Technical Information **Deltabar M PMD55**

Differential pressure measurement

Products

Differential pressure transmitter with metal sensor; communication via HART, PROFIBUS PA or FOUNDATION Fieldbus

Application

The Deltabar M differential pressure transmitter is used for the following measuring tasks:

- Flow measurement (volume or mass flow) in conjunction with primary elements in gases, vapours and liquids
- Level, volume or mass measurement in liquids
- Differential pressure monitoring, e.g. of filters and pumps

Your benefits

- Reference accuracy: 0.1%
 as PLATINUM version: up to 0.075%
- Turn down up to 100:1
- Compact transmitter design
- Quick commissioning via DIP switches

- Easy and safe menu-guided operation
 - onsite via display module
 - via 4 to 20 mA with HART
 - via PROFIBUS PA
 - via FOUNDATION Fieldbus
- Continuous modularity for differential pressure, hydrostatic and pressure (Deltabar M, Deltapilot M Cerabar M), e.q.
 - replaceable display
 - universal electronics
- International usage thanks to a wide range of approvals
- Used for process pressure monitoring up to SIL2, certified to IEC 61508 Edition 2.0 and IEC 61511 by TÜV NORD

Table of contents

	.4
Document conventions	. 4
Terms and abbreviations	. 6
Function and system design	7
Measuring principle	
Level measurement (level, volume and mass)	
Flow measurement	
Communication and data processing	10
Input	11
Measured variable	11
Measuring range	11
Output	12
Output signal	12
Signal range – 4 to 20 mA HART	
Signal on alarm	
Load – 4 to 20 mA	
Dead time, Time constant	
Dynamic behavior: current output	13
Dynamic behavior:	10
digital output (HART electronics)	
Dynamic behavior: PROFIBUS PA	
Dynamic behavior: FOUNDATION Fieldbus	
Damping	
Firmware version	
Protocol-specific data	
Data of the FOUNDATION Fieldbus interface	16
Power supply	18
Terminal assignment	18
Supply voltage	18
Current consumption	10
	19
Electrical connection	
Electrical connection	19
Terminals	19 19
Terminals	19 19 19
Terminals	19 19 19 20
Terminals Cable entry Device plug connectors Cable specification	19 19 19 20 21
Terminals Cable entry Device plug connectors Cable specification Startup current HART	19 19 19 20 21 21
Terminals Cable entry Device plug connectors Cable specification Startup current HART Residual ripple	19 19 19 20 21 21 21
Terminals Cable entry Device plug connectors Cable specification Startup current HART	19 19 19 20 21 21 21
Terminals Cable entry Device plug connectors Cable specification Startup current HART Residual ripple Influence of power supply	19 19 20 21 21 21 21
Terminals Cable entry Device plug connectors Cable specification Startup current HART Residual ripple Influence of power supply Performance characteristics	19 19 20 21 21 21 21
Terminals Cable entry Device plug connectors Cable specification Startup current HART Residual ripple Influence of power supply Performance characteristics Reference operating conditions	19 19 20 21 21 21 21 21
Terminals Cable entry Device plug connectors Cable specification Startup current HART Residual ripple Influence of power supply Performance characteristics Reference operating conditions Long-term stability	19 19 20 21 21 21 21 22 22
Terminals Cable entry Device plug connectors Cable specification Startup current HART Residual ripple Influence of power supply Performance characteristics Reference operating conditions Long-term stability Influence of the installation position	19 19 20 21 21 21 21 22 22 22
Terminals Cable entry Device plug connectors Cable specification Startup current HART Residual ripple Influence of power supply Performance characteristics Reference operating conditions Long-term stability Influence of the installation position Resolution	19 19 20 21 21 21 21 22 22 22 22 22
Terminals Cable entry Device plug connectors Cable specification Startup current HART Residual ripple Influence of power supply Performance characteristics Reference operating conditions Long-term stability Influence of the installation position Resolution Reference accuracy	19 19 20 21 21 21 21 22 22 22 22 22 23
Terminals Cable entry Device plug connectors Cable specification Startup current HART Residual ripple Influence of power supply Performance characteristics Reference operating conditions Long-term stability Influence of the installation position Resolution Reference accuracy Total performance: current output	19 19 20 21 21 21 21 22 22 22 22 23 23
Terminals Cable entry Device plug connectors Cable specification Startup current HART Residual ripple Influence of power supply Performance characteristics Reference operating conditions Long-term stability Influence of the installation position Resolution Reference accuracy Total performance: current output Total Error	19 19 20 21 21 21 22 22 22 22 22 23 23 24
Terminals Cable entry Device plug connectors Cable specification Startup current HART Residual ripple Influence of power supply Performance characteristics Reference operating conditions Long-term stability Influence of the installation position Resolution Reference accuracy Total performance: current output Total Error Warm-up period	19 19 20 21 21 21 22 22 22 22 22 23 23 24 24
Terminals Cable entry Device plug connectors Cable specification Startup current HART Residual ripple Influence of power supply Performance characteristics Reference operating conditions Long-term stability Influence of the installation position Resolution Reference accuracy Total performance: current output Total Error Warm-up period Thermal stability current output	19 19 20 21 21 21 22 22 22 22 23 23 24 24 24
Terminals Cable entry Device plug connectors Cable specification Startup current HART Residual ripple Influence of power supply Performance characteristics Reference operating conditions Long-term stability Influence of the installation position Resolution Reference accuracy Total performance: current output Total Error Warm-up period Thermal stability current output Influence of the static pressure	19 19 20 21 21 21 22 22 22 22 22 23 24 24 24 24
Terminals Cable entry Device plug connectors Cable specification Startup current HART Residual ripple Influence of power supply Performance characteristics Reference operating conditions Long-term stability Influence of the installation position Resolution Reference accuracy Total performance: current output Total Error Warm-up period Thermal stability current output	19 19 20 21 21 21 22 22 22 22 22 23 24 24 24 24

Installation	25
General installation instructions	
Measuring arrangement	25
Wall and pipe-mounting (optional)	26
Oxygen applications	
PWIS cleaning	
Ultra pure gas applications	28
Environment	29
Ambient temperature range	
Storage temperature range	29
Degree of protection	29
Climate class	
Vibration resistance	
Electromagnetic compatibility	
Overvoltage protection (optional)	3(
Process	
Process temperature limits (temperature at transmitter) \dots	
Process temperature range, Seals	
Pressure specifications	3.
Mechanical construction	32
Housing	32
Process connection	
Dimensions V1 version; Impulse pipe vertical; alignment 90°	33
Dimensions H1 version; Impulse pipe horizontal;	_
alignment 180°	
Dimensions H2 version; Impulse pipe horizontal; alignment 9)()°
35 Materials not in contact with process	20
Materials not in contact with process	
Materials in contact with process	וכ
0 177	20
Operability	
Operating concept	
Local operation	
Operating languages	
Remote operation	4
System integration	т.
0.116	, ,
**	42
CE mark	
Ex approvals	
Marine certificate (in preparation)	
Functional safety SIL	
CRN approval	
Pressure Equipment Directive (PED)	
Standards and guidelines	
North-American practice for	
installation of process seals	
Inspection certificate	42
Inspection certificate	42
Inspection certificate	42 42 43 43

Ordering information	ł
Configuration data sheet	
Additional degree outstion (7	7
Additional documentation 47	
Field of Activities	7
Technical Information	7
Operating Instructions	7
Brief operating instruction47	
Functional safety manual (SIL)47	7
Safety Instructions	7
Installation/Control Drawings48	
Combined certificate	
Registered trademarks)
HART®)
PROFIBUS®	
FOLINDATION™ Fieldhus 50	

Document information

Document conventions

Safety symbols

Symbol	Meaning
GEFAHR A0011189-EN	DANGER! This symbol alerts you to a dangerous situation. Failure to avoid this situation will result in serious or fatal injury.
WARNUNG A0011190-EN	WARNING! This symbol alerts you to a dangerous situation. Failure to avoid this situation can result in serious or fatal injury.
VORSICHT A0011191-EN	CAUTION! This symbol alerts you to a dangerous situation. Failure to avoid this situation can result in minor or moderate injury.
HINWEIS A0011192-EN	NOTE! This symbol contains information on procedures and other facts, which do not result in personal injury.

Electrical symbols

Symbol		Meaning
===	A0018335	Direct current A terminal at which DC voltage is present or through which direct current flows.
~	A0018336	Alternating current A terminal at which AC voltage is present or through which alternating current flows.
\sim	A0018337	 Direct current and alternating current A terminal at which AC voltage or DC voltage is present. A terminal through which alternating current or direct current flows.
= _	A0018338	Ground connection A grounded terminal which, from the operator's point of view, is grounded via a grounding system.
	A0018339	Protective ground connection A terminal that must be connected to ground before other connections may be established.
→ A	A0011201	Equipotential connection A connection that must be made with the plant grounding system; depending on national or company codes of practice, this may be a potential matching line or a star-shaped grounding system, for example.

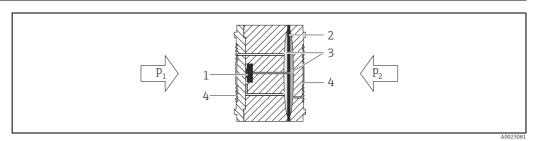
Tool symbols

Symbol	Meaning
06	Phillips head screwdriver
A0011219	Flat blade screwdriver
A0013442	Torx screwdriver
A0011222	Hexagon wrench
A0011221	Allen key

Symbols for types of information

Symbol	Meaning
A0011182	Allowed Indicates procedures, processes or actions that are allowed.
A0011183	Preferred Indicates procedures, processes or actions that are preferred.
A0011184	Forbidden Indicates procedures, processes or actions that are forbidden.
A0011193	Tip Indicates additional information.
A0015483	Reference to documentation Refers to the relevant device documentation.
A0015484	Reference to page Refers to the relevant page number.
A0015486	Reference to graphics Refers to the relevant graphic number and page number.
1. , 2. ,	Series of steps
? A0015488	Help in the event of a problem

Symbols in graphics

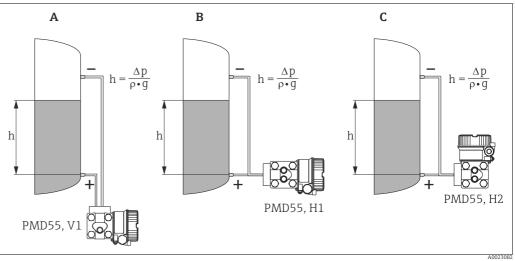

Symbol	Meaning
1, 2, 3, 4,	Numbering for main positions
1. , 2. ,	Series of steps
A, B, C, D,	Views
A-A, B-B,	Sections
A0011187	Hazardous area Indicates a hazardous area.
A0011188	Safe area (non-hazardous area) Indicates a non-hazardous area.

