Contents p. 2	Applic. pp. 3-6	Selection pp. 7-8	Products pp. 9-49	$\begin{aligned} & \text { Index } \\ & 0.51 \end{aligned}$	$\begin{gathered} \text { Free Offer } \\ \text { p. } 52 \end{gathered}$

RS - CS • LS • Series [p. 1012

Resistance • Capacitance • Inductance
Economical, indispensable tools for a varie ty of uses in engine ering, design, troubleshooting, or service.

Best Substituter Value Available

- Direct reading - No fumbling with multiple slide or rotary switches
The IET family of digital substituters uses convenient side by side thumbwheel switches. Simply dial in the desired values and use.
- Accurate

In addition to standard 1% economical units, tolerances of $0.1 \%, 0.05 \%, 0.01 \%$, and others are available.

- Broad choice of standard and optional models with many powerful features
A full line of standard substituters will satisfy most requirements. Other IET families of precision products include:
- Laboratory standards
- Transfer standards
- Programmable control
- RTD simulation
- High power
- Very high resistance
- Error proof

Since the impedance values are set and read directly, no mistakes can be made as with rotary or slide switch decade boxes. No need to examine and sum groups of switches - simply read one number.

- Color coded

Different colored switches separate the various impedanceranges.

- Compact, convenient, and rugged

Made of high impact plastic, these substituters are very portable and reduce clutter on a busy lab bench.

OPTIONS

- Shielded case with grounding post
- Panelmounting
- Low residual impedance switch
- Protection fuse
- Programmable control (See p.14)

The RC-box, shown on the right, combines the features and specifications of both the R-box and the C-box in one convenient package. Ideal for setting timers, oscillators, and filters, the resistance and capacitance may be used independently, in series, or in parallel. A shorting link allows them to be coupled or separated.

RC-box
RCS Series
Digital Resistance-
Capacitance
Substituter

R-box

RS Series Digital Resistance Substituter

Available from 0.01Ω to 299,999,999.9 Ω (RS-201 shown)

C-box

CS Series Digital
Capacitance Substituter
-box

LS Series Digital Inductance Substituter

Available from $1 \mu \mathrm{H}$ to 99.99999 H (LS-400 shown)
 (RCS-500 shown)

