Operating Instructions RIA46

Field meter

Brief overview

For quick and easy commissioning：

Safety instructions	\rightarrow 策 4
V	
Installation	\rightarrow 者 7
V	
Wiring	\rightarrow 目 10
∇	
Display and operating elements	\rightarrow 目 13
∇	
Commissioning	\rightarrow 目 21
Device configuration－explanation and use of all configurable device functions with the associated value ranges and settings．	

Block circuit diagram

Fig．1：Block circuit diagram

Table of contents

1 Safety instructions 4
1.1 Designated use 4
1.2 Installation, commissioning and operation 4
1.3 Operational safety 4
1.4 Return 4
1.5 Notes on safety conventions and icons 5
1.6 Other symbols used 5
2 Identification 6
2.1 Device designation 6
2.2 Scope of delivery 6
2.3 Certificates and approvals 6
3 Installation 7
3.1 Incoming acceptance, transport, storage 7
3.2 Installation conditions 7
3.3 Installation procedure 8
3.4 Dimensions 9
3.5 Post-installation check 9
4 Wiring 10
4.1 Connecting the device 10
4.2 Post-connection check 12
5 Operating elements and display 13
5.1 Operating elements 13
5.2 Display and device status indicator/LED 15
5.3 Icons 16
5.4 Quick guide to the operating matrix 17
6 Commissioning 21
6.1 Post-installation check and switching on the device 21
6.2 General information on the device configuration 21
6.3 Notes on setup access protection 21
6.4 Configuring the device 22
6.5 In operation 36
7 Maintenance 39
8 Accessories 39
8.1 Device-specific accessories 39
8.2 Communication-specific accessories 39
9 Troubleshooting 40
9.1 Troubleshooting instructions 40
9.2 Process error messages 40
9.3 Spare parts 42
9.4 Return 43
9.5 Disposal 43
10 Technical data 44
11 Appendix 53
11.1 Further explanations on the differential pressure application at level measurement 53
11.2 Display menu 55
11.3 Setup menu 56
11.4 Diagnostics menu 61
11.5 Expert menu 61
Index 65

1 Safety instructions

Safe operation of the device is only guaranteed if these Operating Instructions have been read and the safety instructions they contain have been observed.

1.1 Designated use

The device evaluates analog process variables and shows them on its multicolored display. Using the unit's outputs and limit relays, processes can be monitored and controlled. The device is equipped with a wide range of software functions for this purpose.
Power can be supplied to 2 -wire sensors with the integrated loop power supply.

- The device is designed for installation in the field.
- The manufacturer accepts no liability for damages resulting from incorrect use or use other than that designated. The device may not be converted or modified in any way.

1.2 Installation, commissioning and operation

This device is designed to meet state-of-the-art safety requirements and complies with applicable standards and EU regulations. The device can be a source of application-related danger if used improperly or other than intended. Installation, wiring, commissioning and maintenance of the device must only be carried out by trained technical personnel. The technical personnel must have read and understood these Operating Instructions and must strictly follow the instructions they contain. The information in the electrical wiring diagrams (see Operating Instructions, Section 4 'Wiring') must be observed closely.

1.3 Operational safety

Technical improvement

The manufacturer reserves the right to adapt technical details to the most up-to-date technical developments without prior notice. Contact your sales center for current information and updates to these Operating Instructions.

1.4 Return

For a return, e.g. in case of repair, the device must be sent in protective packaging. The original packaging offers the best protection. Repairs must only be carried out by your supplier's service organization.

Please enclose a note describing the fault and the application when sending the unit in for repair.

