0.58 μA 0.013 % of reading + 12 μA	Comparison to Agilent 3458A 8.5 Digit Multimeter
DC Current – Measure ¹	Up to 20 μA (20 to 200) μA (0.2 to 2) mA (2 to 20) mA (20 to 200) mA (0.2 to 2) A (2 to 20) A (20 to 30) A	29 μ A/A + 0.4 nA 10 μ A/A + 0.39 nA 9.9 μ A/A + 3.9 nA 15 μ A/A + 39 nA 58 μ A/A + 1 μ A 0.13 mA/A + 0.1 mA 0.23 mA/A + 0.4 mA 0.55 mA/A + 4.4 mA	Comparison to Fluke 8588A 8.5 Digit Multimeter

This Scope of Accreditation, version 007, was last updated on: 29 August 2025 and is valid only when accompanied by the Certificate.

ANAB ANSI National Accreditation Board

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
	1 μA to 100 mA	0.013 % of reading	Comparison to
	100 mA to 1 A	0.015 % of reading	Guideline 9211A
DC Current – Measure ¹	(1 to 10) A	0.01 <mark>5 % of reading</mark>	Current Shunt,
	(10 to 100) A	0.04 <mark>2 % of reading</mark>	Agilent 3458A
	(100 to 300) A	0.058 % of reading	8.5 Digit Multimeter
			Comparison to
			Empro LAB-1000-100
DC Current – Measure ¹	(50 to 667) A	0.12 % of reading	Current Shunt,
			Agilent 3458A
			8.5 Digit Multimeter
			Comparison to
		A A	Ohms Labs CS-100
DC Current – Measure ¹	Up to 100 A	0.008 7 % of reading + 0.58 mA	Current Shunt,
			Keysight 3458A
			8.5 Digit Multimeter
)	Comparison to
	(100 to 3 000) A	0.17 % of reading + 0.36 A	Canadian Shunt
DC High Current – Measure ¹			90000-1400
DC High Current – Measure			Current Shunt,
			Keysight 34470A
			7.5 Digit Multimeter
	1 μΗ		-
	10 kHz	1.6 % of reading	
	100 kHz	0.36 % of reading	
	10 μΗ		
	10 kHz	0.37 % of reading	
	100 kHz	0.2 % of reading	
	100 μΗ		Comparison to
Inductance – Measure ^{1,6}	1 kHz	0.41 % of reading	Agilent E4980A
	10 kHz	0.2 % of reading	Precision LCR Meter
	100 kHz	0.12 % of reading	
	1 mH		
	100 Hz	0.56 % of reading	
	1 kHz	0.19 % of reading	
	10 kHz	0.12 % of reading	
	100 kHz	0.1 % of reading	

ANAB

ANSI National Accreditation Board

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
	10 mH		
	20 Hz	0.86 % of reading	
	100 Hz	0.22 % of reading	
	1 kHz	0.1 % of reading	
	10 kHz	0.1 % of reading	
	100 kHz	0.11 % of reading	
	100 mH		
	20 Hz	0.28 % of reading	
	100 Hz	0.11 % of reading	
	1 kHz	0.1 % of reading	
	10 kHz	0.1 % of reading	
	100 kHz	0.21 % of reading	
	1 H	0.17.0/ 6 1:	
16	20 Hz	0.17 % of reading	Comparison to
Inductance – Measure ^{1,6}	100 Hz	0.1 % of reading	Agilent E4980A
	1 kHz	0.1 % of reading	Precision LCR Meter
	10 kHz	0.11 % of reading	
	100 kHz	0.31 % of reading	
	20 Hz	0.15 0/ of moding	
	100 Hz	0.15 % of reading 0.1 % of reading	
	1 kHz	0.17% of reading	
	10 kHz	0.21 % of reading	
	100 kHz	0.69 % of reading	
	100 KHZ	0.05 /v of reading	
	20 Hz	0.15 % of reading	
	100 Hz	0.11 % of reading	
	1 kHz	0.15 % of reading	
	10 kHz	0.62 % of reading	

${\bf Electrical-DC/Low\ Frequency}$

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Impedance – Measure ¹	0.1 Ω 1 kHz 10 kHz 100 kHz 1 kHz 100 Hz 1 kHz 100 kHz 100 kHz 100 Hz 1 kHz 100 Hz 1 kHz 100 kHz 1 kHz	2 % of reading 1.2 % of reading 1.1 % of reading 0.67 % of reading 0.45 % of reading 0.36 % of reading 0.33 % of reading 0.31 % of reading 0.10 % of reading 0.10 % of reading 0.10 % of reading 0.11 % of reading 0.12 % of reading 0.15 % of reading 0.10 % of reading 0.10 % of reading 0.09 % of reading 0.15 % of reading 0.15 % of reading 0.17 % of reading 0.19 % of reading	Comparison to Agilent E4980A Precision LCR Meter
	10 kHz 100 kHz	0.17% of reading 0.28 % of reading	

This Scope of Accreditation, version 007, was last updated on: 29 August 2025 and is valid only when accompanied by the Certificate.

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
	Up to 10Ω (10 to 100) Ω	0.001 8 % of reading + 58 μΩ 0.001 5 % of reading + 0.58 mΩ	_qu.po.v
	$(0.1 \text{ to } 1) \text{ k}\Omega$	0.0013% of reading $+0.58$ m Ω	
DC Resistance –	$(0.1 \text{ to } 1) \text{ k}\Omega$	$0.001.3\%$ of reading + 0.38 m Ω	Comparison to
Source/Measure 1	$(10 \text{ to } 10) \text{ k}\Omega$	$0.001 2 \%$ of reading + 5.8 ms^2 $0.001 3 \%$ of reading + $58 \text{ m}\Omega$	Agilent 3458A
(Variable Artifacts)	$(0.1 \text{ to } 1) \text{ M}\Omega$	0.0013% of reading + $38 ms20.0021\% of reading + 2.3 \Omega$	8.5 Digit Multimeter,
(variable Aitmacts)	$(0.1 \text{ to } 1) \text{ M}\Omega$	$0.006 2\%$ of reading $+ 0.12 \text{ k}\Omega$	Decade Resistor
	$(10 \text{ to } 10) \text{ M}\Omega$	0.059 % of reading $+ 0.12$ k Ω	
	$(0.1 \text{ to } 1) \text{ G}\Omega$	0.58% of reading + 1.2 k Ω	
	Up to 2 Ω	$\frac{16 \mu\Omega/\Omega + 4 \mu\Omega}{16 \mu\Omega}$	
	$(2 \text{ to } 20) \Omega$	$\frac{10 \mu \Omega}{\Omega} \Omega + 14 \mu \Omega$	
	$(20 \text{ to } 200) \Omega$	$9.2 \mu\Omega/\Omega + 47 \mu\Omega$	
	$(0.2 \text{ to } 2) \text{ k}\Omega$	9.1 $\mu\Omega/\Omega + 0.47 \text{ m}\Omega$	Comparison to
DC Resistance –	$(2 \text{ to } 20) \text{ k}\Omega$	$9.2 \mu\Omega/\Omega + 4.7 \mathrm{m}\Omega$	Fluke 8588A
Source/Measure ¹	$(20 \text{ to } 200) \text{ k}\Omega$	9.3 $\mu\Omega/\Omega$ + 47 m Ω	8.5 Digit Multimeter,
(Variable Artifacts)	$(0.2 \text{ to } 2) \text{ M}\Omega$	$11 \mu\Omega/\Omega + 1 \Omega$	Decade Resistor
	$(2 \text{ to } 20) \text{ M}\Omega$	$19 \mu\Omega/\Omega + 0.10 \mathrm{k}\Omega$	Decide Resister
	$(20 \text{ to } 200) \text{ M}\Omega$	$0.12 \text{ m}\Omega/\Omega + 10 \text{ k}\Omega$	
	$(0.2 \text{ to } 2) \text{ G}\Omega$	0.13% of reading + 1 M Ω	
	Up to 2Ω	$17 \mu\Omega/\Omega + 4 \mu\Omega$	
	$(2 \text{ to } 20) \Omega$	$10 \mu\Omega/\Omega + 14 \mu\Omega$	
	$(20 \text{ to } 200) \Omega$	$17 \mu\Omega/\Omega + 0.2 \mathrm{m}\Omega$	
	$(0.2 \text{ to } 2) \text{ k}\Omega$	$18 \mu\Omega/\Omega + 2 m\Omega$	
Low Current Resistance –	$(2 \text{ to } 20) \text{ k}\Omega$	$22 \mu\Omega/\Omega + 20 \mathrm{m}\Omega$	Comparison to
Measure ¹	(20 to 200) $k\Omega$	$22 \mu\Omega/\Omega + 62 m\Omega$	Fluke 8588A
	$(0.2 \text{ to } 2) \text{ M}\Omega$	$26 \mu\Omega/\Omega + 1 \Omega$	8.5 Digit Multimeter
	$(2 \text{ to } 20) \text{ M}\Omega$	$0.38 \text{ m}\Omega/\Omega + 0.3 \text{ k}\Omega$	
	(20 to 200) $M\Omega$	0.13 % of reading + $10 \text{ k}\Omega$	
	$(0.2 \text{ to } 2) \text{ G}\Omega$	0.13 % of reading + 1 M Ω	
High Voltage Resistance – Measure ¹	(2 to 20) MΩ	$17 \mu\Omega/\Omega + 10 \Omega$	Commente
	(20 to 200) M Ω	$68 \mu\Omega/\Omega + 0.1 k\Omega$	Comparison to
	$(0.2 \text{ to } 2) \text{ G}\Omega$	$0.23 \text{ m}\Omega/\Omega + 0.1 \text{ M}\Omega$	Fluke 8588A
	(2 to 20) GΩ	0.13 % of reading + 10 M Ω	8.5 Digit Multimeter
	Up to 1 Ω	$0.008~2~\%$ of reading $+~2.3~\mu\Omega$	
	$(1 \text{ to } 10) \Omega$	0.007 % of reading + 23 $\mu\Omega$	
	$(10 \text{ to } 100) \Omega$	0.007 % of reading + 0.23 m Ω	Comparison to
Resistance – Measure ¹	$(0.1 \text{ to } 1) \text{ k}\Omega$	0.007 % of reading + 2.3 m Ω	Keysight 34420A
	$(1 \text{ to } 10) \text{ k}\Omega$	0.007 % of reading $+$ 0.023 Ω	7.5 Digit Nanovoltmeter
	$(10 \text{ to } 100) \text{ k}\Omega$	0.007 % of reading + 0.46 Ω	
	$(0.1 \text{ to } 1) \text{ M}\Omega$	$0.008 4 \%$ of reading $+ 4.6 \Omega$	

This Scope of Accreditation, version 007, was last updated on: 29 August 2025 and is valid only when accompanied by the Certificate.