Terms and abbreviations

Term/abbreviation	Explanation				
MWP	The MWP (maximum working pressure) for the individual sensors depends on the lowest-rated element, with regard to pressure, of the selected components, i.e. the process connection must be taken into account in addition to the measuring cell. Also observe the pressure-temperature dependency. For the relevant standards and additional information, see the " 31" section.				
OPL	The OPL (over pressure limit) for the sensor depends on the lowest-rated element, with regard to pressure, of the selected components, i.e. the process connection must be taken into account in addition to the measuring cell. Also observe the pressure-temperature dependency. For the relevant standards and additional information, see the " \rightarrow $\stackrel{\square}{=}$ 31" section.				
LRL	Lower range limit				
URL	Upper range limit				
LRV	Lower range value				
URV	Upper range value				
TD	Turn Down (TD)				
Case 1: I Lower range value ≤ Upper range value Example: Lower range value (LRV) = 0 mbar Upper range value (URV) = 100 mbar (1.5 psi) Nominal value (URL) = 500 mbar (7.5 psi) Turn down: TD = URL / URV = 5:1 set span: URV - LRV = 100 mbar (1.5 psi) This span is based on the zero point.	1 = 2 LRL LRV URV URL 3 4 5 Example: 500 mbar (7.5 psi) sensor				
Case 2: I Lower range value ≥ Upper range value Example: Lower range value (LRV) = -300 mbar (-4.5 psi) Upper range value (URV) = 0 bar Nominal value (URL) = 500 mbar (7.5 psi) Turn down: TD = URL / (LRV) = 1.67:1 set span:	1 = 2 LRL LRV URV URL 3 4				
■ URV – LRV = 300 mbar (4.5 psi) This span is based on the zero point.	5 Example: 500 mbar (7.5 psi) sensor Set span Zero based span Nominal value≘ upper range limit (URL) Nominal measuring range Sensor measuring range				

Function and system design

Measuring principle


Measuring cell of the Deltabar M

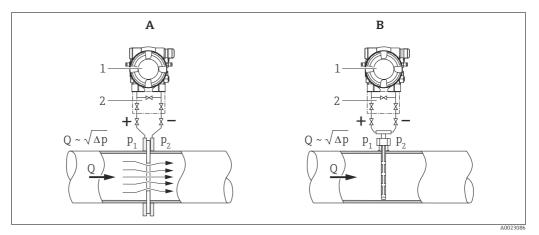
- Sensing element Overload diaphragm/Middle diaphragm
- Filling oil
- Process isolating diaphragm

The metal separating diaphragms (4) are deflected on both sides by the acting pressures p_1 and p_2 . A filling oil (3) transfers the pressure to a resistance circuit bridge (semiconductor technology). The differential-pressure-dependent change of the bridge output voltage is measured and further processed.

Level measurement (level, volume and mass)

Design and operation mode

Level measurement with Deltabar M


- Version V1; vertical impulse line; 90° alignment Version H1; horizontal impulse line; 180° alignment
- С Version H2; horizontal impulse line; 90° alignment
- h Height (level)
- Differential pressure
- Density of the medium
- Gravitation constant

Your benefits

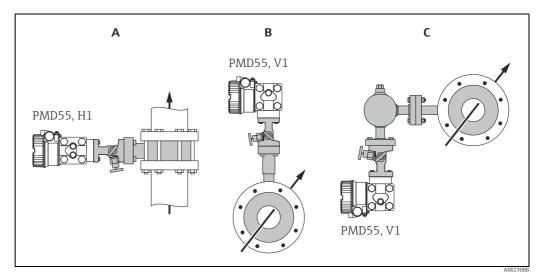
- Volume and mass measurements in any tank shapes by means of a freely programmable characteristic curve
- Choice of diverse level units
- Has a wide range of uses, e.g.
 - for level measurement in tanks with superimposed pressure
 - in the event of foam formation
 - in tanks with agitators of screen fittings
 - in the event of liquid gases
 - for standard level measurement

Flow measurement

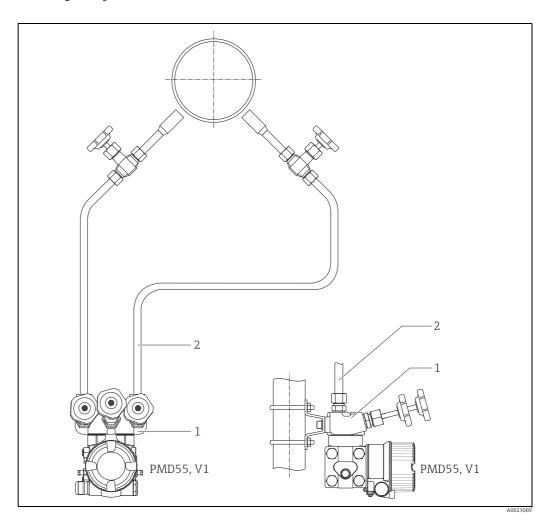
Design and operation mode

Flow measurement with Deltabar M PMD55 and Deltatop primary element

- A with orifice plate
- B with Pitot tube
- 1 Deltabar M PMD55
- 2 3-valve manifold
- Q Flow
- Δp Differential pressure, $\Delta p = p_1 p_2$


Your benefits

- Choice between five flow modes of operation:
 - Volume flow
 - Norm volume flow (European norm conditions)
 - Standard volume flow (American standard conditions)
 - Mass flow
 - %
- Choice of diverse flow units with automatic unit conversion.
- Low flow cut off: when activated, this function suppresses small flows which can lead to large fluctuations in the measured value.
- Contains two totalizers as standard. One totalizer can be reset to zero.
- The totalizing unit can be individually set for each totalizer. This allows independent daily and annual quantity totalizing.


For more information about the Deltatop flow measurement system, see TI00422P: Deltatop Differential Pressure Flow Measurement with Orifices TI00425P: Deltatop Differential Pressure Flow Measurement with Pitot Tubes

Typical arrangements for flow measurements

- Liquid in vertical pipe; H1 version; horizontal impulse line; 180° alignment Gas in horizontal pipe; V1 version; vertical impulse line; 90° alignment Vapour in horizontal pipe; V1 version; vertical impulse line; 90° alignment

Mounting example

- Valve manifold Impulse line

Communication and data processing

- 4 to 20 mA with HART communication protocol
- PROFIBUS PA
- The Endress+Hauser devices meet the requirements of the FISCO model.
- Due to the low current consumption of $11 \text{ mA} \pm 1 \text{ mA}$, the following number of devices can be operated on one bus segment if installing as per FISCO:
 - up to 8 Deltabar M for Ex ia, CSA IS and FM IS applications
- up to 31 Deltabar M for all other applications, e.g. in non-hazardous areas, Ex nA, etc. Further information on PROFIBUS PA can be found in Operating Instructions BA00034S "PROFIBUS DP/PA: Guidelines for planning and commissioning" and in the PNO Guideline.
- FOUNDATION Fieldbus
 - The Endress+Hauser devices meet the requirements of the FISCO model.
 - Due to the low current consumption of 16 mA \pm 1 mA, the following number of devices can be operated on one bus segment if installing as per FISCO:
 - up to 6 Deltabar M for Ex ia, CSA IS and FM IS applications
 - up to 22 Deltabar M for all other applications, e.g. in non-hazardous areas, Ex nA, etc.

Further information on FOUNDATION Fieldbus, such as requirements for bus system components can be found in Operating Instructions BA00013S "FOUNDATION Fieldbus Overview".

Input

Measured variable

Differential pressure, from which flow (volume or mass current) and level (level, volume or mass) are derived.

Measuring range

Nominal value	Measuren	nent limit	Smallest span (factory	MWP	VP OPL		Min. operating pressure ²⁾	Version 3)	
	lower (LRL)	upper (URL)	calibration) 1)		on one side	on both sides			
[mbar (psi)]	[mbar (psi)]	[mbar (psi)]	[mbar (psi)]	[bar (psi)]	[bar (psi)]	[bar (psi)]	[mbar _{abs} (psi _{abs})]		
10 (0.15)	-10 (- 0.15)	+10 (+ 0.15)	0.5 (0.0075)	1 (15) ⁴⁾	1 (15) ⁴⁾	1.5 (22.5) ⁴⁾	0.1 (0.0015) 4)	7B	
30 (0.45)	-30 (- 0.45)	+30 (+ 0.45)	1.5 (0.0225)	1 (15) "	1 (15) "	1.5 (22.5) "	0.1 (0.0015)	7C	
100 (1.5)	-100 (- 1.5)	+100 (+ 1.5)	5 (0.075)					7D	
500 (7.5)	-500 (- 7.5)	+500 (+ 7.5)	25 (0.375)					7F	
1000 (15)	-1000 (- 15)	+1000 (+ 15)	50 (0.75)	70 (1050) ⁵⁾	70 (1050) ⁵⁾	105 (1575) ⁵⁾	0.1 (0.0015) 5)	7G	
3000 (45)	-3000 (- 45)	+3000 (+ 45)	150 (2.25)	160 (2400) ⁶⁾	160 (2400) ⁶⁾ 160 (24	160 (2400) ⁶⁾ 2	240 (3600) ⁶⁾	0.1 (0.0015) 6)	7H
16000 (240)	-16000 (- 240)	+16000 (+ 240)	800 (12)						7L
40000 (600)	-40000 (- 600)	+40000 (+ 600)	2000 (30)					7M	

- 1) Recommended Turn down: Max 100:1. Factory calibration Turn down: Max 20:1
- 2) The minimum operating pressure indicated in the table applies to silicone oil under reference operating conditions. Minimum operating pressure at 85° C (185° F) for silicone oil: 10 mbar (0.15 psi) (abs)
- 3) Product Configurator, "Sensor Nominal Value" section
- 4) Version "2" in the Order Code Feature 60
- 5) Version "6" in the Order Code Feature 60
- 6) Version "7" in the Order Code Feature 60

Nominal Pressure PN	Version ¹⁾
Prepared for Deltatop	D
1 bar / 100 kPa/ 14.5 psi	2
70 bar / 7 MPa / 1015 psi	6
160 bar / 16 MPa / 2400 psi	7

1) Product Configurator "Nominal Pressure PN" section

Output

Output signal

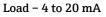
- 4 to 20 mA with superimposed digital communication protocol HART 6.0, 2-wire
- Digital communication signal PROFIBUS PA (Profile 3.02)
- Digital communication signal FOUNDATION Fieldbus

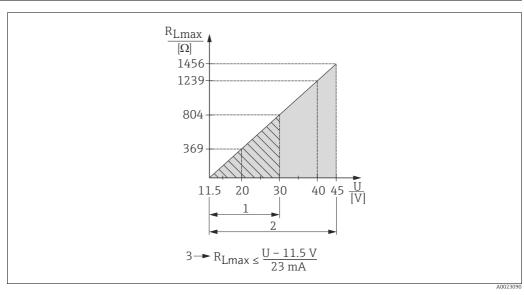
Output	Version ¹⁾
4 to 20mA HART	2
PROFIBUS PA	3
FOUNDATION Fieldbus	4

1) Product Configurator "Output" section

Signal range - 4 to 20 mA HART

3.8 mA to 20.5 mA


Signal on alarm


As per NAMUR NE 43

• 4 to 20 mA HART

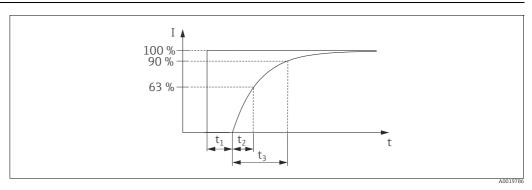
Options:

- Max. alarm*: can be set from 21...23 mA (factory setting: 22 mA)
- Keep measured value: last measured value is kept
- Min. alarm: 3.6 mA
- PROFIBUS PA: can be set in the Analog Input block,
 Options: Last Valid Out Value (factory setting), Fail-safe Value, Status Bad
- FOUNDATION Fieldbus: can be set in the Analog Input block, Options: Last Good Value, Fail-safe Value (factory setting), Wrong Value

Load diagram

1 Supply voltage 11.5 ... 30 V DC for intrinsically safe instrument versions

2 Supply voltage 11.5 ... 45 V DC (versions with plug-in connector 35 V DC) for other types of protection and for uncertified instrument versions


 R_{Lmax} Maximum load resistance

U Supply voltage

When operating via a handheld terminal or via PC with an operating program, a minimum communication resistance of 250 Ω must be taken into account.