1.5 Notes on safety conventions and icons

Always refer to the safety instructions in these Operating Instructions labelled with the following symbols:

Symbol		Meaning
A WARNING	A0011190-EN	WARNING! This symbol alerts you to a dangerous situation. Failure to avoid this situation can result in serious or fatal injury.
\triangle CAUTION	A0011191-EN	CAUTION! This symbol alerts you to a dangerous situation. Failure to avoid this situation can result in minor or medium injury.
NOTICE	A0011192-EN	NOTICE! This symbol contains information on procedures and other facts which do not result in personal injury.
		ESD - Electrostatic discharge Protect the terminals against electrostatic discharge. Failure to comply with this instruction can result in the destruction of parts or malfunction of the electronics.
9	A001193	Indicates additional information, Tip

1.6 Other symbols used

Cross-references

眉
Reference to "see page"
目
Reference to "see figure"

Identification of tools

2 Identification

2.1 Device designation

2.1.1 Nameplate

Compare the nameplate on the device with the following diagram:

Fig. 2: \quad Nameplate of the device (sample)

1 Order code, serial number and ID number of the device Power supply
Power consumption
Approval (if applicable)
Temperature range (if applicable)

2.2 Scope of delivery

The scope of delivery of the device comprises:

- Field meter
- Hard copy of Brief Operating Instructions and Ex documentation (XA)
- Operating Instructions and additional documentation on CD
- Mounting plate (optional)
- Clamps and screws for pipe mounting (optional)

Please note the device accessories in Section 8 'Accessories' of the Operating Instructions.

2.3 Certificates and approvals

CE mark, Declaration of Conformity

The device is designed to meet state-of-the-art safety requirements, has been tested and left the factory in a condition in which it is safe to operate. The device meets the relevant standards and directives as per EN 61 010-1 "Safety requirements for electrical equipment for measurement, control and laboratory use".
Thus, the device described in these Operating Instructions meets the legal requirements of the EU directives. The manufacturer confirms successful testing of the device by affixing to it the CE mark.
An overview of all the certificates and approvals available can be found in Section 10
"Technical data".

3 Installation

3.1 Incoming acceptance, transport, storage

The permitted ambient and storage conditions must be observed. The precise specifications can be found in Section 10 "Technical data".

3.1.1 Incoming acceptance

On receipt of the goods, check the following points:

- Are the packaging or contents damaged?
- Is anything missing from the delivery? Compare the scope of delivery with the information you specified in the order. See also section 2.2 "Scope of delivery".

3.1.2 Transportation and storage

Note the following points:

- Pack the device so that is protected against impact for storage and transportation. The original packaging provides optimum protection.
- The permitted storage temperature range is -40 to $+85^{\circ} \mathrm{C}\left(-40\right.$ to $\left.+185^{\circ} \mathrm{F}\right)$; it is possible to store the device in the limit temperature ranges for a limited period (maximum 48 hours).

3.2 Installation conditions

The device is designed to be used in the field ${ }^{1)}$.
The orientation is determined by the readability of the display. Cable entries are located on the bottom of the device.
Operational temperature range:
-40 to $50{ }^{\circ} \mathrm{C}\left(-40\right.$ to $\left.122^{\circ} \mathrm{F}\right)$

A WARNING

Loss of Ex approval if device is not properly installed

- When using the field meter in explosion hazardous area observe the installation conditions given in the corresponding safety notes.

NOTICE

The life-time of the display is shortened when operated in the upper temperature range.

- Do not operate the device in the upper temperature range over a longer period of time.

1
Readability of the display cannot be guaranteed at temperatures below $-30^{\circ} \mathrm{C}$ $\left(-22^{\circ} \mathrm{F}\right)$.

[^0]
3.3 Installation procedure

The device can be mounted directly to the wall with 4 screws $\varnothing 5 \mathrm{~mm}(0.2 \mathrm{in}$) or the optional mounting plate can be used for wall or pipe mounting.

Fig. 3: Pipe mounting of the device
1: Mounting plate
2: Clamp for pipe mounting

Fig. 4: \quad Pipe Mounting of the device

3.4 Dimensions

Fig. 5: Dimensions of the device in mm (in)
A: \quad Drill-hole for direct wall mounting or on optional mounting plate with 4 screws $\varnothing 5 \mathrm{~mm}$ (0.2 in)

3.5 Post-installation check

- Is the sealing ring undamaged?
- Is the device firmly screwed to the mounting plate or the wall?
- Are the housing frame screws closed tightly?