ANAB

ANSI National Accreditation Board

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
DC Resistance – Source ¹ (Fixed Artifact)	10 μΩ	30 nΩ	Comparison to Canadian Shunts LAB-500-5 Current Shunt
DC Resistance – Source ¹ (Fixed Artifact)	100 μΩ	0.13 μΩ	Comparison to IET Labs DCCS/0.0001 Current Shunt
DC Resistance – Source ¹ (Fixed Artifact)	1 mΩ	86 nΩ	Comparison to Ohms Labs CS-100 Current Shunt
DC Resistance – Source ¹ (Fixed Artifact)	10 mΩ	1.4 μΩ	Comparison to Fluke Y5020 Precision Current Shunt
DC Resistance – Source ¹ (Fixed Artifact)	1 Ω	10 μΩ	Comparison to Fluke 742A-1 Standard Resistor
DC Resistance – Source ¹ (Fixed Artifact)	10 Ω	$0.37~\mathrm{m}\Omega$	Comparison to IET Labs SRX-10 Standard Resistor
DC Resistance – Source ¹ (Fixed Artifact)	10 kΩ	52 mΩ	Comparison to Fluke 742A-10k Standard Resistor
DC Resistance – Source ¹ (Multi-tap Artifact)	$\begin{array}{c} 333.33 \; \mu\Omega \\ 1 \; m\Omega \\ 10 \; m\Omega \\ 100 \; m\Omega \\ 1 \; \Omega \\ 10 \; \Omega \\ 1 \; k\Omega \\ 10 \; k\Omega \end{array}$	$\begin{array}{c} 0.19 \; \mu\Omega \\ 0.42 \; \mu\Omega \\ 1.7 \; \mu\Omega \\ 17 \; \mu\Omega \\ 0.15 \; m\Omega \\ 1.5 \; m\Omega \\ 15 \; m\Omega \\ 0.15 \; \Omega \\ \end{array}$	Comparison to Guideline 9211A Multi-tap Current Shunt
DC Resistance – Source ¹ (Variable Artifacts)	$100 \text{ k}\Omega \text{ to } 1 \text{ M}\Omega$ $(1 \text{ to } 10) \text{ M}\Omega$ $(10 \text{ to } 100) \text{ M}\Omega$ $100 \text{ M}\Omega \text{ to } 1 \text{ G}\Omega$ $(1 \text{ to } 10) \text{ G}\Omega$ $(10 \text{ to } 100) \text{ G}\Omega$ $100 \text{ G}\Omega \text{ to } 1 \text{ T}\Omega$	0.035 % of reading 0.035 % of reading 0.12 % of reading 0.3 % of reading 0.58 % of reading 1.2 % of reading 2.6 % of reading	Comparison to High Resistance Box (Up to 10 kV)

This Scope of Accreditation, version 007, was last updated on: 29 August 2025 and is valid only when accompanied by the Certificate.

Page 15 of 45

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
DC Resistance – Source ¹ (Simulation)	Up to 11 Ω (11 to 33) Ω (33 to 111) Ω (110 to 330) Ω 330 Ω to 1.1k Ω (1.1 to 3.3) k Ω (3.3 to 11) k Ω (11 to 33) k Ω (33 to 110) k Ω (110 to 330) k Ω 330 k Ω to 1.19 M Ω (1.1 to 3.3) M Ω (3.3 to 11) M Ω (1.1 to 33) M Ω	$32 \mu\Omega/\Omega + 0.8 \mathrm{m}\Omega$ $24 \mu\Omega/\Omega + 1.2 \mathrm{m}\Omega$ $22 \mu\Omega/\Omega + 1.1 \mathrm{m}\Omega$ $22 \mu\Omega/\Omega + 1.6 \mathrm{m}\Omega$ $22 \mu\Omega/\Omega + 0.2 \Omega$ $22 \mu\Omega/\Omega + 0.2 \Omega$ $27 \mu\Omega/\Omega + 1.6 \Omega$ $26 \mu\Omega/\Omega + 1.6 \Omega$ $66 \mu\Omega/\Omega + 23 \Omega$ $0.1 \mathrm{m}\Omega/\Omega + 39 \Omega$ $0.2 \mathrm{m}\Omega/\Omega + 1.9 \mathrm{k}\Omega$	Comparison to Fluke 5522A Multiproduct Calibrator
	(33 to 110) MΩ (110 to 330) MΩ 330 MΩ to 1.1 GΩ	$\frac{0.4 \text{ m}\Omega/\Omega + 2.3 \text{ k}\Omega}{0.23 \text{ % of reading} + 78 \text{ k}\Omega}$ $\frac{12 \text{ % of reading} + 0.4 \text{ M}\Omega}{0.23 \text{ m}\Omega}$	
AC Voltage – Source ¹	Up to 2.2 mV (10 to 20) Hz (20 to 40) Hz 40 Hz to 20 kHz (20 o 50) kHz (50 to 100) kHz (100 to 300) kHz (300 to 500) kHz 500 kHz to 1 MHz (2.2 to 22) mV (10 to 20) Hz (20 to 40) Hz 40 Hz to 20 kHz (20 o 50) kHz (50 to 100) kHz (100 to 300) kHz (300 to 500) kHz (300 to 500) kHz	0.16 % of reading + 4 μV 0.17 % of reading + 4 μV 0.078 % of reading + 4 μV 0.13 % of reading + 4 μV 0.17 % of reading + 5 μV 0.33 % of reading + 10 μV 0.47 % of reading + 20 μV 0.58 % of reading + 20 μV 0.042 % of reading + 4 μV 0.014 % of reading + 4 μV 0.014 % of reading + 4 μV 0.058 % of reading + 20 μV 0.16 % of reading + 20 μV 0.27 % of reading + 20 μV	Comparison to Fluke 5720A Multiproduct Calibrator

ANAB

ANSI National Accreditation Board

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
AC Voltage – Source ¹	(22 to 220) mV	0.028 % of reading + 12 μV 0.011 % of reading + 7 μV 0.008 5 % of reading + 7 μV 0.021 % of reading + 7 μV 0.047 % of reading + 17 μV 0.091 % of reading + 20 μV 0.14 % of reading + 25 μV 0.28 % of reading + 45 μV 0.004 8 % of reading + 15 μV 0.004 8 % of reading + 10 μV 0.012 % of reading + 30 μV 0.012 % of reading + 30 μV 0.012 % of reading + 0.2 mV 0.18 % of reading + 0.3 mV 0.043 % of reading + 0.15 mV 0.049 % of reading + 0.1 mV 0.010 % of reading + 0.1 mV 0.011 % of reading + 0.2 mV 0.03 % of reading + 0.6 mV 0.10 % of reading + 1.5 mV 0.028 % of reading + 3.2 mV 0.028 % of reading + 4 mV 0.01 % of reading + 1.5 mV 0.016 % of reading + 1.5 mV 0.009 3 % of reading + 1.5 mV 0.009 3 % of reading + 1.5 mV 0.016 % of reading + 1.5 mV 0.016 % of reading + 1.5 mV 0.017 % of reading + 1.5 mV 0.017 % of reading + 1.5 mV 0.018 % of reading + 1.5 mV 0.019 % of reading + 1.5 mV 0.019 % of reading + 1.5 mV 0.010 % of reading + 1.5 mV 0.010 % of reading + 1.5 mV 0.011 % of reading + 40 mV	Comparison to Fluke 5720A Multiproduct Calibrator
	(20 to 30) kHz	0.017 % of reading + 0 mV 0.061 % of reading + 11 mV	

This Scope of Accreditation, version 007, was last updated on: 29 August 2025 and is valid only when accompanied by the Certificate.