Dead time, Time constant

Presentation of the dead time and the time constant

Dynamic behavior: current output

	Dead time (t ₁) [ms]	Time constant T63 (= t ₂) [ms]	Time constant T90 (= t ₃) [ms]
max.	60	90	210

Dynamic behavior: digital output (HART electronics)

	Dead time (t ₁) [ms]	Dead time (t ₁) [ms] + Time constant T63 (= t ₂) [ms]	Dead time (t ₁) [ms] + Time constant T90 (= t ₃) [ms]
min.	220	310	370
max.	1020	1110	1170

Reading cycle

- Acyclic: max. 3/s, typical 1/s (depends on command # and number of preambles)
- Cyclic (Burst): max. 3/s, typical 2/s

The Deltabar M commands the BURST MODE function for cyclic value transmission via the HART communication protocol.

Cycle time (update time)

Cyclic (Burst): min. 300 ms

Response time

- Acyclic: min. 330 ms, typical 590 ms (depends on command # and number of preambles)
- Cyclic (Burst): min. 160 ms, typical 350 ms (depends on command # and number of preambles)

Dynamic behavior: PROFIBUS PA

	Dead time (t ₁) [ms]	Dead time (t ₁) [ms] + Time constant T63 (= t ₂) [ms]	Dead time (t ₁) [ms] + Time constant T90 (= t ₃) [ms]
min.	95	185	245
max.	1195	1285	1345

Reading cycle

- Cyclic: max. 30/s (dependent on the number and type of function blocks used in a closed-control loop)
- Acyclic: typical 25/s

Cycle time (update time)

Min. 100 ms. The cycle time in a bus segment in cyclic data communication depends on the number of devices, on the segment coupler used and on the internal PLC cycle time.

Response time

- $\, \bullet \,$ Cyclic: approx. 8 to 13 ms (depends on Min. Slave Interval)
- Acyclic: approx. 23 to 35 ms (depends on Min. Slave Interval)

Dynamic behavior: FOUNDATION Fieldbus

	Dead time (t ₁) [ms]	Dead time (t_1) [ms] + Time constant T63 (= t_2) [ms]	Dead time (t ₁) [ms] + Time constant T90 (= t ₃) [ms]
min.	105	195	255
max.	1105	1195	1255

Reading cycle

- Cyclic: max. 10/s (dependent on the number and type of function blocks used in a closed-control loop)
- Acyclic: typical 5/s

Cycle time (update time)

Cyclic: min. 100 ms

Response time

- Cyclic: max. 20 ms (for standard bus parameter settings)
- Acyclic: typical 70 ms (for standard bus parameter settings)

Damping

A damping affects all outputs (output signal, display).

- Via onsite display, handheld terminal or PC with operating program, continuous from 0...999 s
- Via DIP-switch on the electronic insert, switch position "on" (= set value) and "off" (= damping switched off)
- Factory setting: 2 s

Firmware version

Designation	Version 1)
01.00.zz, HART, DevRev01	78

1) Product Configurator "Firmware version" section

Protocol-specific data

HART

Manufacturer ID	17 (11 hex)	
Device Type Code	33 (21 hex)	
Device Revision	01 (01 hex) - SW version 01.00.zz	
HART specification	6	
DD Revision	01 (netherlands)02 (russian)	
Device description files (DTM, DD)	Information and files can be found: www.endress.com www.hartcomm.org	
HART load	Min. 250 Ω	
HART device variables	The measured values can be freely assigned to the device variables: Measured values for PV (primary variable) Pressure Flow Level Tank content	
	Measured values for SV, TV (second and third variable) Pressure Level Totalizer	
Supported functions	 Burst mode Additional Transmitter Status Device Locking Alternative operating modes 	

PROFIBUS PA

Manufacturer ID	17 (11 hex)
Ident number	1554 hex
Profile Version	3.02 SW Version 01.00.zz
GSD Revision	5
DD Revision	1
GSD File	Information and files can be found:
DD Files	www.endress.comwww.profibus.org
Output values	Measured values for PV (via Analog Input Function Block) Pressure Flow Level Tank content Measured values for SV Pressure Measured values for QV Totalizer
Input values	Input value sent from PLC, can be shown on display
Supported functions	 Identification & Maintenance Simple device identification via control system and nameplate Condensed status Automatic ident number adaptation and switchable to following ident numbers: 9700: Profile-specific transmitter identification number with the "Classic" or "Condensed" status". 1554: Identification number for Deltabar M. Device locking: The device can be locked by hardware or software.

Data of the FOUNDATION Fieldbus interface

Basic data

Device Type	0x1021
Device Revision	01 (hex)
DD Revision	0x01021
CFF Revision	0x000102
ITK Version	5.2.0
ITK Certification Driver No.	IT067600
Link-Master (LAS) capable	Yes
Link Master / Basic Device selectable	Yes; Factory setting: Basic Device
Number of VCRs	44
Number of Link Objects in VFD	50
Number of FB-Schedule Objects	40

Virtual communication references (VCRs)

Permanent Entries	44
Client VCRs	0
Server VCRs	5
Source VCRs	8
Sink VCRs	0
Subscriber VCRs	12
Publisher VCRs	19

Link settings

Slot time	4
Min. inter PDU delay	12
Max. response delay	40

Transducer Blocks

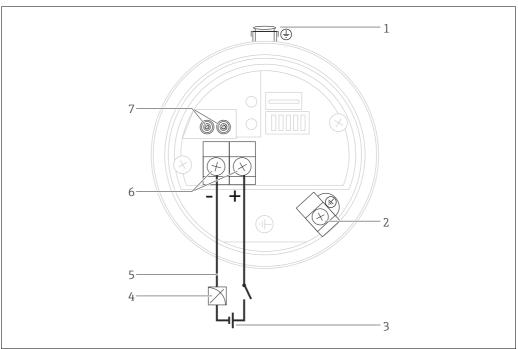
Block	Content	Output values
TRD1 Block	Contains all parameters related to the measurement	 Pressure or level (channel 1) Process temperature (channel 2) Measured pressure value (channel 3) Max. pressure (channel 4) Level before linearization (channel 5)
Dp Flow Block	enthält Durchfluss und Summenzähler Parameter	Totalizer 1 (channel 6)Totalizer 2 (channel 7)
Diagnostic Block	Contains diagnostic information	■ Error code via DI channels (channel 10 to 15)
Display Block	Contains parameters to configure the onsite display	No output values

Function blocks

Block	Content	Number of blocks	Execution time	Functionality
Resource Block	The Resource Block contains all the data that uniquely identify the device. It is an electronic version of a nameplate of the device.	1		enhanced
Analog Input Block 1 Analog Input Block 2	The AI Block receives the measuring data from the Sensor Block, (selectable via a channel number) and makes the data available to other function blocks at its output. Enhancement: digital outputs for process alarms, fail safe mode.	2	25 ms	enhanced
Digital Input Block	This block contains the discrete data of the Diagnose Block (selectable via a channel number 10 to 15) and provides them for other blocks at the output.	1	20 ms	standard
Digital Output Block	This block converts the discrete input and thus initiates an action (selectable via a channel number) in the DP Flow Block or in the im TRD1 Block. Channel 20 resets the counter for max. pressure transgressions value and Channel 21 resets the Totalizer.	1	20 ms	standard
PID Block	The PID Block serves as a proportional-integral-derivative controller and is used almost universally for closed-loop-control in the field including cascade and feedforward. Input IN can be indicated on the display. The selection is performed in the Display Block (DISPLAY_MAIN_LINE_CONTENT).	1	40 ms	standard
Arithmetic Block	This block is designed to permit simple use of popular measurement math functions. The user does not have to know how to write equations. The math algorithm is selected by name, chosen by the user for the function to be performed.	1	35 ms	standard
Input Selector Block	The Input Selector Block facilitates the selection of up to four inputs and generates an output based on the configured action. This block normally receives its inputs from AI Blocks. The block performs maximum, minimum, average and 'first good' signal selection. Inputs IN1 to IN4 can be indicated on the display. The selection is performed in the Display Block (DISPLAY_MAIN_LINE_1_CONTENT).	1	30 ms	standard
Signal Characterizer Block	The Signal Characterizer Block has two sections, each with an output that is a nonlinear function of the respective input. The nonlinear function is generated by a single look-up table with 21 arbitrary x-y pairs.	1	40 ms	standard
Integrator Block	The Integrator Block integrates a variable as a function of the time or accumulates the counts from a Pulse Input Block. The block may be used as a totalizer that counts up until reset or as a batch totalizer that has a setpoint, where the integrated or accumulated value is compared to pre-trip and trip settings, generating a binary signal when the setpoint is reached.	1	35 ms	standard

Additional function block information:

Instantiate Function Block	YES
Number of instantiate blocks	20


Power supply

A WARNING

An incorrect connection compromises electrical safety!

- When using the measuring device in hazardous areas, the relevant national standards and regulations as well as the safety instructions or installation or control drawings must be observed. \rightarrow $\stackrel{\triangle}{=}$ 47, "Safety Instructions" and "Installation/Control Drawings" sections.
- All explosion protection data are given in separate documentation which is available upon request. The Ex documentation is supplied as standard with all devices approved for use in explosion hazardous areas \rightarrow $\stackrel{\text{l}}{=}$ 47, sections "Safety InstructionsSafety Instructions" and "Installation/ Control drawing".
- According to IEC/EN61010 a suitable disconnector has to be installed for the device.
- HART: Overvoltage protection HAW569-DA2B for the non-hazardous area, ATEX II 2 (1) Ex ia IIC and IEC Ex ia can be ordered as an option (see "Ordering information" section).
- Protective circuits against reverse polarity, HF influences and overvoltage peaks are installed.
- The digital communication signal is transmitted to the bus via a 2-wire connection. The bus also provides the power supply.

Terminal assignment

Electrical connection

- External arounding terminal
- Internal grounding terminal Supply voltage $\rightarrow \triangle 18$
- 4...20 mA for HART devices
- For HART and FOUNDATION Fieldbus devices: With a handheld terminal, all the parameters can be configured anywhere along the bus line via menu operation.
- Terminals
- For HART devices: test terminals, see section "Taking a 4 to 20 mA test signal"

Supply voltage

4 to 20 mA HART

Type of protection	Supply voltage
 Intrinsically safe 	11.5 30 V DC
Other types of protectionDevices without certificate	11.5 45 V DC (Versions with plug-in connection 35 V DC)

Taking a 4 to 20 mA test signal

A 4 to 20 mA test signal may be measured via the test terminals without interrupting the measurement.

PROFIBUS PA

Version for non-hazardous areas: 9 to 32 V DC

FOUNDATION Fieldbus

Version for non-hazardous areas: 9 to 32 V DC

Current consumption

- PROFIBUS PA: 11 mA ± 1 mA, switch-on current corresponds to IEC 61158-2, Clause 21
- FOUNDATION Fieldbus: 16 mA ± 1 mA, switch-on current corresponds to IEC 61158-2, Clause 21

Electrical connection

Cable entry	Degree of protection	Version ¹⁾
M20 coupling	IP66/68 NEMA 4x/6P	A
M20 thread	IP66/68 NEMA 4X/6P	В
G ½" thread	IP66/68 NEMA 4X/6P	С
NPT ½" thread	IP66/68 NEMA 4X/6P	D
M12 connector	IP66/67 NEMA 4X/6P	I
7/8" connector	IP66/68 NEMA 4X/6P	M
HAN7D plug 90 degrees	IP65	P
M16 valve connector	IP64	V

1) Product Configurator "Electrical Connection" section

PROFIBUS PA

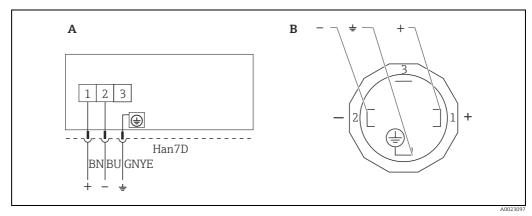
The digital communication signal is transmitted to the bus via a 2-wire connection. The bus also provides the power supply. For further information on the network structure and grounding, and for further bus system components such as bus cables, see the relevant documentation, e.g. Operating Instructions BA00034S "PROFIBUS DP/PA: Guidelines for planning and commissioning" and the PNO Guideline.