4 Wiring

A WARNING

Danger through electric tension

- Make sure that no voltage is supplied when wiring the device.
- The protective ground connection must be established before any other connection is made. A source of danger could arise if the protective ground connection is disconnected.
- Provide a suitable switch or power-circuit breaker in the building installation. This switch must be provided within easy reach of the device and be labelled as a disconnector.

NOTICE

Damage of the device through incorrect wiring or overvoltage

- Use wires suitable for $5^{\circ} \mathrm{C}\left(9^{\circ} \mathrm{F}\right)$ above surrounding.
- Prior to commissioning, make sure the supply voltage matches the specifications on the nameplate (left side of the housing).
- An overcurrent protection unit (nominal current $=10 \mathrm{~A}$) is required for the power cable.
- Observe the terminal designation inside the device.

It is permitted to connect a mixture of safety extra low voltage and voltage which poses a shock hazard to the relays.

4.1 Connecting the device

A loop power supply (LPS) is provided for every input. The loop power supply is primarily provided to supply power to 2 -wire sensors and is galvanically isolated from the system and the outputs.

[^1]Overview of possible connection options at the device

Connection of the analog input

Current

Connection of the relays
Relay 1

Connection of the analog output

Analog output 1	Analog output 2
015	O 25
+ +	+ $\quad+\begin{aligned} & \text { + }\end{aligned}$
016	026
-	- \quad -
a0010742	

Connection of the digital output

Digital output/open collector

a0010744
Connection of the power supply
24 to 230 V ($-20 \% /+10 \%$) 50/60 V AC/DC

| L $+\mathrm{N} \mid-$ | No grounding conductor is connected for the plastic housing. |
| :--- | :--- | :--- |
| ++- | For the aluminum housing, a grounding conductor can be connected at the |
| grounding connection inside the housing. | |

Interface for configuring with the FieldCare PC software

a0010417

NOTICE

High-energy transients can damage the device

- For long signal lines fit a suitable surge arrester upstream.

4.2 Post-connection check

Device condition and specifications	Notes
Are the device or cables damaged?	Visual inspection
Electrical connection	Notes
Does the supply voltage match the specifications on the nameplate?	24 to $230 \mathrm{~V}(-20 \% /+10 \%)$ $50 / 60 \mathrm{~Hz} \mathrm{AC/DC} ,50 / 60 \mathrm{~Hz}$
Are the power supply terminals firmly engaged in their correct slot?	-
Are the mounted cables strain-relieved?	-
Are the supply voltage and signal cables connected correctly?	See connection diagram on the housing.

5 Operating elements and display

The easy operating concept of the device makes it possible for users to commission the device for many applications without a printed set of Operating Instructions.
The FieldCare operating software is a quick and convenient way of configuring the device. Brief explanatory (help) texts provide additional information on individual parameters.

5.1 Operating elements

5.1.1 Local operation at the device

The device is operated by means of the three keys integrated in the front part of the device

- Open the configuration menu
- Confirm an entry
- Select a parameter or submenu offered in the menu
- Cithin the configuration menu:
- Change the value of the selected parameter (increase or decrease)
- Display enabled and calculated channels, as well as min. and max. values for all the active
channels.

You can always exit items/submenus at the end of the menu by selecting "x Back". Leave the setup directly without saving the changes by pressing the '-' and ' + ' keys simultaneously for over 3 seconds.

5.1.2 Configuration via interface \& FieldCare Device Setup PC configuration software

Abstract

A CAUTION Undefined switching of outputs and relays possible while configuring with FieldCare - Do not configure during running process.

To configure the device with the FieldCare Device Setup software, connect the device to your PC. You need a special interface adapter for this purpose, e.g. the Commubox FXA291. The 4-pin connector of the interface cable must be plugged into the corresponding socket on the rear of the device and the USB connector must be plugged into a free USB slot on the PC.