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
AC Voltage – Source ¹	(220 to 750) V (30 to 50) kHz (50 to 100) kHz	0.061 % of reading + 11 mV 0.23 % of reading + 45 mV	Comparison to Fluke 5720A Multiproduct Calibrator, Fluke 5725A Amplifier
AC Voltage – Measure ¹	Up to 1 mV 100 kHz to 1 MHz (1 to 3) MHz (3 to 10) MHz (10 to 20) MHz (1 to 3) mV 100 kHz to 1 MHz (1 to 3) MHz (3 to 10) MHz (10 to 20) MHz (3 to 100) mV 100 kHz to 1 MHz (1 to 3) MHz (3 to 100) mV 100 kHz to 1 MHz (1 to 3) MHz (20 to 30) MHz	1.8 % of reading + 2.4 μV 3.5 % of reading + 2.4 μV 9.3 % of reading + 2.4 μV 23 % of reading + 2.4 μV 1 % of reading + 2 μV 3.5 % of reading + 2 μV 9.3 % of reading + 2 μV 23 % of reading + 2 μV 1.8 % of reading + 3 μV 1.8 % of reading + 3 μV 2.9 % of reading + 3 μV 7 % of reading + 3 μV 14 % of reading + 3 μV	Comparison to Rohde & Schwarz URE3 RMS Voltmeter
AC Voltage – Measure ¹	Up to 10 mV (1 to 40) Hz 40 Hz to 1 kHz (1 to 20) kHz (20 to 50) kHz (50 to 100) kHz (100 to 300) kHz 300 kHz to 1 MHz (1 to 4) MHz	0.04 % of reading + 3.5 μV 0.03 % of reading + 1.2 μV 0.04 % of reading + 1.2 μV 0.15 % of reading + 1.2 μV 0.59 % of reading + 1.2 μV 4.6 % of reading + 2.3 μV 1.5 % of reading + 5.8 μV 8.1 % of reading + 8.1 μV	Comparison to Agilent 3458A Opt 002 8.5 Digit Multimeter

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
AC Voltage – Measure ¹	(10 to 100) mV (1 to 40) Hz 40 Hz to 1 kHz (1 to 20) kHz (20 to 50) kHz (50 to 100) kHz (100 to 300) kHz 300 kHz to 1 MHz (1 to 2) MHz (2 to 4) MHz (4 to 8) MHz (8 to 10) MHz (0.1 to 1) V (1 to 40) Hz 40 Hz to 1 kHz (1 to 20) kHz (20 to 50) kHz (50 to 100) kHz (100 to 300) kHz 300 kHz to 1 MHz (1 to 2) MHz (2 to 4) MHz (4 to 8) MHz (8 to 10) MHz (1 to 10) V (1 to 40) Hz 40 Hz to 1 kHz (1 to 20) kHz (20 to 50) kHz (50 to 100) kHz (100 to 300) kHz 300 kHz to 1 MHz (1 to 20) kHz (20 to 50) kHz (20 to 50) kHz (300 kHz to 1 MHz (1 to 2) MHz (20 to 300) kHz (300 kHz to 1 MHz (1 to 2) MHz (1 to 2) MHz (2 to 4) MHz (300 kHz to 1 MHz (1 to 2) MHz (1 to 2) MHz (2 to 4) MHz (3 to 10) MHz	0.013 % of reading + 4.6 μV 0.009 7 % of reading + 2.3 μV 0.017 % of reading + 2.3 μV 0.038 % of reading + 2.3 μV 0.093 % of reading + 2.3 μV 0.36 % of reading + 12 μV 1.2 % of reading + 12 μV 1.8 % of reading + 12 μV 4.7 % of reading + 81 μV 4.7 % of reading + 92 μV 17 % of reading + 0.12 mV 0.008 8 % of reading + 23 μV 0.017 % of reading + 23 μV 0.036 % of reading + 23 μV 0.036 % of reading + 23 μV 0.093 % of reading + 0.12 mV 1.2 % of reading + 0.12 mV 1.8 % of reading + 0.12 mV 1.8 % of reading + 0.12 mV 4.6 % of reading + 0.2 mV 1.7 % of reading + 1.2 mV 0.009 8 % of reading + 0.23 mV 0.017 % of reading + 0.23 mV 0.036 % of reading + 0.23 mV 0.036 % of reading + 0.23 mV 0.036 % of reading + 1.2 mV 1.2 % of reading + 1.2 mV 1.2 % of reading + 1.2 mV 1.2 % of reading + 1.2 mV 1.8 % of reading + 1.2 mV 1.9 % of reading + 1.2 mV 1.10 % of reading + 1.2 mV 1.11 % of reading + 1.2 mV 1.12 % of reading + 1.2 mV 1.2 % of reading + 1.2 mV 1.3 % of reading + 1.2 mV 1.4 % of reading + 1.2 mV 1.5 % of reading + 1.2 mV 1.6 % of reading + 1.2 mV 1.7 % of reading + 1.2 mV 1.8 % of reading + 1.2 mV 1.9 % of reading + 1.2 mV 1.9 % of reading + 1.2 mV	Comparison to Agilent 3458A Opt 002 8.5 Digit Multimeter

ANSI National Accreditation Board

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
AC Voltage – Measure ¹	(10 to 100) V (1 to 40) Hz 40 Hz to 1 kHz (1 to 20) kHz (20 to 50) kHz (50 to 100) kHz (100 to 300) kHz 300 kHz to 1 MHz (100 to 700) V (1 to 40) Hz 40 Hz to 1 kHz (1 to 20) kHz (20 to 50) kHz (50 to 100) kHz	0.024 % of reading + 4.6 mV 0.024 % of reading + 2.3 mV 0.024 % of reading + 2.3 mV 0.041 % of reading + 2.3 mV 0.14 % of reading + 2.3 mV 0.46 % of reading + 12 mV 1.7 % of reading + 12 mV 0.048 % or reading + 46 mV 0.048 % of reading + 23 mV 0.071 % or reading + 23 mV 0.14 % of reading + 23 mV 0.35 % of reading + 23 mV	Comparison to Agilent 3458A Opt 002 8.5 Digit Multimeter
AC Voltage – Measure ¹	(0.1 to 10) mV 1 Hz to 2 kHz (2 to 10) kHz (10 to 30) kHz (30 to 100) kHz (100 to 300) kHz 300 kHz to 1 MHz (10 to 100) mV 1 Hz to 2 kHz (2 to 10) kHz (10 to 30) kHz (30 to 100) kHz (100 to 300) kHz (30 to 100) kHz (100 to 300) kHz (100 to 300) kHz (100 to 300) kHz 300 kHz to 1 MHz (1 to 2) MHz (2 to 4) MHz (4 to 8) MHz (8 to 10) MHz	0.029 % of reading + 1.1 μV 0.037 % of reading + 1.1 μV 0.038 % of reading + 1.1 μV 0.3 % of reading + 0.78 μV 1 % of reading + 3.9 μV 2 % of reading + 3.9 μV 0.008 9 % of reading + 0.5 μV 0.013 % of reading + 0.5 μV 0.023 % of reading + 1 μV 0.053 % of reading + 5 μV 0.21 % of reading + 31 μV 1 % of reading + 0.1 mV 1.5 % of reading + 0.5 mV 4.1 % of reading + 1 mV 8.4 % of reading + 1 mV 16 % of reading + 1 mV	Comparison to Fluke 8588A 8.5 Digit Multimeter

This Scope of Accreditation, version 007, was last updated on: 29 August 2025 and is valid only when accompanied by the Certificate.

Page 20 of 45

AC Voltage – Measure AC Voltage – Measure AC Voltage A	Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
(100 to 300) kHz 300 kHz to 1 MHz (100 to 1 050) V 1 Hz to 2 kHz (2 to 10) kHz (10 to 30) kHz (30 to 100) kHz	AC Voltage – Measure ¹	1 Hz to 2 kHz (2 to 10) kHz (10 to 30) kHz (30 to 100) kHz (100 to 300) kHz 300 kHz to 1 MHz (1 to 2) MHz (2 to 4) MHz (4 to 8) MHz (8 to 10) MHz (1 to 10) V 1 Hz to 2 kHz (2 to 10) kHz (100 to 300) kHz (30 to 100) kHz (100 to 300) kHz 300 kHz to 1 MHz (1 to 2) MHz (2 to 4) MHz (2 to 4) MHz (2 to 4) MHz (3 to 10) MHz (1 to 2) MHz (2 to 4) MHz (2 to 4) MHz (3 to 10) WHz (10 to 100) V 1 Hz to 2 kHz (2 to 10) kHz (100 to 300) kHz (100 to 1050) V 1 Hz to 2 kHz (2 to 10) kHz (100 to 1050) V 1 Hz to 2 kHz (2 to 10) kHz (100 to 30) kHz	0.012 % of reading + 5 μV 0.023 % of reading + 10 μV 0.053 % of reading + 50 μV 0.21 % of reading + 0.31 mV 1 % of reading + 1 mV 1.5 % of reading + 5 mV 4 % of reading + 10 mV 8.2 % of reading + 10 mV 15 % of reading + 10 mV 0.007 6 % of reading + 50 μV 0.012 % of reading + 50 μV 0.023 % of reading + 0.1 mV 0.053 % of reading + 0.5 mV 0.21 % of reading + 3.1 mV 1 % of reading + 10 mV 1.5 % of reading + 50 mV 4 % of reading + 0.1 V 8.2 % of reading + 0.1 V 8.2 % of reading + 0.1 V 0.009 % of reading + 0.1 V 0.011 % of reading + 0.5 mV 0.023 % of reading + 0.5 mV 0.037 % of reading + 1 mV 0.059 % of reading + 5 mV 0.011 % of reading + 25 mV 0.023 % of reading + 25 mV	Fluke 8588A