FOUNDATION Fieldbus

The digital communication signal is transmitted to the bus via a 2-wire connection. The bus also provides the power supply. For further information on the network structure and grounding and for further bus system components such as bus cables, see the relevant documentation, e.g. Operating Instructions BA00013S "FOUNDATION Fieldbus Overview" and the FOUNDATION Fieldbus Guideline.

Terminals

For wire cross-sections of 0.5 to 2.5 mm² (20 to 14 AWG).

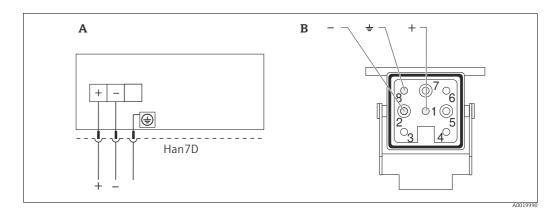

Cable entry

Approval	Туре	Clamping area
Standard, II1/2G Exia, IS	Plastic M20x1.5	5 to 10 mm (0.2 to 0.39 in)
ATEX II1/2D, II1/2GD Exia, II3G Ex nA	Metal M20x1.5 (Ex e)	7 to 10.5 mm (0.28 to 0.41 in)

For additional technical data, see housing section $\rightarrow \stackrel{\text{\tiny b}}{=} 32 \text{ ff}''$.

Device plug connectors

Devices with valve connector

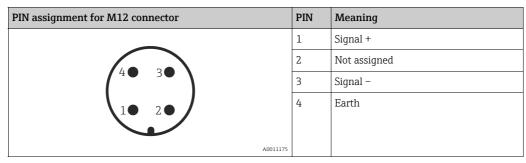


BN = brown, BU = blue, GNYE = green/yellow

- Electrical connection for devices with valve connector View of the plug connector at the device

Material: PA 6.6

Devices with Harting plug Han7D



- ${\it Electrical\ connection\ for\ devices\ with\ Harting\ plug\ Han7D}$
- View of the plug-in connector at the device

Material: CuZn, contacts for plug-in jack and connector are gold-plated

Devices with M12 plug

PIN assignment for M12 connector

Endress+Hauser offers the following accessories for devices with an M12 connector: Plug-in jack M 12x1, straight

■ Material: body PA; coupling nut CuZn, nickel-plated

- Degree of protection (fully locked): IP66/67
- Order number: 52006263

Plug-in jack M 12x1, elbowed

- Material: body PBT/PA; coupling nut GD-Zn, nickel-plated
- Degree of protection (fully locked): IP66/67
- Order number: 71114212

Cable 4x0.34 mm² (20 AWG) with M12 socket, elbowed, screw plug, length 5 m (16 ft)

- Material: body PUR; coupling nut CuSn/Ni; cable PVC
- Degree of protection (fully locked): IP66/67
- Order number: 52010285

Devices with 7/8" plug

PIN assignment for 7/8" connector

PIN assignment for 7/8" connector	PIN	Meaning
	1	Signal –
	2	Signal +
1● 3●	3	Not assigned
20 40	4	Shield
2 4		
A0011176		

External thread: 7/8 - 16 UNCMaterial: 316L (1.4401)Protection: IP66/68

Cable specification

HART

- Endress+Hauser recommends using a twisted, shielded two-wire cable.
- The outer diameter of the cable depends on the cable entry used.

PROFIBUS PA

Use a twisted, shielded two-wire cable, preferably cable type A

For further information on the cable specifications, see Operating Instructions BA00034S "PROFIBUS DP/PA: Guidelines for planning and commissioning", the PNO Guideline 2.092 PROFIBUS PA User and Installation Guideline" and IEC 61158-2 (MBP).

FOUNDATION Fieldbus

Use a twisted, shielded two-wire cable, preferably cable type A

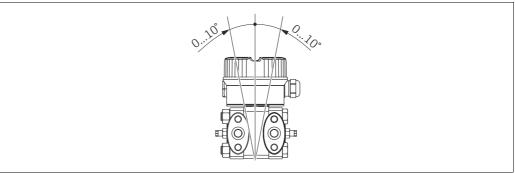
For further information on the cable specifications, see Operating Instructions BA00013S "FOUNDATION Fieldbus Overview", FOUNDATION Fieldbus Guideline and IEC 61158-2 (MBP).

Startup current HART	12 mA or 22 mA (selectable)
Residual ripple	Without influence on 4 to 20 mA signal up to \pm 5 % residual ripple within the permitted voltage range [according to HART hardware specification HCF_SPEC-54 (DIN IEC 60381-1)]
Influence of power supply	≤ 0.001% of URL/V

Performance characteristics

Reference operating conditions

- As per IEC 60770-1 and IEC 61298-1, Sections 5 to 7
- Ambient temperature T_U = constant, in the range of: +21...+33°C (+70...91°F)
- Humidity φ = constant, in the range of: 5...80 % r.H
- Ambient pressure p_U = constant, in the range of: 860...1060 mbar (12.47...15.37 psi)
- Position of the measuring cell: constant, in the range of: $\pm 1^{\circ}$ horizontically and $\pm 1^{\circ}$ vertically
- P1 = high pressure side
- Input of "Lo Trim Sensor" and "Hi Trim Sensor" for lower range value and upper range value
- Measuring span URV LRV
- Membrane material 316L
- Filling oil: silicone oil
- Side flanges material: AISI 316L
- Supply voltage: 24 V DC ± 3 V DC
- Load with HART: 250 Ω


Long-term stability

Measuring cell	% of URL / 1 year	% of URL / 5 years
10 mbar (0.15 psi) 30 mbar (0.45 psi)	±0.25	±1.25
100 mbar (1.5 psi)	±0.18	±0.35
500 mbar (7.5 psi) 1 bar (15 psi) 3 bar (45 psi) 16 bar (240 psi) 40 bar (600 psi)	±0.05	±0.13

Influence of the installation position

The recommended maximum angle to the axis of the diaphragm is 10° and results in a measuring error of ± 0.72 mbar (0.01 psi). The value is doubled for devices with inert oil.

A0023099

Resolution

- \blacksquare Current output: 1 μA
- Display: can be set (factory setting: presentation of the maximum accuracy of the transmitter)

Reference accuracy

The reference accuracy comprises the non-linearity according to limit point setting, hysteresis and non-reproducibility as per IEC 60770.

The following applies for the root-extracting characteristic curve:

The accuracy data of the Deltabar M is taken into the accuracy calculation of the flow rate with a factor of 0.5.

Measuring cell	% of the set span			
	Standard		I	Platinum
10 mbar (0.15 psi) 30 mbar (0.45 psi)	• TD 1:1 • TD > 1:1	= ± 0.2 = $\pm (0.2 \times TD)$		
100 mbar (1.5 psi)	TD 1:1 to TD 4:1TD > 4:1	= ± 0.1 = $\pm (0.012 \times TD + 0.052)$	TD 1:1 to TD 4:1TD > 4:1	= ±0.075 = ±(0.012 x TD + 0.027)
500 mbar (7.5 psi) 1 bar (15 psi) 3 bar (45 psi) 16 bar (240 psi) 40 bar (600 psi)	■ TD 1:1 to TD 10:1 ■ TD > 10:1	= ±0.1 = ±(0.0015 x TD + 0.085)	• TD 1:1 to TD 10:1 • TD > 10:1	= ± 0.075 = $\pm (0.0015 \times TD + 0.060)$

Reference accuracy	Version ¹⁾
Platinum	D
Standard	G

1) Product Configurator "Reference Accuracy" section

Total performance: current output

The "Total performance" specification comprises the non-linearity including hysteresis, non-reproducibility, the thermal change of the zero point as well as the influence of the line pressure p_{st} . The line pressure p_{st} is 70 bar (1050 psi) for the 100 mbar, 500 mbar, 1 bar, 3 bar, 16 bar und 40 bar measuring cell.

	% of the set span			
	Standard, TD 1:1		Platinum, TD 1:1	
Measuring cell	-10 to +60°C (14 to 140°F)	-40 to -10°C; +60 to +85°C (-40 to +14°F; 140 to 185°F)	-10 to +60°C (14 to 140°F)	-40 to -10°C; +60 to +85°C (-40 to +14°F; 140 to 185°F)
10 mbar (0.15 psi)	±0.94	±1.03		
30 mbar (0.45 psi)	±0.92	±1.01		
100 mbar (1.5 psi)	±0.51	±0.66	±0.51	±0.38
500 mbar (7.5 psi) 1 bar (15 psi) 3 bar (45 psi)	±0.40	±0.44	±0.40	±0.32
16 bar (240 psi)	±0.43	±0.53	±0.43	±0.38
40 bar (600 psi)	±0.40	±0.70	±0.40	±0.33

Total Error

Measuring cell	% of URL / 1 year	% of URL / 5 years
10 mbar (0.15 psi) 30 mbar (0.45 psi)	±0.97	±0.95
100 mbar (1.5 psi)	±0.26	±0.39
500 mbar (7.5 psi) 1 bar (15 psi) 3 bar (45 psi)	±0.14	±0.18
16 bar (240 psi)	±0.17	±0.20
40 bar (600 psi)	±0.14	±0.18

Warm-up period

- 4 to 20 mA HART: ≤5 s
- PROFIBUS PA: ≤8 s
- FOUNDATION Fieldbus: ≤20 s (after a TOTAL-reset ≤45 s)

Thermal stability current output

Measuring cell	-10 to +60°C (+14 to +140°F)	-40 to -10°C, +60 to +85°C (-40 to +14°F, +140 to +185°F)	
	% of the set span		
10 mbar (0.15 psi) 30 mbar (0.45 psi)	$\pm (0.31 \times TD + 0.58)$	±(0.45 x TD + 0.54)	
100 mbar (1.5 psi)	±(0.18 x TD + 0.3)	±(0.3 x TD + 0.34)	
500 mbar (7.5 psi) 1 bar (15 psi) 3 bar (45 psi)	±(0.08 x TD + 0.3)	±(0.12 x TD + 0.3)	
16 bar (240 psi)	±(0.10 x TD + 0.32)	±(0.15 x TD + 0.36)	
40 bar (600 psi)	±(0.08 x TD + 0.3)	±(0.37 x TD + 0.32)	

Influence of the static pressure

Measuring cell	Influence on zero point	Influence on span
10 mbar (0.15 psi)	±0.2 % of URL / 1 bar	±0.2 % of URL / 1 bar
30 mbar (0.45 psi)	±0.07 % of URL / 1 bar	±0.07 % of URL / 1 bar
100 mbar (1.5 psi)	±0.15 % of URL / 70 bar	±0.14 % of URL / 70 bar
500 mbar (7.5 psi) 1 bar (15 psi) 3 bar (45 psi) 16 bar (240 psi) 40 bar (600 psi)	±0.075 % of URL / 70 bar	±0.14 % of URL / 70 bar

The influence of the static pressure on the zero point can be calibrated out.