Installing the Windows driver for the TXU10/FXA291

To install the Windows driver Administrator rights are required. Proceed as follows:

1. Connect the device to the PC using the TXU10/FXA291 interface adapter. A new device is detected and the Windows installation assistant opens.
2. In the installation assistant, do not carry out the automatic search for a driver. For this, choose "No, not this time" and click "Next".
3. In the subsequent window, choose "Install from a list or specific location" and click "Next".
4. In the next window, click "Browse" and select the directory where the driver for the TXU10/FXA291 adapter is located.
5. The driver is installed. Finish the installation by clicking "Finish".
6. A further device is detected and the Windows installation assistant opens once more. Again, choose "No, not this time" and click "Next".
7. In the subsequent window, choose "Instal from a list or specific location" and click "Next".
8. In the next window, click "Browse" and select the directory where the driver for the TXU10/FXA291 adapter is located.
9. The driver is installed. Finish the installation by clicking "Finish".

The installation of the Windows driver for the interface adapter is now complete. Which COM-Port has been assigned for the adapter can be seen in the Windows device manager.

Installing the communication DTM in FieldCare

Before the configuration of the device can be done, FieldCare Device Setup must be installed on your PC. The installation instructions can be found in the FieldCare instructions.
Subsequently, install the FieldCare device driver according to the following instructions:

1. Firstly, install the device driver "CDI DTMlibrary" in FieldCare. It can be found under "Endress+Hauser Device DTMs \rightarrow Service / Specific \rightarrow CDI" in FieldCare.
2. Then the DTM catalog must be updated. Add the new installed DTMs to the DTM catalog.

Establishing the connection

To establish the connection with FieldCare, proceed as follows:

1. Firstly, edit the connection macro. For this, start a new project and in the window displayed, click with the right mouse button on the symbol for "Service (CDI) FXA291" and choose "Edit".
2. In the following window, next to "Serial interface", select the COM port which has been assigned during the installation of the Windows driver for the TXU10/FXA291 adapter.
3. The macro is now configured. Complete configuration by clicking "Finish".
4. Start the macro "Service (CDI) FXA291" by double-clicking it and confirm the subsequent query with "Yes".
5. A connected device is searched and the suitable DTM is automatically opened. The configuration starts.
To then configure the device itself, follow these Operating Instructions for the device. The entire Setup menu, i.e. all the parameters listed in these Operating Instructions, can also be found in the FieldCare Device Setup.

In general, it is possible to overwrite parameters with the FieldCare PC software and the appropriate device DTM even if access protection is active.
If access protection by means of a code should be extended to the software, this
function should be activated in the extended device setup.
For this purpose, select:
Menu \rightarrow Setup / Expert \rightarrow System \rightarrow Overfill protect \rightarrow German WHG and confirm.

5.2 Display and device status indicator/LED

The device provides an illuminated LC display which is split into two sections. The segment section displays the value of the channel and additional information and alarms.
In the dot matrix section, additional channel information, such as the TAG, unit or bar graph, is displayed in the display mode. Operating text in English is displayed here during operation.
The parameters for configuring the display are explained in detail in Section 6.4.

Fig. 7: Display of the device
1: Channel display: 1: analog input 1; 2: analog input $2 ; 1 M$: calculated value $1 ; 2 M$: calculated value 2
2: Dot matrix display for TAG, bar graph and unit
3: Limit value indicators in the bar graph
4: "Operation locked" indicator
5: Green LED; on - supply voltage applied
6: Red LED; on - error/alarm
7: Yellow LED; on - relay 1 energized
8: Yellow LED; on - relay 2 energized
9: Minimum/maximum value indicator

In the event of an error, the device switches automatically between displaying the error and displaying the channel, see Section 6.5.3 and Section 9 'Troubleshooting'.

5.3 Icons

5.3.1 Display icons

1 Channel one (Analog in 1)
2 Channel two (Analog in 2)
$1 \mathrm{M} \quad$ First calculated value (Calc value 1)
$2 \mathrm{M} \quad$ Second calculated value (Calc value 2)
Max Maximum value/value of the maximum indicator of the channel displayed
Min Minimum value/value of the minimum indicator of the channel displayed

In the event of an error:

The display shows: - - - , the measured value is not displayed
Underrange/overrange:
The display shows:
In the dot matrix section, the error and channel name (TAG) are specified.