RS • CS • LS • Series p. 2012

Resistance • Capacitance • Inductance

SPECIFICATIONS - STANDARD MODELS

Model	RS-200	RS-201	RS-200W	RS-201W	CS-300	CS-301	RCS-500	RCS-502	LS-400	LS-400A
Type of Substituter	Resistance	Precision Resistance	Wide Range Resistance	Wide Range Precision Resistance	Capacitance	Precision Capacitance	Resistance Capacitance	Precision ResistanceCapacitance	Wide Range Inductance	Inductance
Accuracy*	$\pm(1 \%+25 \mathrm{~m} \Omega)$	$\pm(0.1 \%+25 \mathrm{~m} \Omega)$	$\pm(1 \%+30 \mathrm{~m} \Omega)$	$\pm(0.1 \%+30 \mathrm{~m} \Omega)$	$\pm(4 \%+3 \mathrm{pF})$	$\pm(1 \%+3 \mathrm{pF})$	Combines RS-200 and CS-300	$\begin{aligned} & \text { Combines } \\ & \text { RS-201 and } \\ & \text { CS-301 } \end{aligned}$	$\pm(2 \%+0.5 \quad \mathrm{H})$	$\pm(2 \%+0.5 \quad \mathrm{H})$
Decades	7		9	9					4	3
Range	0-9,99	99,999 Ω	0-99,999	9,999.9 Ω	0-99.	99 F			0-9.999 H	$0-999 \mathrm{mH}$
Resolution	1Ω			0.1Ω					1 mH	1 mH
Type of Components	Metal film resistors; wirewound or resistance wire for 0.9Ω and under				$\begin{aligned} & 100-900 \mathrm{pF}: \\ & 0.001-0.009 \mathrm{~F}: \\ & 0.01-0.9 \mathrm{~F}: \\ & 1-9 \mathrm{~F}: \\ & 10-90 \mathrm{~F}: \end{aligned}$	mica polystyrene polycarbonate polyester polarized tantalum			Toroidal Inductors	
Ratings	0.5 W **				$100 \mathrm{~V}(20$	or 10-100 F)			See table below	
Residual Impedance \dagger	$0.3 \Omega(0.04 \Omega$	/dec.) \dagger, typical	0.3Ω (0.04 $\Omega / \mathrm{dec}.) \dagger$, typical		$30 \mathrm{pF}(5 \mathrm{pF} / \mathrm{dec})$ typical				0.2Ω (0.04 $\Omega /$ dec. $) \dagger$, typical	
Physical	$\begin{aligned} & 8.1 \times 7.9 \times 5.6 \mathrm{~cm} ; 184 \mathrm{~g} \\ & (3.2 \times 3.1 \times 2.2 \mathrm{in} ; 6.5 \mathrm{oz} .) \end{aligned}$		$\begin{aligned} & 12 \times 7.9 \times 5.6 \mathrm{~cm} ; 235 \mathrm{~g} \\ & (4.7 \times 3.1 \times 2.2 \mathrm{in} ; 8.3 \mathrm{oz}) \end{aligned}$		$\begin{aligned} & 12 \times 7.9 \times 5.6 \mathrm{~cm} ; 235 \mathrm{~g} \\ & (4.7 \times 3.1 \times 2.2 \mathrm{in} ; 8.3 \mathrm{oz}) \end{aligned}$		$\begin{aligned} & 18.8 \times 11 \times 6 \mathrm{~cm}, 410 \mathrm{~g} \\ & (7.4 \times 4.3 \times 2.4 \mathrm{in}, 14 \mathrm{oz}) \end{aligned}$		$\begin{aligned} & 12 \times 7.9 \times 5.6 \mathrm{~cm}, 230 \mathrm{~g} \\ & (4.7 \times 3.1 \times 2.2 \mathrm{in}, 8 \mathrm{oz}) \\ & \hline \end{aligned}$	

* Accuracy after subtraction of the Residual Impedance.
** Higher power resistance substituters (1 W or higher) available; see optional models below or HPRS data sheet.
† Residual Impedance may be reduced to 0.04Ω or 5 pF for lowest decade with LR Option. This makes for more effective usage at low impedances. Lowest decade is isolated from others with a switch when desired.

Additional information for Inductance Substituters

Inductance	Frequency Range	Max. Q	Rating
$0.1-0.9 \mathrm{mH}$	$300 \mathrm{~Hz}-2 \mathrm{MHz}$	$100 @ 800 \mathrm{kHz}$	700 mA
$1-9 \mathrm{mH}$	$300 \mathrm{~Hz}-1 \mathrm{MHz}$	$80 @ 40 \mathrm{kHz}$	500 mA
$10-90 \mathrm{mH}$	$300 \mathrm{~Hz}-800 \mathrm{kHz}$	$80 @ 40 \mathrm{kHz}$	300 mA
$0.1-0.9 \mathrm{H}$	$300 \mathrm{~Hz}-200 \mathrm{kHz}$	$40 @ 20 \mathrm{kHz}$	100 mA
$1-9 \mathrm{H}$	$200 \mathrm{~Hz}-20 \mathrm{kHz}$	$30 @ 8 \mathrm{kHz}$	20 mA
$10-90 \mathrm{H}$	$200 \mathrm{~Hz}-6 \mathrm{kHz}$	$60 @ 2 \mathrm{kHz}$	4 mA

OPTIONAL MODELS

In order to satisfy any requirements for decade substituters, construct a part number from the table below, or consult

* See HARS and HACS Series for standards grade resistance and capacitance substituters.

OPTIONS

-CC-25 Dual Lead Clip - plugs into dual binding posts for convenient lead connections
-LR Residuallmpedanceisreducedto 0.04Ω or 5 pFonlowestdecade
-SC Shielded case with grounding terminal
-PM Panel mounting version

- F P Unit supplied with series 2 A fuse for added protection (User may substitute other fuses;' residual impedance will increase by 0.06Ω for 2 A fuses)
- L P Unit supplied with low profile binding post

OTHER VERSIONS
Programmable Version See PRS/PCS/PLS data sheet (p. 17) High Power Version High Accuracy Version High Re