Vibration effects

Test standard	Vibration effects
GL VI-7-2 Part 7: Guidelines for the Performance of Type Approvals Chapter 2: Test Requirements for Electrical / Electronic Equipment and Systems	guaranteed for 5 to 25 Hz: ±1.6 mm (0.06 in); 25 to 100 Hz: 4 g in all 3 planes
IEC 61298-3 IEC 60068-2-6	≤ reference accuracy to 1060 Hz: ±0.35 mm (0.01 in); 602000 Hz: 5 g in all 3 planes

Installation

General installation instructions

- The position-dependent zero shift can be corrected directly at the device via operating keys.
- Endress+Hauser offers a mounting bracket for installing the device on pipes or walls → \(\begin{align*} \text{ \text{ }} \equiv 26, \text{ section "Wall and pipe mounting".} \end{align*}
- When measuring in media with solid proportions, such as dirty liquids, installing separators and drain valves is useful for capturing and removing sediment.
- Using a three-valve or five-valve manifold allows for easy commissioning, installation and maintenance without interrupting the process.
- General recommendations for the impulse piping can be found in DIN 19210 "Methods for measurement of fluid flow; differential piping for flow measurement devices" or the corresponding national or international standards.
- Install the impulse piping with a continuous gradient of at least 10 %.
- When routing the impulse piping outdoors, ensure that sufficient anti-freeze protection is used, e.g. by using pipe heat tracing.

Measuring arrangement

Flow measurement

- Measuring arrangement for gases: Mount device above the measuring point.
- Measuring arrangement for liquids and vapours: Mount the device below the measuring point.
- For flow measurement in vapours, mount the condensate traps at the same level as the same the tapping point and at the same distance from Deltabar M.

Level measurement

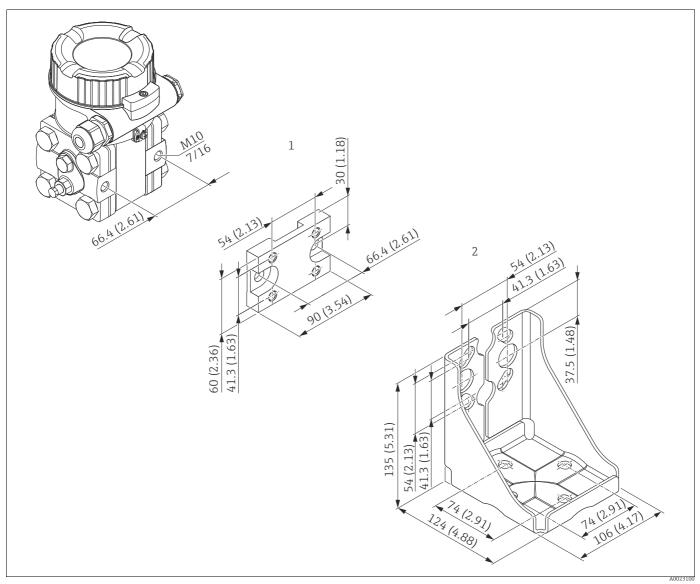
Measuring arrangement level measurement in open tanks

Mount device below the lower measuring connection. The low-pressure side is open to atmosphere
pressure.

Measuring arrangement level measurement in closed tanks and closed tanks with superimposed vapor

- Mount device below the lower measuring connection. Always connect the low-pressure side above the maximum level.
- In the case of level measurement in closed tanks with superimposed vapor, a condensate trap ensures pressure which remains constant on the low-pressure side.

Pressure measurement


- Measuring arrangement for gases: Mount device above the measuring point.
- Measuring arrangement for liquids and vapours: Mount the device below the measuring point.
- For differential pressure measurement in vapor, mount the condensate traps at the same level as the same the tapping point and at the same distance from Deltabar M.

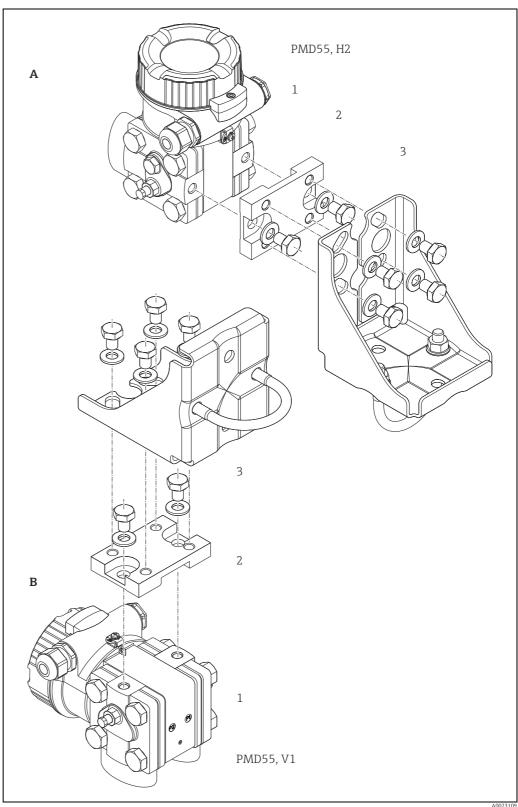
Wall and pipe-mounting (optional)

Endress+Hauser offers a mounting bracket for installing the device on pipes or walls. A bracket with mounting accessories for pipe mounting is included with the device.

When using a valve block, the block's dimensions must be taken into account.

Mounting bracket for wall and pipe mounting

- 1 Adapter plate (+ six screws and six washers)
- 2 Mounting bracket (+ bracket for pipe mounting and two nuts)


Please note the following when mounting:

- To prevent the mounting screws from scoring, lubricate them with a multipurpose grease prior to mounting.
- In the case of pipe mounting, the nuts on the bracket must be tightened uniformly with a torque of at least 30 Nm (22.13 lbf ft).

Ordering information:

- Product Configurator "Accessory Enclosed" section, PB and PC versions
- As Accessorry:
 - Adapter plate 7/16 20 UNF part number: 71098632
 - Adapter plate M10 part number: 71101935
 - Mounting bracket and adapter plate 7/16 20 UNF part number: 71098630
 - Mounting bracket and adapter plate M10 part number: 71101934

Typical installation arrangements

- Installation for horizontal impulse lines, H2 version
- Installation for vertical impulse lines; V1 version
- Deltabar M
- Adapter
- Mounting bracket

Oxygen applications

Oxygen and other gases can react explosively to oils, grease and plastics, such that, among other things, the following precautions must be taken:

 All components of the system, such as measuring devices, must be cleaned in accordance with the BAM (DIN 19247) requirements.

Ordering information:

Product Configurator "Service" section, HB version

 Dependent on the materials used, a certain maximum temperature and a maximum pressure for oxygen applications must not be exceeded.

P _{max} for Oxygen applications	T _{max} for Oxygen applications	Version ¹⁾
30 bar (450 psi)	-18 to +60°C (0 to 140°F)	A (FKM Viton)

1) Product Configurator "Seal" section

PWIS cleaning

Special cleaning of the transmitter to remove paint-wetting impairment substances, for use in paint shops for example.

Ordering information:

Product Configurator "Service" section, HC version

Ultra pure gas applications

 $End ress + Hauser\ also\ offers\ devices\ for\ special\ applications,\ such\ as\ ultra\ pure\ gas,\ cleaned\ from\ oil\ and\ grease.$

Ordering information:

Product Configurator "Service" section, HA version

No special restrictions regarding the process conditions apply to these devices.

Environment

Ambient temperature range

- $-40 \text{ to } +85^{\circ}\text{C} (-40 \text{ to } +185^{\circ}\text{F})$
- Onsite display: -20 to +70°C (-4 to 158°F) Enhanced temperature range with limitations concerning display speed and contrast: -40 to +85°C (-40 to +185°F)

For devices for use in hazardous areas, see Safety instructions, Installation or Control Drawing $\rightarrow \stackrel{\triangle}{=} 47$, sections "Safety InstructionSafety Instructions" and "Installation/Control drawings").

Storage temperature range

- $-40 \text{ to } +90^{\circ}\text{C} (-40 \text{ to } +194^{\circ}\text{F})$
- Onsite display: -40 to +85°C (-40 to +185°F)

Degree of protection

Ordering information:

Product Configurator "Electrical Connection" section

Climate class

Class 4K4H (air temperature: -20...55°C (-4...+131°F), relative humidity: 4...100%) fulfilled as per DIN EN 60721-3-4 (condensation possible)

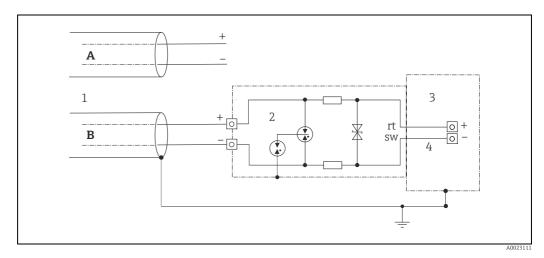
Vibration resistance

Device	Test standard	Vibration resistance
PMD55	GL	guaranteed for 5 to 25 Hz: ±1.6 mm (0.06 in); 25 to 100 Hz: 4 g in all 3 planes
	IEC 61298-3	guaranteed for: 1060 Hz: ±0.35 mm (0.014 in); 602000 Hz: 5 g in all 3 planes
PMD55 with mounting bracket	IEC 61298-3	guaranteed for: 1060 Hz: ±0.15 mm (0.006 in); 60500 Hz: 2 g in all 3 planes

Electromagnetic compatibility

- Electromagnetic compatibility as per all the relevant requirements of the EN 61326 series and NAMUR Recommendation EMC (NE21). Details can be found in the Declaration of Conformity (in the Download area of "www.de.endress.com", "search area Approvals and Certificates", "Manufact. Declaration").
- Maximum deviation: < 0.5% of span
- Larger deviations possible with 10 mbar (0.15 psi) measuring cell.

Overvoltage protection (optional)


The device can be fitted with overvoltage protection.

The overvoltage protection is mounted at the factory on the housing thread (M20x1.5) for the cable gland and is approx. 70 mm (2.76 in) in length (take additional length into account when installing). The device is connected as illustrated in the following graphic.

For details refer to TI001013KEN, XA01003KA3 and BA00304KA2.

Ordering information:

Product Configurator "Accessory Mounted", NA version

- Without direct shield grounding A B
- With direct shield grounding
- Incoming connection cable
- HAW569-DA2B
- Unit to be protected Connection cable

Process

Process temperature limits (temperature at transmitter)

- Process connections made of 316L:
 - $-40 \text{ to } +85^{\circ}\text{C} (-40 \text{ to } +185^{\circ}\text{F})$
- Process connections made of C22.8:
 -10 to +85°C (+14 to +185°F)

The process temperature at the transmitter can be reduced through the use of impulse lines.

- For oxygen applications, observe $\rightarrow \stackrel{\triangle}{=} 28$ "Oxygen applications" section.
- Observe the process temperature range of the seal (see also the following section "Process temperature range, Seals").

Process temperature range, Seals

Seal	Process temperature range ¹⁾	Version ²⁾
FKM Viton	-20 to +85°C (-4 to +185°F)	A
PTFE	-40 to +85°C (-40 to +185°F)	С
PTFE (EPDM core)	-40 to +85 °C (-40 to +185 °F) ³⁾	D
NBR	-20 to +85°C (-4 to +185°F)	F
EPDM	-20 to +85°C (-4 to +185°F)	J

- 1) Restrictions for oxygen applications, $\rightarrow 28$
- 2) Product Configurator "Seal" section
- 3) Only 10 mbar (0.15 psi) und 30 mbar (0.45 psi) measuring cell.