ANSI National Accreditation Board

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
AC High Voltage – Measure ¹	(0.7 to 10) kV (20 to 100) Hz (100 to 400) Hz (10 to 30) kV (30 to 70) Hz (70 to 200) Hz (200 to 450) Hz (30 to 50) kV (30 to 70) Hz (70 to 200) Hz (200 to 450) Hz (50 to 70) kV (30 to 70) Hz	0.14 % of reading + 0.4 V 0.48 % of reading + 0.2 V 0.11 % of reading + 2.4 V 0.7 % of reading + 2.4 V 1.4 % of reading + 2.4 V 0.13 % of reading + 2.5 V 0.7 % of reading + 2.5 V 2.9 % of reading + 2.5 V 0.16 % of reading + 2.6 V	Comparison to Vitrek 4700 Digital HV Meter, Associated High Voltage Probes
AC High Voltage – Measure ¹	(70 to 200) Hz (1 to 60) kV 60 Hz (60 to 150) kV 60 Hz	1.2 % of reading + 2.6 V 0.59 % of reading + 30 V 0.59 % of reading + 0.23 kV	Comparison to High Voltage Inc. DVR150 High Voltage Divider, Meter
DC Voltage – Source ¹	(0 to 220) mV (0.22 to 2.2) V (2.2 to 11) V (11 to 22) V (22 to 220) V	$0.000~86~\%$ of reading $+~0.4~\mu V$ $0.000~51~\%$ of reading $+~0.7~\mu V$ $0.000~4~\%$ of reading $+~2.5~\mu V$ $0.000~39~\%$ of reading $+~4~\mu V$ $0.000~62~\%$ of reading $+~40~\mu V$	Comparison to Fluke 5720A Multiproduct Calibrator
DC Voltage – Source ¹	(220 to 1 100) V	0.000 76 % of reading + 0.4 mV	Comparison to Fluke 5720A Multiproduct Calibrator, Fluke 5725A Amplifier
DC Voltage – Measure ¹	Up to 1 mV (1 to 10) mV (10 to 100) mV (0.1 to 1) V (1 to 10) V (10 to 100) V	0.006 % of reading + 0.023 μV 0.006 % of reading + 0.035 μV 0.004 8 % of reading + 0.46 μV 0.004 1 % of reading + 0.004 6 mV 0.003 5 % of reading + 0.046 mV 0.004 1 % of reading + 0.58 mV	Comparison to Keysight 34420A 7.5 Digit Nanovoltmeter

ANSI National Accreditation Board

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
DC Voltage – Measure ¹	(0 to 100) mV (0.1 to 1) V (1 to 10) V (10 to 100) V (100 to 500) V (500 to 800) V (800 to 1 000) V	$\begin{array}{c} 0.000\ 83\ \%\ \text{of reading} + 0.58\ \mu\text{V} \\ 0.000\ 69\ \%\ \text{of reading} + 0.58\ \mu\text{V} \\ 0.000\ 53\ \%\ \text{of reading} + 0.58\ \mu\text{V} \\ 0.000\ 77\ \%\ \text{of reading} + 35\ \mu\text{V} \\ 0.001\ 4\ \%\ \text{of reading} + 0.12\ \text{mV} \\ 0.001\ 8\ \%\ \text{of reading} + 0.12\ \text{mV} \\ 0.002\ 1\ \%\ \text{of reading} + 0.12\ \text{mV} \end{array}$	Comparison to Agilent 3458A Opt 002 8.5 Digit Multimeter
DC Voltage – Measure ¹	Up to 200 mV (0.2 to 2) V (2 to 20) V (20 to 200) V (200 to 1 050) V	$7.7 \mu\text{V/V} + 0.2 \mu\text{V} \\ 2.9 \mu\text{V/V} + 0.3 \mu\text{V} \\ 2.9 \mu\text{V/V} + 0.47 \mu\text{V} \\ 4.3 \mu\text{V/V} + 30 \mu\text{V} \\ 4.4 \mu\text{V/V} + 0.5 \text{mV}$	Comparison to Fluke 8588A 8.5 Digit Multimeter
DC High Voltage – Measure ¹	(1 to 10) kV (10 to 20) kV (20 to 70) kV (70 to 100) kV	0.04 % of reading + 92 mV 0.09 % of reading + 2.4 V 0.09 % of reading + 2.4 V 0.17 % of reading + 2.5 V	Comparison to Vitrek 4700 Digital HV Meter, Associated High Voltage Probes
DC High Voltage – Measure ¹	(1 to 5) kV (5 to 50) kV (50 to 100) kV	0.22 % of reading + 1.6 V 0.2 % of reading + 16 V 0.2 % of reading + 0.16 kV	Comparison to Spellmann HVD100-1 High Voltage Divider, Meter
DC High Voltage – Measure ¹	(1 to 60) kV (60 to 150) kV	0.58 % of reading + 0.6 V 0.58 % of reading + 10 V	Comparison to High Voltage Inc DVR150 High Voltage Divider, Meter
	(1 to 30) mW 30 mW to 90 W	0.13 % of reading 0.08 % of reading 0.09 % of reading 0.08 % of reading 0.07 % of reading 0.06 % of reading 0.09 % of reading	Comparison to Fluke 5522A Multiproduct Calibrator

This Scope of Accreditation, version 007, was last updated on: 29 August 2025 and is valid only when accompanied by the Certificate.

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
AC Power – Source 1,3			
PF = 1			
(0.33 to 0.9) A	(10 to 65) Hz	/ /	
	(11 to 300) mW	0.0 <mark>7 % o</mark> f reading	
	(0.3 to 900) W	0.08 % of reading	
(0.9 to 2.2) A	(10 to 65) Hz		Comparison to
	(30 to 720) mW	0.09 % of reading	Fluke 5522A
	0.72 W to 2 kW	0.08 % of reading	Multiproduct Calibrator
(2.2 to 4.5) A	(10 to 65) Hz		
	80 mW to 1.4 W	0.09 % of reading	
	1.4 W to 4.5 kW	0.18 % of reading	
(4.5 to 20.5) A	(10 to 65) Hz	A A	
	150 mW to 20 kW	0.17 % of reading	
DC Power – Source ¹			
(0.33 to 330) mA	11 μW to 1.1 mW	0.02 % of reading	
	(1.1 to 110) mW	0.03 % of reading	
	110 mW to 110 W	0.02 % of reading	
	(110 to 330) W	0.02 % of reading	
	\		Comparison to
(0.33 to 3) A	11 μW to 110 mW	0.04 % of reading	Fluke 5522A
	110 mW to 990 W	0.05 % of reading	Multiproduct Calibrator
	990 W to 3 kW	0.01 % of reading	
		in the second second	
(3 to 20.5) A	99 mW to 0.99 W	0.09 % of reading	
	0.99 W to 6.8 kW	0.07 % of reading	
	(6.8 to 20.5) kW	0.04 % of reading	
	Up to 179.99°		
	(10 to 65) Hz	0.1°	
Low Frequency Phase –	(65 to 500) Hz	0.2°	Comparison to
Source 1	500 Hz to 1 kHz	0.4°	Fluke 5522A
Source	(1 to 5) kHz	1.9°	Multiproduct Calibrator
	(5 to 10) kHz	3.9°	
	(10 to 30) kHz	7.8°	

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Oscilloscopes ¹			
Amplitude – DC			
into 50Ω load	(-6 to 6) V	0.2 % o <mark>f rea</mark> ding + 31 μV	
into 1 MΩ load	(-130 to 130) V	$0.04 \% \frac{\text{of reading} + 31 \mu V}{\text{of reading}}$	
Amplitude – Square Wave			
	10 Hz to 100 kHz		
	1 mVp-p to 6.6 Vp-p	0.19 % of reading + 31 μV	
:t. 1 MO 1 1	10 11-4- 1 1-11-		
11110 1 17112 10210	10 Hz to 1 kHz	0.08.9% of reading ± 21 uV	
	1 mVp-p to 130 Vp-p (1 kHz to 10) kHz	0.08 % of reading + 31 μ V	
	1 mVp-p to 130 Vp-p	0.19 % of reading + 31 μV	
	1 III v p-p to 130 v p-p	0.19 /0 01 leading + 31 μ V	
Time Markers			
into 50 Ω load	1 ns to 20 ms	0.000 22 % of reading	
1110 30 22 1000	50 ms	0.005 9 % of reading	
	0.1 s	0.009 8 % of reading	Comparison to
	0.2 s	0.018 % of reading	Fluke 5520A/11
	0.5 s	0.041 % of reading	Multiproduct Calibrator
	1 s	0.08 % of reading	
	2 s	0.16 % of reading	
	5 s	0.39 % of reading	
Rise Time			
	5 mVp-p to 2.5 Vp-p		
Rate: 1 kHz to 2 MHz		51 ps	
Rate: 2 MHz to 10 MHz	1 \	51 ps 51 ps	
		T P	
Leveled Sine Wave			
into 50 Ω load	5 mVp-p to 5 Vp-p		
	50 kHz	1.8 % of reading + 0.2 mV	
	50 kHz to 100 MHz	2.8 % of reading + 0.2 mV	
	(100 to 300) MHz	3.2 % of reading + 0.2 mV	
	(300 to 600) MHZ	4 % of reading + 0.2 mV	
	(600 to 1 100) MHz	5.5 % of reading + 0.2 mV	

ANAB

ANSI National Accreditation Board

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Oscilloscopes ^{1,4} Bandwidth/Flatness (50 kHz Reference) into 50 Ω load Input Impedance – Measure Input Capacitance – Measure	5 mVp-p to 5.5 Vp-p 50 kHz to 100 MHz (100 to 300) MHz (300 to 600) MHz (600 to 1 100) MHz (40 to 60) Ω (0.5 to 1.5) MΩ	1.4 % of reading + 78 μV 1.8 % of reading + 78 μV 3.2 % of reading + 78 μV 3.9 % of reading + 78 μV 0.082 % of reading 0.081 % of reading	Comparison to Fluke 5520A/11 Multiproduct Calibrator
Waveform Generator (Sine, Square, Triangle) Amplitude into 50 Ω load into 1 MΩ load Frequency	10 Hz to 10 kHz 1.8 mVp-p to 2.5 Vp-p	2.3 % of reading + 78 μV 2.3 % of reading + 78 μV 0.002 % of reading + 12 mHz	
Electrical Simulation of Thermocouple Indicating Devices – Measure/Source ¹	Type B (250 to 350) °C (350 to 445) °C (445 to 580) °C (580 to 750) °C (750 to 1 000) °C (1 000 to 1 820) °C Type C (0 to 250) °C (250 to 1 000) °C (1 000 to 1 500) °C (1 500 to 1 800) °C (1 800 to 2 000) °C (2 000 to 2 250) °C (2 250 to 2 315) °C	1.2 °C 0.9 °C 0.71 °C 0.55 °C 0.45 °C 0.35 °C 0.24 °C 0.19 °C 0.21 °C 0.24 °C 0.27 °C 0.33 °C 0.37 °C	Comparison to Ectron 1140A Thermocouple Calibrator/Simulator