5.3.2 Icons in the editing mode

The following characters can be used to enter user-defined text:
 ')', '
For numerical entries, the numbers ' $0-9$ ' and the decimal point are available.
Furthermore, the following icons are used in the editing mode:
\boldsymbol{y}
Symbol for the setup
白
Symbol for the Expert setup
Symbol for diagnostics
Accept entry.
If this icon is selected, the information entered is accepted at the position and the user exits the editing mode.
Reject entry.
If this icon is selected, the information entered is rejected and the user exits the editing mode. The text configured beforehand remains unchanged.

- Move one position to the left.

If this icon is selected, the cursor moves one position to the left.

- Delete back.

F
If this icon is selected, the character to the left of the cursor is deleted.
D Delete all.
If this icon is selected, all the information entered is deleted.

5.4 Quick guide to the operating matrix

The following tables show all menus and the operating functions.

	play menu	Description
E	AI1 Min-max-reset*	Reset the min/max values for Analog in 1
\pm	AI2 Min-max-reset*	Reset the min/max values for Analog in 2
\pm	CV1 Min-max-reset*	Reset the min/max values for Calc value 1
\pm	CV2 Min-max-reset*	Reset the min/max values for Calc value 2
\pm	Analog in 1	Display setting for Analog in 1
\pm	Analog in 2	Display setting for Analog in 2
\pm	Calc value 1	Display setting for Calc value 1
\pm	Calc value 2	Display setting for Calc value 2
\pm	Contrast	Display contrast
\pm	Brightness	Display brightness
\pm	Alternating time	Switchover time between values chosen to be displayed
\pm	Back	Return to main menu
*) Is only displayed if "Allow reset" = "Yes" is set in the "Expert" menu for the corresponding channel.		

Setup menu		Description
E	Application	Application selection
	1-channel	1-channel application
	2-channel	2-channel application
	Diff-pressure	Difference pressure application
\pm	AI1 Lower range*	Lower measuring range limit for Analog in 1
\pm	AI1 Upper range*	Upper measuring range limit for Analog in 1
\pm	AI2 Lower range*	Lower measuring range limit for Analog in 2
\pm	AI2 Upper range*	Upper measuring range limit for Analog in 2
\pm	CV Factor*	Factor for calculated value
\pm	CV Unit*	Unit for calculated value
\pm	CV Bar 0\%*	Lower limit for bargraph of calculated value
\pm	CV Bar 100\%*	Upper limit for bargraph of calculated value
\pm	Linearization*	Linearization of calculated value
	No lin points	Number of linearization points
	X -value	X -values for linearization points
	Y-value	Y-values for linearization points

Setup menu		Description
\pm	Analog in 1	Analog input 1
	Signal type	Signal type
	Signal range	Signal range
	Connection	Connection type (only for Signal type = RTD)
	Lower range	Lower limit of measuring range
	Upper range	Upper limit of measuring range
	Tag	Designation of analog input
	Unit	Unit of analog input
	Offset	Offset of analog input
	Ref junction	Reference junction (only for Signal type = TC)
	Reset min/max	Reset min/max value for analog input
\pm	Analog in 2	Analog input 2
		See Analog in 1
\pm	Calc value 1	Calculated value 1
	Calculation	Type of calculation
	Tag	Designation of calculated value
	Unit	Unit of calculated value
	Bar 0\%	Lower limit for bargraph of calculated value
	Bar 100\%	Upper limit for bargraph of calculated value
	Factor	Factor for calculated value
	Offset	Offset for calculated value
	No lin points	Number of linearization points
	X -value	X -values for linearization points
	Y-value	Y-values for linearization points
	Reset min/max	Reset min/max values
\pm	Calc value 2	Calculated value 2
		See Calc value 1
\pm	Analog out 1	Analog output 1
	Assignment	Assignment for analog output
	Signal type	Signal type of analog output
	Lower range	Lower range limit of analog output
	Upper range	Upper range limit of analog output
\pm	Analog out 2	Analog output 2
		See Analog out 1
\pm	Relay 1	Relay 1
	Assignment	Assignment of value to be monitored with relay
	Function	Operating function for relay
	Set point	Set point for relay
	Set point 1/2	Set points 1 and 2 for relay (only, if Function = Inband, Outband)
	Time base	Time base for gradient evaluation (only, if Function = Gradient)
	Hysteresis	Hysteresis for relay
\pm	Relay 2	Relay 2
		See Relay 1