Pressure specifications

A WARNING

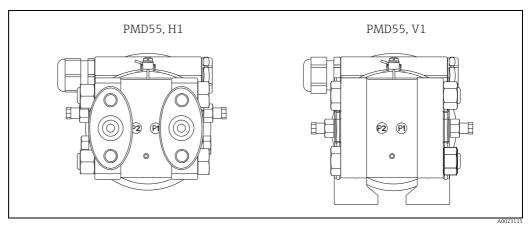
- ► The measuring device must be operated only within the specified limits!
- ► The MWP (maximum working pressure) is specified on the nameplate. This value refers to a reference temperature of 20°C (68°F) or 100°F (38°C) for ANSI flanges and may be applied to the device for an unlimited time. Observe pressure-temperature dependency.
- ► The pressure values permitted at higher temperatures can be found in the standards EN 1092-1: 2001 Tab. 18

ASME B 16.5a - 1998 Tab. 2-2.2 F316

ASME B 16.5a - 1998 Tab. 2.3.8 N10276 JIS B 2220.

- The MWP applies for the temperature ranges specified in the "Ambient temperature range"
 (→ \(\bigointage \) 29) and "Process temperature limits" (see above) sections.
- ► The test pressure corresponds to the over pressure limit of the measuring instrument (Over pressure limits OPL = 1.5 x MWP) and may fit only temporally limited, so that no permanent damage develops.
- ► The Pressure Equipment Directive (EC Directive 97/23/EC) uses the abbreviation "PS". The abbreviation "PS" corresponds to the MWP (maximum working pressure) of the measuring device.
- In the case of sensor range and process connections where the OPL (Over Pressure Limit) of the pressure connection is smaller than the nominal value of the sensor, the device is set at the factory, at the very maximum, to the OPL value of the process connection. If you want to use the entire sensor range, select a process connection with a higher OPL value (1.5 x PN; PN = MWP).

Mechanical construction


Housing

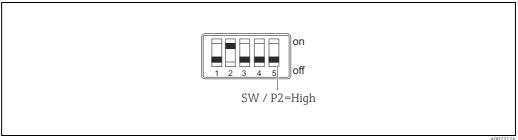
Material		Weight	Version ¹⁾
Housing	Cover seal	kg (lbs)	
Aluminum, without viewing window	EPDM	1.0 (2.21)	A
Aluminum, with viewing window	EPDM	1.1 (2.43)	В

1) Product Configurator "Housing" section

Process connection

Oval flange, connection 1/4-18 NPT IEC61518

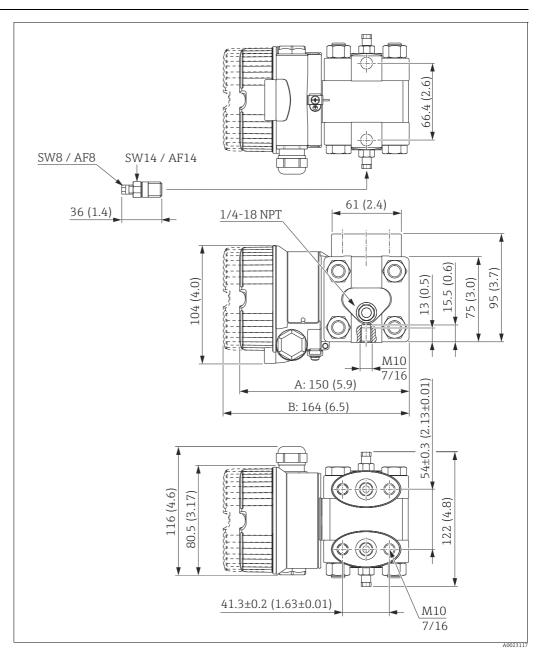
Designation of the process connections "P1" and "P2"


Ordering information:

- Product Configurator "Process connection" section
- As Accessorry: Product Configurator "Accessory Enclosed" section, version "P1"

Factory setting

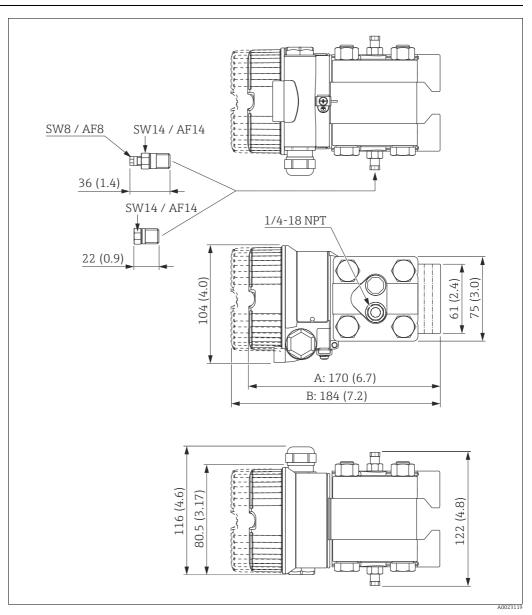
- P1: High pressure side (+)
- P2: Low pressure side (-)


This setting can be changed via a DIP switch in the connection department of the instrument and via the operating menu:

DIP switches in the connection compartment of the device. DIP switch 5 defines the high pressure side.

- DIP5 = off: The high pressure side is defined in the operating menu. Menu "Setup", parameter 006: "High pressure side"; default: P1)
- DIP 5 = on: P2 is the high pressure side, independent of the setting in the operating menu.

Dimensions V1 version; Impulse pipe vertical; alignment 90°

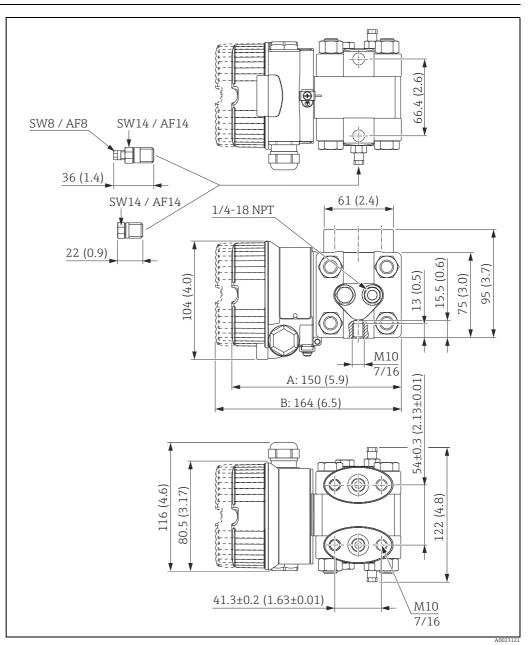

Engineering unit mm (in)

- Version cover without viewing window Version cover with viewing window.

Designation	Material	Weight	Version ¹⁾
		kg (lbs)	
NPT 1/4-18 IEC61518 UNF 7/16-20	AISI 316L		HAJ
NPT 1/4-18 IEC61518 UNF 7/16-20	C22.8	3 (6.62)	HA4
NPT 1/4-18 IEC61518 M10	AISI 316L		НВЈ
NPT 1/4-18 IEC61518 M10	C22.8		HB4

1) Product Configuration "Process Connection" section

Dimensions H1 version; Impulse pipe horizontal; alignment 180°


Engineering unit mm (in)

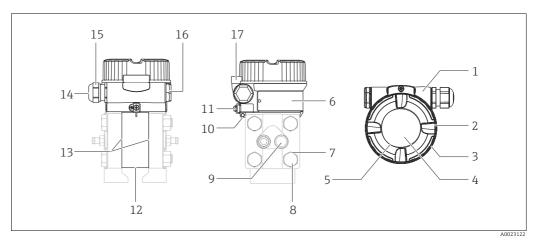
Version cover without viewing window Version cover with viewing window.

Designation	Material	Weight	Version ¹⁾
		kg (lbs)	
NPT 1/4-18 IEC61518 UNF 7/16-20	AISI 316L		HGJ
NPT 1/4-18 IEC61518 UNF 7/16-20	C22.8	3 (6.62)	HG4
NPT 1/4-18 IEC61518 M10	AISI 316L		ННЈ
NPT 1/4-18 IEC61518 M10	C22.8		HH4

1) Product Configuration "Process Connection" section

Dimensions H2 version; Impulse pipe horizontal; alignment 90°

Engineering unit mm (in)


- Version cover without viewing window Version cover with viewing window.

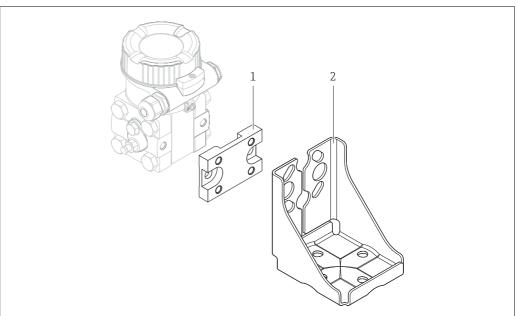
Designation	Material	Weight	Version ¹⁾
		kg (lbs)	
NPT 1/4-18 IEC61518 UNF 7/16-20	AISI 316L	3 (6.62)	HNJ
NPT 1/4-18 IEC61518 UNF 7/16-20	C22.8		HN4
NPT 1/4-18 IEC61518 M10	AISI 316L		НОЈ
NPT 1/4-18 IEC61518 M10	C22.8		НО4

1) Product Configuration "Process Connection" section

Materials not in contact with process

Housing

 $Front\ view,\ right-hand\ side\ view,\ top\ view.$


Item Component part Material number F30 housing, RAL 5012 (blue) Die-cast aluminum with protective powder-coating 1 on polyester base Cover, RAL 7035 (gray) Die-cast aluminum with protective powder-coating 2 on polyester base **EPDM** 3 Cover seal Sight glass Mineral glass 5 Sight glass seal Silicone (VMQ) 6 Nameplates Plastic film Plain washer A4 A2-70 or A4-70 8 Screws 9 Screw 316L 10 AISI 304 (1.4301) External ground terminal 11 AISI 304 (1.4301)/ AISI 316 (1.4401) Attachement for tie-on label 12 Pressure compensation filter Silicone 13 Sealing ring **EPDM** 14 EPDM/NBR Seal of cable gland and blind plug 15 Polyamide (PA) or CuZn nickel-plated Cable gland 16 Blind plug PBT-GF30 FR for dust ignition-proof, Ex d, FM XP and CSA XP: AISI 316L (1.4435) 17 Cover clamp Clamp AISI 316L (1.4435), screw A4

Filling oil

Oil	Version 1)
Silicone oil	1
Inert oil	2

l) Product Configurator "Fill Fluid" section

Connecting parts

400001100

Item number	Component part	Material
1	Adapter plate	AISI 304
2	Mounting bracket	AISI 304
		Screw and nuts A2-70

Materials in contact with process

Side flanges

Endress+Hauser supplies side flanges made of stainless steel AISI 316L as per material numbers 1.4404 or 1.4408 or side flanges of C22.8 (Zn 5-8 / 1.0460 + Zn 5-8) with zinc plating. Endress+Hauser recommends to use side flanges made out of 316L for applications with water.

Process isolating diaphragm

Material	Version 1)
316L	A
Alloy C	С

1) Product Configurator "Process isolating diaphragm material" section

Oval flange adapters

AISI 316L (1.4404)

Vent valves

AISI 316L (1.4404)

TSE Certificate of Suitability (Transmissible Spongiform Encephalopathy)

The following applies to all process wetted device components:

- They do not contain any materials derived from animals.
- No additives or operating materials derived from animals are used in production or processing.