ANAB

ANSI National Accreditation Board

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard Method, and/or Equipment
	Type D		
	(0 to 100) °C	0.34 °C	
	(100 to 300) °C		
	(300 to 1 400) °C		
	(1 400 to 1 650) °C	0.19 °C	
	(1 650 to 1 930) °C	0.23 °C	
	(1 930 to 2 100) °C	0.28 °C	
	(2 100 to 2 200) °C	0.3 °C	
	(2 200 to 2 320) °C	0.34 °C	
	Type E	1,600	
	(-270 to -245) °C	1.6 °C	
	(-245 to -195) °C	0.24 °C	
	(-155 to -90) °C (-90 to 0) °C 0.095 °C 0.08 °C	0.12 °C	
	(0 to 15) °C	0.076 °C 0.064 °C	
	(890 to 1 000) °C 0.074 °C Type G (0 to 100) °C 1.6 °C		
Electrical Simulation of		0.074°C	Comparison to
		1.6%	Ectron 1140A
Devices – Measure/Source 1			Thermocouple
Devices – Measure/Source	(100 to 300) °C (300 to 600) °C	0.5 °C 0.35 °C	Calibrator/Simulator
	(600 to 1 760) °C	0.33 C 0.18 °C	
	(1 760 to 2 030) °C	0.18 C 0.2 °C	
	(2 030 to 2 200) °C	0.25 °C	
	(2 200 to 2 315) °C	0.23 °C 0.27 °C	
	Type J	0.27	
	(-210 to -180) °C	0.15 °C	
	(-180 to -120) °C	0.13 °C	
	(-120 to -50) °C	0.093 °C	
	(-50 to 990) °C	0.08 °C	
	(990 to 1 200) °C	0.094 °C	
	Type K	0.051	
	(-270 to -255) °C	2.5 °C	
	(-255 to -195) °C	0.85 °C	
	(-195 to -115) °C	0.16 °C	
	(-115 to -55) °C	0.12 °C	
	(-55 to 1 000) °C	0.087 °C	
	(1 000 to 1 372) °C	0.096 °C	

This Scope of Accreditation, version 007, was last updated on: 29 August 2025 and is valid only when accompanied by the Certificate.

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Electrical Simulation of Thermocouple Indicating Devices – Measure/Source ¹	Type N (-270 to -260) °C (-260 to -200) °C (-200 to -140) °C (-140 to -70) °C (-70 to 25) °C (25 to 160) °C (160 to 1 300) °C Type PLII (0 to 100) °C (100 to 925) °C (925 to 1 200) °C (1 200 to 1 395) °C Type R (-50 to -30) °C (-30 to 45) °C (45 to 160) °C (160 to 380) °C (380 to 775) °C (775 to 1 768) °C Type S (-50 to -30) °C (45 to 105) °C (45 to 105) °C (45 to 105) °C (105 to 310) °C (310 to 615) °C (615 to 1 768) °C Type T (-270 to -255) °C (-240 to -210) °C (-150 to -40) °C (-40 to 100) °C (100 to 400) °C	5.4 °C 1.5 °C 0.29 °C 0.18 °C 0.14 °C 0.12 °C 0.11 °C 0.11 °C 0.11 °C 0.11 °C 0.11 °C 0.35 °C 0.26 °C 0.49 °C 0.41 °C 0.35 °C 0.35 °C 0.49 °C 0.41 °C 0.35 °C 0.41 °C 0.35 °C 0.41 °C 0.35 °C 0.31 °C 0.31 °C	Comparison to Ectron 1140A Thermocouple Calibrator/Simulator

ANSI National Accreditation Board

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Parameter/Equipment Electrical Simulation of RTD Indicators – Source 1	Pt 385, 100 Ω (-200 to -80) °C (-80 to 0) °C (0 to 100) °C (100 to 300) °C (300 to 400) °C (400 to 630) °C (630 to 800) °C (630 to 800) °C (-200 to -80) °C (-80 to 0) °C (100 to 260) °C (260 to 300) °C (400 to 600) °C (400 to 600) °C (600 to 630) °C (-80 to 0) °C (100 to 260) °C (260 to 300) °C (260 to 300) °C (300 to 400) °C (400 to 600) °C (260 to 300) °C (300 to 400) °C (300 to 400) °C (400 to 600) °C (260 to 300) °C (300 to 400) °C (400 to 600) °C	0.05 °C 0.05 °C 0.07 °C 0.09 °C 0.12 °C 0.04 °C 0.04 °C 0.04 °C 0.12 °C 0.13 °C 0.13 °C 0.14 °C 0.16 °C 0.06 °C 0.08 °C 0.08 °C 0.08 °C 0.09 °C	Method, and/or
	(600 to 630) °C Pt 385, 1 000 Ω (-200 to -80) °C (-80 to 0) °C (0 to 100) °C (100 to 260) °C (260 to 300) °C (300 to 400) °C (400 to 600) °C (600 to 630) °C	0.11 °C 0.03 °C 0.03 °C 0.04 °C 0.05 °C 0.06 °C 0.07 °C 0.07 °C 0.23 °C	

ANAB

ANSI National Accreditation Board

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Electrical Simulation of RTD Indicators – Source ¹	Pt 3916, 100 Ω (-200 to -190) °C (-190 to -80) °C (-80 to 0) °C (0 to 100) °C (100 to 260) °C (260 to 300) °C (300 to 400) °C (400 to 630) °C Pt 3926, 100 Ω (-200 to -80) °C (0 to 100) °C (100 to 300) °C (300 to 400) °C (400 to 630) °C PtNi 385, 120 Ω (-80 to 0) °C (0 to 100) °C (100 to 260) °C Cu 427, 10 Ω (-100 to 260) °C	0.25 °C 0.04 °C 0.05 °C 0.06 °C 0.07 °C 0.08 °C 0.09 °C 0.1 °C 0.05 °C 0.07 °C 0.09 °C 0.1 °C 0.10 °C 0.10 °C 0.11 °C 0.12 °C 0.12 °C 0.12 °C 0.08 °C 0.08 °C 0.08 °C 0.08 °C 0.14 °C	Comparison to Fluke 5520A Multiproduct Calibrator

Electrical – RF/Microwave

Parameter/Equipment	Range			panded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
	100 kHz to 4.2 GHz				Comparison to
	(-30 to -20) dB			1.9 % of reading	Agilent 437B
Relative RF Power ¹	(-20 to -10) dB			1.8 % of reading	Power Meter,
	(-10 to 0) dB			1.8 % of reading	Agilent 8482A
					Power Sensor
			, i		Comparison to
	100 kHz to 4.2 GHz				Agilent 437B
Relative RF Power ¹	(0 to 10) dB			1.8 % of reading	Power Meter,
	(10 to 20) dB	JL		1.8 % of reading	Agilent 8482A
					Power Sensor

This Scope of Accreditation, version 007, was last updated on: 29 August 2025 and is valid only when accompanied by the Certificate.

Page 30 of 45

Electrical – RF/Microwave

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Harmonic Distortion – Measure ¹	20 Hz to 20 kHz (20 to 100) kHz	1.2 % of reading 2.3 % of reading	Comparison to HP 8903A Distortion Analyzer

Length – Dimensional Metrology

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Gage Blocks ²			Comparisons to
Length			Gage Block Comparator,
Steel	(0.01 to 0.2) in	2.9 µin	Master Gage Blocks
	(0.2 to 1) in	$(2.8 + 0.7L) \mu in$	
	(1 to 4) in	(2 + 1.7L) µin	
	(0.5 to 7.5) mm	83 nm	
	(7.5 to 30) mm	$(0.075 + 0.001L) \mu m$	
	(30 to 100) mm	$(0.027 + 0.003L) \mu m$	
CI	(0.01 , 0.2)	2 .	
Chrome	(0.01 to 0.2) in	3 μin	
	(0.2 to 1) in	$(3 + 1L) \mu in$	
	(1 to 4) in	$(1+3L)$ μ in	
	(0.5 to 6) mm	83 nm	
	(6 to 30) mm	$(0.072 + 0.002L) \mu m$	
	(30 to 100) mm	$(0.05 + 0.003L) \mu m$	
	· ·		!
Ceramic	(0.01 to 0.2) in	3 μin	
	(0.2 to 1) in	$(2.8 + 1L) \mu in$	
	(1 to 4) in	$(1.8 + 2L) \mu in$	
	(0.5 to 1.01) mm	95 nm	
	(1.01 to 30) mm	$(0.09 + 0.001L) \mu m$	
	(30 to 100) mm	$(0.03 + 0.003L) \mu m$	
Parallelism	(100 to 500) mm	(0.16 + 0.001 <i>L</i>) μm	Optical Parallels
Flatness	Up to 1 in <i>DL</i> (25.4 mm)	1 μin (25 nm)	Optical Flats