Setup menu		Description
+	Back	Return to main menu
*) Is only displayed if "Application" = "Diff pressure" is configured.		

Diagnostics menu		Description
E	Current diagn	Current diagnostic
\pm	Last diagn	Last diagnostic
\pm	Operating time	Operating time of the device
\pm	Diagnost logbook	Diagnostics logbook
\dagger	Device information	Device information
\pm	Back	Return to main menu

Expert menu			Description
\pm	Output		Outputs
	The following parameters are available in addition to the parameters from the Setup menu:		
	Analog out $1 / 2$		Analog output 1 / 2
		Fail mode	Failure mode
		Fixed fail value	Fixed value in the event of an error (only, if Fail mode $=$ Fixed value)
	Relay 1 / 2		Relay 1/2
		Time delay	Switching delay time
		Operating mode	Operating mode
		Failure mode	Behavior in the event of an error

6 Commissioning

6.1 Post-installation check and switching on the device

Make sure that all post-connection checks have been carried out before you commission your device:

- 'Post-installation check' checklist in Section 3.5
- 'Post-connection check' checklist in Section 4.2

Once the operating voltage is applied, the display lights up and the green LED indicates that the device is operational.
When you commission the device for the first time, you program the setup in accordance with the descriptions provided in these Operating Instructions in the following sections. When commissioning a device already configured or preset, measuring is immediately started as per the settings. The values of the channels currently activated appear on the display. Changes to the display can be made in the Display menu item (\rightarrow 置 31 'Step 7: Configuring the display functions').

Remove the protective foil from the display as this restricts display legibility otherwise.

6.2 General information on the device configuration

You can commission/configure your device locally using the three integrated keys, or by PC. You require the Commubox FXA291 to connect the device to a PC (see ‘Accessories’ section).

Advantages of configuring the device using FieldCare Device Setup:

- The device data are saved in the FieldCare Device Setup and can be called up at any time.
- Entries can be made more quickly using the keyboard.

6.3 Notes on setup access protection

Access to the setup is enabled when the device leaves the factory. Access can be locked via the setup.

Proceed as follows to lock the device:

1. Press ' E ' to get to the configuration menu
2. Press ' + ', 'Setup' is displayed \rightarrow press ' E '
3. Press ‘+' again until 'System’ is displayed, press \rightarrow ' E '
4. 'Access code' is displayed, press \rightarrow ' E '
5. Set the code: the desired numerical value is configured by pressing the '+' and '-' keys. The access code is a four-digit number. The corresponding position of the number is displayed in plain text.
To confirm the value entered and to go to the next position, press ' E '.
6. Confirm the last position of the code to exit the menu. The code is displayed in full. Press ' + ' to scroll to the last point of the ' x Back' submenu and confirm this point. As a result, the value is accepted and the user returns to the level of the 'Setup' item. Also exit this submenu via the last 'x Back' parameter to get back to the measured value/channel display.

4
The 'x Back' point can be found at the end of every picklist/menu item. If you confirm this parameter, you go from the submenu to the higher-order menu, or you exit the setup.