Operability

Operating concept

Operator-oriented menu structure for user-specific tasks

- Commissioning
- Operation
- Diagnosis
- Expert level

Quick and safe commissioning

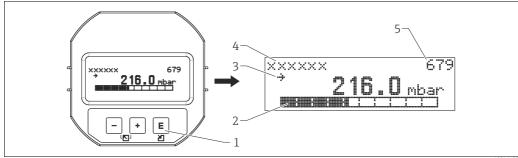
Guided menus for applications

Reliable operation

- Local operation possible in several languages
- Standardized operation at the device and in the operating tools
- Parameters relating to measured values can be locked/unlocked using the device's write protection switch, using the device software or via remote control

Efficient diagnostic behavior increases measurement availability

- Remedial measures are integrated in plain text
- Diverse simulation options


Local operation

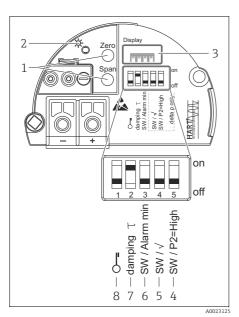
Local display (optional)

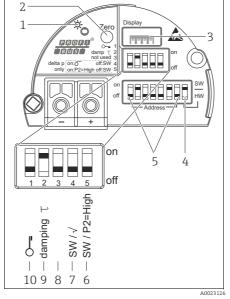
A 4-line liquid crystal display (LCD) is used for display and operation. The local display shows measured values, dialog texts as well as fault and notice messages in plain text, thereby supporting the user at every stage of operation. The liquid crystal display of the device can be turned in 90° stages. Depending on the orientation of the device, this makes it easy to operate the device and read the measured values.

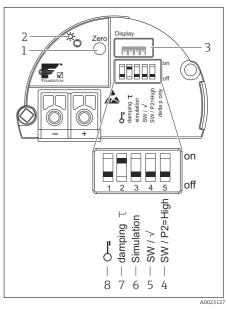
Functions

- 8-digit measured value display including sign and decimal point, bar graph for 4 to 20 mA HART as
 current display; or for PROFIBUS PA as graphic display of the standardized value of the AI Block; for
 FOUNDATION Fieldbus as graphic display of the transducer output in relation to the set pressure
 range.
- Simple and complete menu guidance as parameters are split into several levels and groups
- Each parameter is given a 3-digit ID number for easy navigation
- Possibility of configuring the display to suit individual requirements and preferences, such as language, alternating display, contrast setting, display of other measured values such as sensor temperature etc.
- Comprehensive diagnostic functions (fault and warning message, peak-hold indicators etc.)

A00164


- Operating keys
- 2 Bar graph
- 3 Symbol
 4 Header line
- 5 Parameter identification number


Ordering information:


Product Configurator, "Output, Operation" section

Function	Operation via display		
	HART	PROFIBUS PA	FOUNDATION Fieldbus
Position adjustment (zero point correction)	Х	X	X
Setting lower range value and upper range value - reference pressure present at the device	Х	X	Х
Device reset	Х	X	X
Locking and unlocking parameters relevant to the measured value	X	X	X
Value acceptance indicated by the green LED			
Switching damping on and off	X	X	X

Operating keys and elements located internally on the electronic insert

HART electronic insert

- Operating keys for lower range value (zero) and upper range value (span)
- 2 Green LED to indicate successful operation
- Slot for optional local display DIP switch for defining high pressure side 4
- 5 DIP switch for defining operating mode and output characteristics
- DIP switch for alarm current SW / Alarm Min (3.6 mA)
- DIP switch for switching damping on/off
- DIP switch for locking/unlocking parameters relevant to the measured value 8

PROFIBUS PA electronic insert

- Green LED to indicate successful operation
- Operating key for position zero adjustment or reset (Zero)
- Slot for optional local display DIP-switch for bus address SW / HW
- DIP-switch for hardware address
- DIP switch for defining high pressure side
- DIP switch for defining operating mode and output characteristics
- 8 Not used
- DIP switch for switching damping on/off DIP switch for locking/unlocking parameters 10 relevant to the measured value

FOUNDATION Fieldbus electronic insert

- Operating key for position zero adjustment or reset (Zero)
- Green LED to indicate successful operation

- Slot for optional local display DIP switch for defining high pressure side DIP switch for defining operating mode and output characteristics
- DIP-switch for simulation mode
- 8
- DIP switch for switching damping on/off DIP switch for locking/unlocking parameters relevant to the measured value

Function	Operation with operating keys and operating elements on the electronic insert		
	HART	PROFIBUS PA	FOUNDATION Fieldbus
Position adjustment (zero point correction)	X	X	Х
Setting lower range value and upper range value - reference pressure present at the device	X		
Device reset	X	X	Х
Locking and unlocking parameters relevant to the measured value	X	X	Х
Value acceptance indicated by the green LED	X	X	Х
Switching damping on and off	X	X	X

Ordering information:

Product Configurator, "Output, Operation" section

Operating languages

You can also choose another language in addition to the standard language "English":

Designation	Version ¹⁾
English	AA
German	AB
French	AC
Spanish	AD
Italian	AE
Dutch	AF
Chinese	AK
Japanese	AL

1) Product Configurator "Additional Operation Language" section

Remote operation

All software parameters are accessible depending on the position of the write protection switch on the device.

Hardware and software for remote operation	HART	PROFIBUS PA	FOUNDATION Fieldbus
FieldCare→ 🖹 40 ff	✓ 1)	✓ 2)	V
FieldXpert SFX100 → 🗎 40 ff	V	_	V
NI-FBUS Configurator → 🗎 41 ff	_	_	V

- 1) Commubox FXA195 required $\rightarrow \stackrel{\text{le}}{=} 40 \text{ ff}$
- 2) Profiboard or Proficard required $\rightarrow = 41 \text{ ff}$

FieldCare

FieldCare is an Endress+Hauser asset management tool based on FDT technology. With FieldCare, you can configure all Endress+Hauser devices as well as devices from other manufacturers that support the FDT standard.

FieldCare supports the following functions:

- Configuration of transmitters in offline and online mode
- Loading and saving device data (upload/download)
- HistoROM®/M-DAT analysis
- Documentation of the measuring point

Connection options:

- HART via Commubox FXA195 and the USB port on a computer
- PROFIBUS PA via segment coupler and PROFIBUS interface card
- Service interface with Commubox FXA291 and ToF adapter FXA291 (USB).

For further information, please contact your local Endress+Hauser Sales Center.

Field Xpert SFX100

Field Xpert is an industrial PDA with integrated 3.5" touchscreen from Endress+Hauser based on Windows Mobile. It offers wireless communication via the optional VIATOR Bluetooth modem or via WiFi and Endress+Hauser's Fieldgate FXA520. Field Xpert also works as a stand-alone device for asset management applications. For details refer to BA00060S/00/EN.

Commubox FXA195

For intrinsically safe HART communication with FieldCare via the USB interface. For details refer to TI00404F/00/EN.

Commubox FXA291

The Commubox FXA291 connects Endress+Hauser field devices with a CDI interface (= Endress+Hauser Common Data Interface) with the USB interface of a PC or laptop. For details refer to TI00405C/07/EN.

For the following Endress+Hauser devices you will also need the "ToF adapter FXA291" as an accessory:

- Cerabar S PMC71, PMP7x
- Deltabar S PMD7x, FMD7x
- Deltapilot S FMB70

ToF Adapter FXA291

The ToF adapter FXA291 connects the Commubox FXA291 with devices from the ToF platform, pressure devices and the Gammapilot via the USB interface of a PC or laptop. For details refer to KA00271F.

Profiboard

For connecting a PC to the PROFIBUS.

Proficard

For connecting a laptop to the PROFIBUS

FF configuration program

FF configuration program, such as NI-FBUS Configurator, to

- connect devices with "FOUNDATION Fieldbus signal" into an FF-network
- set FF-specific parameters

Remote operation via:

Operation with NI-FBUS Configurator:

The NI-FBUS Configurator is an easy-to-use graphical environment for creating linkages, loops, and a schedule based on the fieldbus concepts.

You can use the NI-FBUS Configurator to configure a field bus network as follows:

- Set block and device tags
- Set device addresses
- Create and edit function block control strategies (function block applications)
- Configure vendor-defined function and transducer blocks
- Create and edit schedules
- Reading and writing of data from control and regulation systems
- Invoke methods specified in the manufacturer-specific DD (e.g. basic device settings)
- Display DD menus (e.g. tab for calibration data)
- Download a configuration
- Verify a configuration and compare it to a saved configuration
- Monitor a downloaded configuration
- Replace a virtual device by a real device
- Save and print a configuration

System integration

The device can be given a tag name (max. 8 alphanumeric characters)

Designation	Version 1)
Tagging (TAG), see aditional spec.	Z1
Bus address, see aditional spec.	Z2

1) Product configurator "Marking" section

Certificates and approvals

CF mark

The device meets the legal requirements of the relevant EC directives.

Endress+Hauser confirms that the device has been successfully tested by applying the CE mark.

Ex approvals

- ATEX
- FM
- CSA
- NEPSI
- IECEx

All explosion protection data are given in separate documentation which is available upon request. The Ex documentation is supplied as standard with all devices approved for use in explosion hazardous areas.

→ 🗎 47, "Safety Instructions" section and "Installation/Control Drawings".

Marine certificate (in preparation)

- Germanischer Lloyd (GL)
- American Bureau of Shipping (ABS)

Functional safety SIL

The Deltabar M with 4 to 20 mA output signal has been developed to assessed and certified by TÜV NORD CERT as per IEC 61508 Edition 2.0 and IEC 61511. These devices can be used to monitor the process level and pressure up to SIL 2. For a detailed description of the safety functions with Deltabar M, settings and functional safety data, see the "Functional safety manual - Deltabar M" SD00347P. Ordering information: Product Configurator "Other approvals" section, "LA" version

AD2000

The pressure retaining material 316L (1.4435/1.4404) corresponds to AD2000 - W2/W10.

CRN approval

Some device versions have CRN approval. For a CRN-approved device, a CRN-approved process connection ($\rightarrow \stackrel{\triangle}{=} 44$ ff, feature 110 "Process connection") must be ordered with a CSA approval ($\rightarrow \stackrel{\triangle}{=} 44$ ff, feature 10 "Approval"). These devices are fitted with a separate plate bearing the registration number 0F13907.5C.

Pressure Equipment Directive (PED)

PMD55 corresponds to Article 3 (3) of the EC directive 97/23/EC (Pressure Equipment Directive) and has been designed and manufactured according to good engineering practice.

Standards and guidelines

DIN EN 60770 (IEC 60770):

Transmitters for use in industrial-process control systems

Part 1: Methods for inspection and routine testing

DIN 16086:

Electrical pressure measuring instruments, pressure sensors, pressure transmitters, pressure measuring instruments,

concepts, specifications in data sheets

EN 61326-X

EMC product family standard for electrical equipment for measurement, control and laboratory use.

North-American practice for installation of process seals

Endress+Hauser instruments are designed according to ANSI/ISA 12.27.01 either as single seal or dual seal devices with annunciation, allowing the user to waive the use and save the cost of installing external secondary process seals in the conduit as required by the process sealing sections of ANSI/NFPA 70 (NEC) and CSA 22.1 (CEC). These instruments comply with the North-American installation practice and provide a very safe and cost-saving installation for pressurized applications with hazardous fluids.

Further information can be found in the control drawings of the relevant devices.