ANAB
ANSI National Accreditation Board

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Optical Flats and Parallels			Comparison to
Flatness	Up to 4 in Diameter	3.5 µin	Master Optical Flat
	Up to 100 mm Diameter	89 nm	
		/A)	
Parallelism	Up to 1 in	2.9 μin	P&W Measuring Machine
	Up to 25.4 mm	74 nm	
	5°	1.7"	
	$(5 \text{ to } 20)^{\circ}$	2.4"	Comparison to
	(20 to 35)°	3.6"	Sine Bar,
Angle Measuring Devices ^{1,2}	$(35 \text{ to } 45)^{\circ}$	4.6"	Gage Blocks,
	$(45 \text{ to } 60)^{\circ}$	8.1"	Surface Plate,
	(60 to 75)°	17"	Granite Square
	(75 to 85)° 90°	52" 1.1"	•
Calipers, Micrometers ^{1,2}	90	1.1	Comparison to
Travel	Up to 0.5 in	13 μin	ASME B89.1 Grade 0
(Outside, Inside,	(0.5 to 1) in	14 µin	Gage Blocks
Depth, Step)	(1 to 4) in	$(10 + 3.6L) \mu in$	Guge Blocks
Beptil, Step)	(4 to 15) in	$(11 + 4.2L) \mu in$	
	(15 to 40) in	$(11 + 4.4L) \mu in$	
	(10 10 10) 111	(21,2) μ	
Anvil Flatness	Up to 1 inDL	4.4 μin	Optical Flats
Anvil Parallelism	Up to 1 inDL	7.2 µin	Optical Parallels
	(0.125 to 0.25) in	34 μin	Comparison to
Bore Gages ^{1,2}	(0.25 to 1) in	36 μin	Characterized Ring Gages
	(1 to 6) in	$(30 + 7L) \mu in$	
Indicators ^{1,2}			Comparison to
(Dial, Digital, Drop, Test)	Up to 6 in	$(6.3 + 3.2L) \mu in$	Gage Blocks,
() 8) 1)			Surface Plate
T4 I - 1'4	II. 4: 0.025 in	F.C. vin	Comparison to
Test Indicators	Up to 0.025 in	5.6 μin	Universal Length
Wire Crimpers/Dies ¹			Measuring Machine
Die Diameter			Comparisons to
0.000 1 in step size	(0.011 to 0.625) in	150 μin	Pin Gages
0.000 1 in step size 0.000 5 in step size	(0.011 to 0.625) in	600 μin	I iii Gages
0.000 3 in step size 0.001 in step size	(0.011 to 0.625) in	1 200 μin	
0.001 ili step size	(0.011 to 0.023) III	1 200 μπ	
Crimp Height	Up to 0.8 in	180 μin	Micrometer

This Scope of Accreditation, version 007, was last updated on: 29 August 2025 and is valid only when accompanied by the Certificate.

ANSI National Accreditation Board

Page 32 of 45

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Wire Crimpers/Dies ¹			Direct measure using
Pull Test	Up to 200) lbf	0.52 lbf	Mark 10 Pull Tester
Height Gages ^{1,2}	Up to 4 in	(26 + 0.5L) µin	Comparison to
Height Gages	(4 to 24) in	$(16 + 3L) \mu in$	Gage Blocks
Length – Single Axis ²			
Outside Dimension	Up to 1 in	(6+1L) µin	
	(1 to 7) in	$(4 + 3.5 L) \mu in$	
	(7 to 12) in	$(4L)$ μ in	Comparison to
			Universal Length
Inside Dimension	(0.04 to 1) in	11 μin	Measuring Machine
	(1 to 2.5) in	17 μin	
	(2.5 to 10) in	(18 + 3 <i>L</i>) μin	
	(10 to 14) in	$(38 + 3L) \mu in$	
Surface Plates ^{1,2}			In accordance with
	V		ASME B89.3.7 using
Overall Flatness	Up to 250 inDL	$(38 + 1\sqrt{DL})$ µin	Wyler Levels
Local Area Flatness			
(Repeat Readings)			
Up to 12.37 in <i>DL</i>	Up to 0.001 in	58 μin	Gage Amp, Probe
(12.37 to 18.25) in <i>DL</i>	Up to 0.001 in	65 μin	Level Plate, Surface Plate
(18.97 to 30.59) inDL	Up to 0.001 in	65 μin	

> 16.97 in <i>DL</i>	Up to 0.001 in	33 μin	Repeat-o-Meter
Optical Comparators ^{1,2}			Comparisons to
X-Y Length	Up to 6 in	$(100 + 14L) \mu in$	Calibration Grids
Squareness	(0.04 to 1) in	$(120 + 1.5L) \mu in$	Calibration Grids
Magnification	10X to 50X	$(240 + 21L) \mu in$	Magnification Checker
	Up to 6 in	51 μin	Comparison to
Optical Reference Plane ¹	(6 to 12) in	75 µin	Glass Scale,
	· /		Calibration Grids
	Up to 0.1 in	13 μin	Comparison to
Laser Micrometers ^{1,2}	(0.1 to 0.4) in	8 μin	Characterized Master
	(0.4 to 1) in	(11 + 5L) µin	Pin Gages
Surface Roughness Testers ¹	Ra	70 nm (3 μin)	Comparison to
Sarrace Rouginiess resicis	Rmax	0.91 μm (36 μin)	Calibrated Specimen

This Scope of Accreditation, version 007, was last updated on: 29 August 2025 and is valid only when accompanied by the Certificate.

Page 33 of 45

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Micrometer Head Spindle Displacement	Up to 1 in	10 μin	Comparison to Laser Interferometer
Micrometer Standards ²	Up to 25.4 mm Up to 36 in (36 to 80) in Up to 900 mm (900 to 2 000) mm	$0.26 \ \mu m$ $(30 + 4L) \ \mu in$ $(200 + 5L) \ \mu in$ $(0.8 + 0.004L) \ \mu m$ $(5 + 0.005L) \ \mu m$	Comparison to P&W Measuring Machine
Pin Gages ¹	(0.004 to 1) in	33 μin	Comparison to Laser Micrometer
Plug Gages ² (Outside Diameter)	Up to 1 in (1 to 7) in	13 μin (10 + 3 <i>L</i>) μin	Comparison to Universal Length Measuring Machine
Measuring Rules ²	Up to 48 in	(30 + 8 <i>L</i>) μin	Comparison to CSIP with Heidenhain LIP 401R Linear Encoder
Thread Wires	(2 to 120) TPI (0.008 33 to 0.5) in (2 to 120) TPI (0.211 6 to 12.7) mm	12 μin 0.3 μm	Comparison to Universal Length Measuring Machine
Cylindrical Ring Gages ² Inside Diameter	(0.04 to 1) in (1 to 2.5) in (2.5 to 10) in (10 to 14) in	11 μin 17 μin (18 + 3D) μin (38 + 3D) μin	Comparison to Universal Length Measuring Machine
Thread Plug Gages ² Pitch Diameter, 60° Thread	Up to 1 in (1 to 4) in (4 to 7) in	79 μin 80 μin 83 μin	Comparisons to Universal Length Measuring Machine, Thread Wires
Major Diameter	Up to 1 in (1 to 7) in	13 μin (10 + 3 <i>D</i>) μin	Universal Length Measuring Machine
Step Height	Up to 1 in	32 μin	Gage Amp, Probe, Gage Blocks

This Scope of Accreditation, version 007, was last updated on: 29 August 2025 and is valid only when accompanied by the Certificate.

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Thread Ring Gages Inner Pitch Diameter	Up to 1 in (1 to 4) in (4 to 7) in	79 μin 80 μin 83 μin	Tactile Fit to Master Setting Plug (Thread Plug Uncertainty)
Tapered Thread Plug Gages Pitch Diameter Taper	Up to 3 in	90 μin	Comparisons to Universal Length Measuring Machine, Thread Wires
Standoff	Up to 1 in	31 μin	Gage Amp, Probe, Gage Blocks
Tapered Thread Ring Gage	Up to 3 in	90 μin	Tactile Fit to Master Tapered Thread Plug (Tapered Thread Plug Uncertainty)
Thickness Foils, Feeler Gages ²	Up to 1 in	(6 + 1 <i>L</i>) μin	Comparison to Universal Length Measuring Machine
Cylindrical Plug Gages, Cylindrical Ring Gages Diameter	(0.04 to 0.4) in (0.4 to 6) in (1 to 10) mm (10 to 152) mm	45 μin (45 + 5D) 1.1 μin (1.1 + 0.005D)	Comparison to MasterScanner XP16060 Master Scanner
Tapered Plug Gages, Tapered Ring Gages Diameter	(0.04 to 0.4) in (0.4 to 6) in (1 to 10) mm (10 to 152) mm	48 μin (48 + 5L) 1.2 μm (1.2 + 0.005L)	Comparison to MasterScanner XP16060 Master Scanner
Taper	-	0.1°	

ANSI National Accreditation Board

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Thread Plug Gages ^{2,7} Effective Pitch Diameter	(0.04 to 0.4) in (0.4 to 6) in (1 to 10) mm (10 to 152) mm	87 μ in (87 + 5 L) 2.2 μ m (2.2 + 0.005 L)	
Major/Minor Diameter	(0.04 to 0.4) in (0.4 to 6) in (1 to 10) mm	49 μin (49 + 5 <i>L</i>) 1.2 μm	Comparison to MasterScanner XP16060 Master Scanner
Pitch	(10 to 152) mm > 0 .004 in > 0.1 mm	(1.2 + 0.005 <i>L</i>) 30 μin 0.76 μm	
Flank Angle	Up to 60°	6'	
Tapered Plug Gages ^{2,7} Effective Pitch Diameter	(0.04 to 0.4) in (0.4 to 6) in (1 to 10) mm	85 μin (85 + 5 <i>D</i>) 2.2 μm	
Major/Minor Diameter	(10 to 152) mm (0.04 to 0.4) in (0.4 to 6) in	(2.2 + 0.005D) 51 µin (51 + 5D)	Comparison to MasterScanner XP16060 Master Scanner
	(1 to 10) mm (10 to 152) mm	$(1.3 \ \mu m)$ $(1.3 + 0.005D)$	
Pitch	> 0.004 in > 0.1 mm	30 μin 0.76 μm	
Flank Angle	Up to 60°	6'	
Taper	Up to 60°	0.1°	

ANSI National Accreditation Board

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Balances, Scales ^{1,5} Metric (SI)	Up to 500 mg 500 mg to 5 g (5 to 10) g (10 to 30) g (30 to 100) g 100 g to 5 kg (5 to 10) kg	12 μg 40 μg 61 μg 94 μg 0.000 9 % of reading 0.000 3 % of reading 0.000 3 % of reading	ASTM E617 Class 1 Weights and internal calibration procedure utilized for the calibration of the weighing system.
Balances, Scales ^{1,5} Metric (SI)	(5 to 50) mg (50 to 500) mg 500 mg to 5 g (5 to 10) g (10 to 20) g 20 g to 2 kg	16 μg 29 μg 63 μg 88 μg 0.12 mg 0.006 % of reading	ASTM E617 Class 2 Weights and internal calibration procedure utilized for the calibration of the weighing system.
Balances, Scales 1,5			ASTM E617 Class 6
Metric (SI) Avoirdupois	450 g to 27 kg (1 to 62) lb	0.014 % of reading 0.014 % of reading	Weights and internal calibration procedure utilized for the calibration of the weighing system.
Balances, Scales ^{1,5} Metric (SI) Avoirdupois	(450 to 211) kg (1 to 466) lb	0.012 % of reading 0.012 % of reading	NIST Class F Weights and internal calibration procedure utilized for the calibration of the
Rockwell Hardness and Superficial Testers ¹	HRA Scale	0.6 HRA 0.37 HRA 0.29 HRA 0.84 HRBW 0.75 HRBW 0.64 HRBW 0.44 HRC 0.42 HRC 0.38 HRC 0.62 HREW 0.63 HREW 0.59 HREW	Indirect verification per ASTM E18 using hardness test blocks.

This Scope of Accreditation, version 007, was last updated on: 29 August 2025 and is valid only when accompanied by the Certificate.

ANAB

ANSI National Accreditation Board

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Rockwell Hardness and Superficial Testers ¹	HR15TW Scale (72 to 75) HR15TW (82 to 86) HR15TW (90 to 92) HR15TW HR30N Scale (45 to 48) HR30N (65 to 68) HR30N (76 to 78) HR30N HR30TW Scale (48 to 53) HR30TW (59 to 63) HR30TW (72 to 81) HR30TW HR45TW Scale (25 to 30) HR45TW (43 to 49) HR45TW (61 to 64) HR45TW	0.64 HR15TW 0.64 HR15TW 0.45 HR15TW 0.45 HR30N 0.65 HR30N 0.51 HR30N 0.51 HR30TW 0.55 HR30TW 0.48 HR30TW 0.65 HR45TW 0.66 HR45TW 0.66 HR45TW	Indirect verification per ASTM E18 using hardness test blocks.
Brinell Hardness Testers ¹	HBW Scale Low Medium High	1.4 HBW 4.2 HBW 5.3 HBW	Indirect verification per ASTM E10 using hardness test blocks.
Knoop Hardness Testers ¹	HK 0.1 Scale (858 to 886) HK	20 HK	Indirect verification per ASTM E384, ASTM E92 using hardness test blocks.
Leeb Hardness Testers ¹	HLD Scale (752 to 759) HLD (786 to 789) HLD	9.9 HLD 9.4 HLD	Indirect verification per ASTM A956 using hardness test blocks.
Vickers Hardness Testers ^{1,7}	HV 0.3 Scale (476 to 494) HV (747 to 757) HV HV 0.5 Scale (493 to 519) HV HV 1 Scale (460 to 468) HV (741 to 752) HV	10 HV 12 HV 12 HV 8 HV 13 HV	Indirect verification per ASTM E384, ASTM E92 using hardness test blocks.

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Absolute Pressure ¹ (Pneumatic)	Up to 5 psia Up to 10 psia Up to 15 psia Up to 30 psia (14.7 to 45) psia (14.7 to 65) psia (14.7 to 115) psia (14.7 to 165) psia (14.7 to 265) psia (14.7 to 315) psia (14.7 to 515) psia (14.7 to 765) psia (14.7 to 1515) psia	0.000 61 psi 0.001 2 psi 0.001 8 psi 0.003 6 psi 0.005 3 psi 0.007 psi 0.012 psi 0.018 psi 0.031 psi 0.037 psi 0.062 psi 0.09 psi 0.19 psi	Comparison to Mensor APC6000 Pressure Controller
Absolute Pressure ¹ (Pneumatic)	Up to 62.5 psia (62.5 to 1 000) psia	0.006 3 psi 0.01 % of reading	Comparison to Mensor CPC6050 Pressure Controller
Absolute Pressure ¹ (Pneumatic)	(14.7 to 507.5) psia (507.5 to 1 015) psia (14.7 to 1 507.5) psia (1 507.5 to 3 015) psia (14.7 to 3 007.5) psia (3 007.5 to 6 015) psia	0.05 psi 0.01 % of reading + 0.001 5 psi 0.15 psi 0.01 % of reading + 0.001 5 psi 0.3 psi 0.01 % of reading + 0.001 5 psi	Comparison to Mensor CPC8000 Pressure Controller
Gauge Pressure ¹ (Pneumatic)	Up to 0.5 psig Up to 1 psig Up to 5 psig Up to 10 psig Up to 15 psig Up to 30 psig Up to 50 psig Up to 100 psig Up to 150 psig	0.000 06 psi 0.000 1 psi 0.000 6 psi 0.001 2 psi 0.001 8 psi 0.003 6 psi 0.006 psi 0.012 psi 0.012 psi 0.018 psi	Comparison to Mensor APC6000 Pressure Controller
Gauge Pressure ¹ (Pneumatic)	Up to 250 psig Up to 300 psig Up to 500 psig Up to 750 psig Up to 1 500 psig	0.031 psi 0.037 psi 0.062 psi 0.093 psi 0.19 psi	Comparison to Mensor APC6000 Pressure Controller
Gauge Pressure ¹ (Pneumatic)	(-14.7 to 47.8) psig (47.8 to 1 000.3) psig	0.006 3 psi 0.01 % of reading	Comparison to Mensor CPC6050 Pressure Controller

This Scope of Accreditation, version 007, was last updated on: 29 August 2025 and is valid only when accompanied by the Certificate.

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Gauge Pressure ¹ (Pneumatic)	Up to 500 psig (500 to 1 000) psig Up to 1 500) psig (1 500 to 3 000) psig Up to 3 000) psig (3 000 to 6 000) psig	0.05 psi 0.01 % of reading 0.15 psi 0.01 % of reading 0.3 psi 0.01 % of reading	Comparison to Mensor CPC8000 Pressure Controller
Gauge Pressure ¹ (Hydraulic)	Up to 10 000 psig	1.2 psi	Comparison to Mensor 2106 Digital Pressure Gage
Gauge Pressure ¹ (Hydraulic)	(100 to 16 000) psig	0.025 % of reading	Comparison to Budenberg 580HXA Pressure Balance
Torque Drivers, Torque Indicators ¹	(10 to 100) ozf·in (4 to 50) lbf·in (30 to 400) lbf·in	1.2 % of reading 1.1 % of reading 1.1 % of reading	Comparison to CDI Torque Transducers
Torque Wrenches ¹	4 lbf·in to 250 lbf·ft (60 to 600) lbf·ft	0.54 % of reading 0.49 % of reading	Comparison to CDI Torque Transducers
Torque Analyzers, Torque Transducers	(2 to 40) ozf·in 5 ozf·in to 25 lbf-in 2.5 lbf·in to 150 lbf·ft 50 lbf·in to 250 lbf·ft (25 to 1 000) lbf·ft	0.13 % of reading 0.085 % of reading 0.055 % of reading 0.053 % of reading 0.052 % of reading	Comparison to NIST Class F Weights, Torque Wheels, Torque Arm

Thermodynamic

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Humidity – Humidity Controlled Chambers ¹	(-40 to -20) °C (0 to 95) RH% (-20 to 15) °C (0 to 95) RH% (15 to 25) °C (0 to 90) RH% (90 to 100) RH%	1.7 % of reading + 1.8 %RH 0.92 % of reading + 1.3 %RH 1.3 RH% 2 %RH	Comparison to Vaisala MI70/HMP76B Temp/Humidity Indicator/Probe
Humidity – Humidity Controlled Chambers ¹	(25 to 40) °C (0 to 95) RH% (40 to 180) °C (0 to 95) RH%	0.92 % of reading + 1.3 %RH 1.7 % of reading + 1.8 %RH	Comparison to Vaisala MI70/HMP76B Temp/Humidity Indicator/Probe

This Scope of Accreditation, version 007, was last updated on: 29 August 2025 and is valid only when accompanied by the Certificate.