Inspection certificate

Designation	Version 1)
EN10204-3.1 material wetted parts, inspection certificate	JA
NACE MR0175 wetted parts	JB
EN10204-3.1 AD2000 material wetted parts, expecting process membrane, inspection certificate	JF
EN10204-3.1 Helium leak test, inspection certificate	KD

Designation	Version 1)
EN10204-3.1 pressure test, inspection certificate	KE

1) Product Configurator "Test, Certificate" section

Calibration; Unit

Designation	Version 1)
Nominal value; mbar/bar	В
Nominal value; kPa/MPa	С
Nominal value; mm/mH2O	D
Nominal value; inH2O/ftH2O	E
Nominal value; psi	F
Customized pressure; see additional specification	J
Customized level; see additional spec.	K
Customized flow; see additional spec.	L
Adjusted for Deltatop; see additional spec.	8

1) Product Configurator "Calibration; Unit" section

Calibration

Designation	Version 1)
Factory calib. certificate 5-point	F1
DKD/DAkkS calib. certificate 10-point	F2

1) Product Configurator "Calibration" section

Service

Designation	Version 1)
Cleaned from oil+grease ²⁾)	НА
Cleaned for oxygen service ²⁾	НВ
Cleaned from PWIS (PWIS = paint wetting impairment substances) 2)	НС
Adjusted min alarm current	IA
Adjusted HART Burst Mode PV	IB

- 1) Product Configurator "Service" section
- 2) Only device, not accessory or enclosed accessory

Ordering information

Detailed ordering information is available as follows:

- In the Product Configurator on the Endress+Hauser website: www.endress.com → Select country → Products → Select product → Product page function: Configure this product
- From your Endress+Hauser Sales Center: www.endress.com/worldwide

Product Configurator - the tool for individual product configuration

- Up-to-the-minute configuration data
- Depending on the device: direct input of information specific to the measuring point, such as measuring range or operating language
- Automatic verification of exclusion criteria
- Automatic generation of the order code with its breakdown in PDF or Excel output format
- Ability to order directly in the Endress+Hauser Online Shop

Configuration data sheet

Pressure

If the version "J" was selected in the "Kalibration; Einheit" section of the Product Configurator, the following configuration data sheet must be completed and included with the order.

Pressure Eng	gineering Uni	t		
□ mbar □ bar □ psi	$\begin{array}{c} \square \ mmH_2O \\ \square \ mH_2O \\ \square \ ftH_2O \\ \square \ inH_2O \end{array}$	□ mmHg □ kgf/cm ²	□ Pa □ kPa □ MPa	
Calibration Range / Output				
Low range va Upper range			[Pressure engineering unit] [Pressure engineering unit]	
Display Info	rmation			
1st Value Dis □ Main Valu			2nd Value Display 1) none (Default) Main Value [%] Pressure Current [mA] (HART only) Temperature	
1) Depending on sensor and comunication variant				
Damping				
Damping:		sec (Default	2 sec)	

Smallest span (factory calibration) $\rightarrow 11$

Level

If the version "K" was selected in the "Kalibration; Einheit" section of the Product Configurator, the following configuration data sheet must be completed and included with the order.

Pressure Engineering Unit	Pressure Engineering Unit						
□ mbar □ mmH ₂ O	□ mmHg □ Pas		Mass	Length	Volume	Volume	Percent
□ bar □ mH ₂ O □ ftH ₂ O □ psi □ inH ₂ O	□ kPa □ kgf/cm² □ MPa		□ kg □ t □ lb	m	l hl m ³ ft ³ in ³	□ gal □ Igal	\(\)
Empty pressure [a]:		Empty calibration [a]:		Exan	nple		
Low pressure value (empty) Full pressure [b]: High pressure value (full)	[Pressure engineering unit] [Pressure engineering unit]	Empty Calibration [a]. Low level value (empty Full calibration [b]: High level value (full)	(Scaled Unit)			+	B A
					50 1 /1 :	1 (2 2 (10 6 6 2	A0023130
				A B) / 3 m³ (106 ft³, psi) / 100 m³ (3	
Display Information							
1st Value Display ¹⁾ □ Main Value		2nd Value Disp none (Defau) Main Value Pressure Current [mA	lt) [%] .] (HART only)				
1) Depending on sensor and	comunication variant						
Damping							
Damping:	_ sec (Default 2 sec)						

Flow

If the option "L" was selected in the "Calibration; Unit" section of the Product Configurator, the following configuration data sheet must be completed and included with the order.

Pressure Engineering Unit		Flow Unit / Measured Value (PV)				
□ mbar □ mmH ₂ O □ mmHg □ P □ bar □ mH ₂ O	a	☐ Mass	☐ Volume Operation	□ Volume Norm	☐ Volume Standard	☐ Percent
☐ ftH ₂ O ☐ kgf/cm ² ☐ k		kg/s kg/min kg/h t/s t/min t/h oz/s oz/min lb/s lb/min	Condition m³/s m³/min m³/h l/s l/min l/h US Gal/s US Gal/min US Gal/h ACFS ACFM ACFH	Condition \(\text{Nm}^3/s \) \(\text{Nm}^3/min \) \(\text{Nm}^3/h \) \(\text{Nm}^3/d \)	Condition ☐ Sm³/s	□ %
Output Characteristic						
□ linear (HART only)		□ square roo	t (HART only)			
Operation Point Max Pressure	_ [Pressure engineering unit]	Operation Po Max Pressure			[Pressu unit]	re engineering
Max Flow LRV	_ [Pressure engineering	Max Flow LRV			[flow ui	
(Lower Range Value (HART only))	unit]	(Lower Range	e Value (HART	only))		
Low flow cut off						
Value: [%]	(default = 5					
Display Information						
1st Value Display ¹⁾ □ Main Value	2nd Value Displa none (Default) Main Value [% Pressure Current [mA] Temperature Totalizer 1 Totalizer 2	0				
Damping						
Damping: sec (Default 2 s	sec)					

Additional documentation

Field of Activities

Pressure measurement, powerful instruments for process pressure, differential pressure, level and flow: FA00004P/00/EN $\,$

Technical Information

- EMC test procedures TI00241F/00/EN
- Cerabar M: TI00436P/00/EN
- Deltapilot M: TI00437P/00/EN

Operating Instructions

- 4 to 20 mA HART: BA00382P/00/EN
- PROFIBUS PA: BA00383P/00/EN
- FOUNDATION Fieldbus: BA00384P/00/EN

Brief operating instruction

- 4 to 20 mA HART: KA01027P/00/EN
- PROFIBUS PA: KA01028P/00/EN
- FOUNDATION Fieldbus: KA01029P/00/EN

Functional safety manual (SIL)

Deltabar M (4 to 20 mA): SD00347P/00/EN

Safety Instructions

Directive	Approval	Category	Electronics	Documentation	Version 1)
	Ex ia IIC	II 1/2 G	- 4 to 20 mA HART - PROFIBUS PA - FOUNDATION Fieldbus	- XA00457P/00	BA
	Ex t IIIC	II 1/2 D	- 4 to 20 mA HART - PROFIBUS PA - FOUNDATION Fieldbus	- XA00458P/00	BB
	Ex d IIC II	II 2G	- 4 to 20 mA HART - PROFIBUS PA - FOUNDATION Fieldbus	- XA00459P/00	BC
ATEX	Ex nA IIC	II 3 G	4 to 20 mA HARTPROFIBUS PAFOUNDATION Fieldbus	- XA00461P/00	BD
	Ex ic IIC	II 3 G	- 420 mA HART - PROFIBUS PA - FOUNDATION Fieldbus	- XA01301P/00	BG
	Ex ia IIC Ex ia D	II 1/2 G II 1/2 D	- 4 to 20 mA HART - PROFIBUS PA - FOUNDATION Fieldbus	- XA00460P/00	B1
	Ex ia IIC Ex d IIC	II 1/2 G II 2 G	- 4 to 20 mA HART - PROFIBUS PA - FOUNDATION Fieldbus	- XA00505P/00	8A

1) Product Configurator "Approval" section

Directive	Approval	Electronics	Documentation	Version 1)
MEDCI	Ex ia IIC	- 4 to 20 mA HART	- XA00534P/00	NA
NEPSI	Ex d IIC	- 4 to 20 mA HART	- XA00514P/00	NB

1) Product Configurator "Approval" section

Directive	Approval	Electronics	Version 1)
TIIS	Ex ia IICT4	- 4 to 20 mA HART	TA

1) Product Configurator "Approval" section

Directive	Approval	EPL	Electronics	Documentation	Version 1)
	Ex ia IIC	Ga/Gb	4 to 20 mA HARTPROFIBUS PAFOUNDATION Fieldbus	- XA00462P/00	IA
	Ex d IIIC	Gb	4 to 20 mA HARTPROFIBUS PAFOUNDATION Fieldbus	- XA00463P/00	IB
IECEx	Ex t IIIC	Da/Db	4 to 20 mA HARTPROFIBUS PAFOUNDATION Fieldbus	- XA00490P/00	ID
	Ex ic IIC	Gc	4 to 20 mA HARTPROFIBUS PAFOUNDATION Fieldbus	- XA00492P/00	IE
	Ex ia IIC Ex ia IIIC	Ga/Gb Da/Db	4 to 20 mA HARTPROFIBUS PAFOUNDATION Fieldbus	- XA00491P/00	I1

1) Product Configurator "Approval" section

Directive	Approval	Electronics	Documentation	Version 1)
INMETRO	Ex ia IIC T6T4 Ga/Gb	4 to 20 mA HARTPROFIBUS PAFOUNDATION Fieldbus	- XA01303P/00	MA

1) Product Configurator "Approval" section

Installation/Control Drawings

Directive	Approval	Electronics	Documentation	Version 1)
	IS Cl.I,II,III Div.1 Gr. A-G, AEx ia NI Cl. I Div.2 Gr.A-D	4 to 20 mA HARTPROFIBUS PA,FOUNDATION Fieldbus	- ZD00234P/00 - XA00565P/00	FA
FM	FM XP Cl.I,II Div.1 Gr.A-G Zone 1 IIC T6 (Conduit seal not required), Zone 1,2	4 to 20 mA HARTPROFIBUS PAFOUNDATION Fieldbus		FB
	FM DIP CI.II,III Div.1 Gr.E-G, Zone 21,22			FC
	FM NI Cl.I Div.2 Gr.A-D, Zone 2			FD
	FM IS/XP Cl.I,II Div.1 Gr.A-G, Zone 1,2	- PROFIBUS PA, FOUNDATION Fieldbus	- XA00568P/00	F1
	C/US IS Cl.I,II,III Div.1 Gr A-G C/US IS Cl.I Div.2 Gr A-D, Ex ia	4 to 20 mA HARTPROFIBUS PA, FOUNDATION Fieldbus	- XA00557P/00 - XA00559P/00	CA
CSA	CSA C/US XP Cl.I,II Div.1 Gr.B-G, Ex d, (Conduit seal not required), Zone 1,2			СВ
	CSA C/US Cl.II,III Div.1 Gr.E-G, US: Zone 21,22			CC
	CSA C/US IS/XP Cl.I,II Div.1Gr.A-G/B-G, Zone 1,2	- 4 to 20 mA HART - PROFIBUS PA, FOUNDATION Fieldbus	- XA00576P/00 - XA00562P/00	C1

1) Product Configurator "Approval" section

Combined certificate

Directive	Approval	Electronics	Documentation	Version 1)
FM/CSA	FM/CSA IS + XP Cl.I,II Div.1 Gr.A-D/B-G FM IS/FM XP Cl.I,II Div.1 Gr.A-G + CSA IS/XP Cl.I,II Div.1 Gr.A-G, FM/CSA: Zone 1,2	- 4 to 20 mA HART	- ZD00247P/00 - XA00576P/00 - ZD00250P/00	8B
		PROFIBUS PA, FOUNDATION Fieldbus	- XA00568P/00 - XA00562P/00	

 $1) \qquad \hbox{Product Configurator "Approval" section} \\$

Registered trademarks

HART®	Registered trademark of the HART Communication Foundation, Austin, USA
PROFIBUS®	Registered trademark of the PROFIBUS User Organization, Karlsruhe, Germany
FOUNDATION™ Fieldbus	Registered trademark of the Fieldbus Foundation, Austin, Texas, USA

www.addresses.endress.com