Page 40 of 45

Thermodynamic

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Thermo-Hygrometers ¹ Temperature Humidity	(5 to 95) %RH (18 to 28) °C (18 to 25) °C (7 to 90) %RH (90 to 100) %RH	0.27 °C 1.4 %RH 2.1 %RH	Comparison to Kaymont 2000 Humidity Generator, Vaisala MI70/HMP76B Temp/Humidity Indicator/Probe
Dry Blocks, Liquid Baths, Temperature Chambers, Furnaces, Ovens ¹ Dry Blocks, Liquid Baths, Temperature Chambers,	(-195 to 0) °C (0 to 420) °C (420 to 660) °C (600 to 1 093) °C	0.012 °C 0.026 °C 0.034 °C 0.47 % of reading + 0.9 °C	Comparison to SPRT, Temperature Indicator Comparison to Type N T/C Probe,
Furnaces, Ovens ¹ Dry Blocks, Liquid Baths, Temperature Chambers, Furnaces, Ovens ¹	(1 093 to 1 200) °C (600 to 1 093) °C (1 093 to 1 200) °C	0.47 % of reading + 1.9 °C 0.47 % of reading + 0.9 °C 0.47 % of reading + 1.9 °C	Temperature Indicator Comparison to Type K T/C Probe, Temperature Indicator
Dry Blocks, Liquid Baths, Temperature Chambers, Furnaces, Ovens ¹	(615 to 1 093) °C (1 093 to 1 200) °C	0.15 % of reading + 1 °C 0.15 % of reading + 1.9 °C	Comparison to Type S T/C Probe, Temperature Indicator
Dial/Digital Thermometers, RTD, PRT, Thermistor Probes	0.01 °C	0.83 mK	Comparison to Triple Point Water Cell
Dial/Digital Thermometers, RTD, PRT, Thermistor Probes ¹	(-30 to -20) °C (-20 to 0) °C (0 to 150) °C (150 to 200) °C	0.043 °C 0.018 °C 0.03 °C 0.05 °C	Comparison to Fluke 7320 Bath, Fluke 6102 Bath, SPRT, Temperature Indicator
Dial/Digital Thermometers, RTD, PRT, Thermistor Probes ¹	(50 to 100) °C (100 to 420) °C (420 to 660) °C	0.11 °C 0.26 °C 0.41 °C	Comparison to Fluke 9173 Dry-well, SPRT, Temperature Indicator
Thermocouple Wire, Thermocouple Probes (Types J, K, T, E)	(-30 to -20) °C (-20 to 0) °C (0 to 150) °C (150 to 200) °C (200 to 420) °C (420 to 660) °C	0.17 °C 0.15 °C 0.27 °C 0.32 °C 0.59 °C 0.87 °C	Comparison to Fluke 2560/5628 SPRT, Hart Black Stack, Ectron 1140A Thermocouple Calibrator/Simulator; Temperature Source

This Scope of Accreditation, version 007, was last updated on: 29 August 2025 and is valid only when accompanied by the Certificate.

Page 41 of 45

Thermodynamic

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
	(-15 to 0) °C	0.83 °C	
	(0 to 50) °C	0.65 °C	Comparison to
Infrared Thermometers ¹	(50 to 100) °C	0.71 °C	Blackbody Source
	(100 to 120) °C	0.76 °C	(Flat Plate)
	(120 to 200) °C	0.95 °C	$\varepsilon = (0.9 \text{ to } 1)$
	(200 to 350) °C	1.6 °C	$\lambda = (8 \text{ to } 14) \mu\text{m}$
	(350 to 500) °C	2 °C	

Time and Frequency

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Reference – Frequency	10 MHz	640 pHz/Hz	Comparison to Rubidium Oscillator
Frequency – Measure ¹	10 MHz	0.21 μHz/Hz	Comparison to HP 53132A Opt 10 Universal Frequency Counter
Stopwatches, Timers ¹	Up to 599 s/mon	58 ms/day	Comparison to Vibrograf 4500 Timometer
AC Duty Cycle – Source ¹ Square Wave: < 3.3 Vp-p Freq: 0.1 Hz to 100 kHz	(1 to 10) % Duty Cycle 10 μs to 100 s (10 to 49) % Duty Cycle 10 μs to 100 s 50 % Duty Cycle 10 μs to 100 s (51 to 90) % Duty Cycle 10 μs to 100 s (90 to 99) % Duty Cycle 10 μs to 100 s	0.62 % of reading + 78 ns 0.039 % of reading + 78 ns 0.016 % of reading + 78 ns 0.039 % of reading + 78 ns 0.62 % of reading + 78 ns	Comparison to Fluke 55xxA Series Multiproduct Calibrator

DIMENSIONAL MEASUREMENT

1 Dimensional

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Dimension Measurement – 1D	X-axis Up to 1 in (1 to 3) in (3 to 6) in Y-axis Up to 2 in (2 to 3) in (3 to 5) in	210 μin 370 μin 480 μin 360 μin 410 μin 560 μin	Optical Comparator used as a Reference Standard for Dimensional Measurement. (Length)
Dimensional Measurement – 1D ^{1,2}	Up to 12 in	(28 + 3.2 <i>L</i>) μin	Gage Amp, Probe, and Gage Blocks utilized as Reference Standards for Dimensional Measurement. (Height)
Dimensional Measurement – 1D ^{1,2}	Up to 4 in <i>DL</i> Up to 12.37 in <i>DL</i> (12.37 to 18.25) in <i>DL</i> (18.97 to 30.59) in <i>DL</i>	6.2 μin 35 μin 42 μin 46 μin	Optical Flats, Gage Amp, and Indicator utilized as Reference Standards for Dimensional Measurement. (Flatness)
Dimensional Measurement – 1D 1,2	Up to 12.37 in <i>DL</i> (12.37 to 18.25) in <i>DL</i> (18.97 to 30.59) in <i>DL</i>	33 μin 40 μin 45 μin	Gage Amp and Indicator utilized as Reference Standards for Dimensional Measurement. (Parallelism)
Dimensional Measurement – 1D 1,2	Up to 18 in	163 μin	Gage Amp, Surface Plate, and Granite Square utilized as Reference Standards for Dimensional Measurement. (Squareness)
Dimensional Measurement – 1D ^{1,2}	Up to 12 in (12 to 18) in (18 to 30) in	35 μin 42 μin 46 μin	Gage Amp and Indicator utilized as Reference Standards for Dimensional Measurement. (Straightness)

ANSI National Accreditation Board

2 Dimensional

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Angle ²	Up to 180°	29"	Optical Comparator utilized as Reference Standard for Dimensional Measurement.
Radius	Up to 1 in (1 to 3) in (3 to 6) in	260 μin 450 μin 590 μin	Optical Comparator utilized as Reference Standard for Dimensional Measurement.

3 Dimensional

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Dimensional Measurement – 3D ²	X = Up to 2 500 mm Y = Up to 1 500 mm Z = Up to 1 000 mm	(6 + 0.009 <i>L</i>) μm	Coordinate Measurement Machine utilized as Reference Standard for Dimensional Measurement.
Dimensional Measurement – 3D ²	X = Up to 98.4 in Y = Up to 59 in Z = Up to 39.3 in	(240 + 0.4L) µin	Coordinate Measurement Machine utilized as Reference Standard for Dimensional Measurement.

Calibration and Measurement Capability (CMC) is expressed in terms of the measurement parameter, measurement range, expanded uncertainty of measurement and reference standard, method, and/or equipment. The expanded uncertainty of measurement is expressed as the standard uncertainty of the measurement multiplied by a coverage factor of 2 (*k*=2), corresponding to a confidence level of approximately 95%.

Notes:

- 1. On-site calibration service is available for this parameter, since on-site conditions are typically more variable than those in the laboratory, larger measurement uncertainties are expected on-site than what is reported on the accredited scope.
- 2. L = length in measurand unit (inches or millimeters); D = diameter in measured unit (inches or millimeters); '= arc-minute; "= arc-second; DL = diagonal length.
- 3. The uncertainties shown are for the most favorable conditions. There is an increase in uncertainty that corresponds to the laboratory's AC voltage and current uncertainties at different frequencies other than the ones shown. Power factors (PF) other than the one shown contribute to the power uncertainty. PF is related to the cosine of phase. Therefore, uncertainties track the laboratory's phase uncertainty closely at PF near one but are magnified heavily as PF approaches zero. The lab may also report reactive power, apparent power, and power factor under this accreditation. If needed, contact laboratory for more information regarding uncertainties at frequency and power factor combinations other than the ones shown.
- 4. The stated uncertainty is the laboratory's ability to source a fast rise pulse that is approximately 250 ps. In the typical application of measuring rise time of an oscilloscope, this value is one of the contributing factors, but other factors are derived from the DUT.
- 5. The measurement uncertainty for scales and balances is highly dependent upon the resolution of the unit under test. The uncertainty presented here does not include the resolution of the unit under test. The resolution will be included in the reported measurement uncertainty at the time of calibration.
- 6. As frequency & amplitude deviate from the listed values, uncertainty may be higher than stated. If needed, contact the laboratory for more information regarding uncertainties at frequency and range combinations other than the ones shown.
- 7. Pitch is the distance from a point on the screw thread to a corresponding point on the next thread measured parallel to the axis. Pitch Diameter is the simple effective diameter of screw thread, approximately halfway between the major and minor diameters.
- 8. The value in the Range column is a Nominal value. The certified value will be used at the time of calibration along with the inherent uncertainty.
- 9. Unless otherwise specified in the far-right column, the calibration method/procedure utilized by the laboratory was developed internally.
- 10. The legal entity for this location is Transcat, Inc.

Jason Stine, Vice President

This Scope of Accreditation, version 007, was last updated on: 29 August 2025 and is valid only when accompanied by the Certificate.

Page 45 of 45