6．4 Configuring the device

Configuration steps：
1．Select the application conditions（only for 2－channel devices）（ \rightarrow 冒 22）
2．Configure the universal input（s）（ \rightarrow 目 24）
3．Configure the calculations $(\rightarrow$ 26）
4．Configure the analog output（s）（ \rightarrow 26）
5．Configure relays（if option selected）；assign and monitor limit values（ \rightarrow 27）
6．Advanced device configuration（access protection／operating code；saving the current setup／user setup）（ \rightarrow B 31）
7．Configure the display functions $(\rightarrow$ 目 31）
The following section provides a detailed account of how to set up the two－channel device and the differential pressure application package（brief overview of the configuration \rightarrow 24，only available in the two－channel version）．If you want to configure a single－ channel device，please proceed as explained in Section 6．4．2．

6．4．1 Step 1：Selecting the application conditions／number of active input channels

Application conditions of a two－channel device

Call up the Setup menu after performing the post－installation check．
Press＇E＇\rightarrow press＇+ ＇\rightarrow＇Setup＇is displayed，press \rightarrow＇E＇．
Select your application conditions in the first point of the setup．The following options are available：
1．Differential pressure（＇Diff pressure’）：application package；parameters are automatically preconfigured for you．
2．Single channel（＇ 1 －channel＇）：universal input 2 （＇Analog in 2 ＇）is deactivated（＇off＇） from the software side．The second channel can always be activated at a later stage via ＇Setup＇\rightarrow＇Analog in 2＇$(\rightarrow$ 24）．
3．Two channels（＇ 2 －channel＇）：universal input 1 （＇Analog in 1 ＇）and universal input 2
（＇Analog in 2＇）are preconfigured with the following values：
－Signal type（＇Signal type’）：‘Current’
－Signal range（＇Signal range＇）：‘4－20mA＇
The following section provides a detailed description of the＂Differential pressure＂application package．
To set up the device in single－channel／two－channel applications，please proceed with the device setup as explained in Section 6.4 .2 （analog input 1 （＇Analog in 1＇））．

If the application or the parameter selected are subsequently changed，parameters already configured are retained（e．g．if the differential pressure application is changed to two－channel \rightarrow＇Calc value 1＇remains at the Difference parameter）．

Differential pressure application

A concise setup is available for differential pressure applications.
Once the differential pressure application setup has been successfully completed, the configured parameters of the analog inputs and the linearization points are used to automatically form the difference between the two inputs and linearize the signal. As a result, the volume is already shown on the display (= calculated value 2).

NOTICE

The following is essential to ensure values are calculated correctly and that the setup functions properly:

- Sensor 1 returning the higher pressure: connected to analog input 1 ('Analog in 1’)
- Sensor 2 returning the lower pressure: connected to analog input 2 ('Analog in 2')

Fig. 8: Differential pressure application

Setup \rightarrow Application \rightarrow Diff pressure

After selecting the differential pressure application by confirming the "Diff pressure" parameter, the parameters, which are displayed in succession and can be edited, must be configured individually for your application.
Some parameters are already configured for you by selecting the application setup (\rightarrow 畀 24)
The parameter "CV Factor" serves for the regard of the density of the medium at level measurement, i.e. it equates the mathematic formula 1/(density*gravitational acceleration). The standard value of the factor is 1 .
At this the density is to be named in $\mathrm{kg} / \mathrm{m}^{3}$ and the pressure in Pascal (Pa) or $\mathrm{N} / \mathrm{m}^{2}$. The gravitational acceleration is defined by the constant on the earth's surface. It amounts $g=9.81 \mathrm{~m} / \mathrm{s}^{2}$.
Tables and examples for the conversion of application related units into the defined values $\mathrm{kg} / \mathrm{m}^{3}$ and Pa respectively $\mathrm{N} / \mathrm{m}^{2}$ can be found in the appendix, \rightarrow 冒 53.

If you want to activate other parameters (see Step 4, 5, 6 and 7 or offset for analog inputs, display original values of analog channels, etc.), you can do so afterwards in the setup of the corresponding parameter.

‘Setup’ menu item

Setup \rightarrow Application \rightarrow＇Diff pressure＇	
Preconfigured by application package	Submenu
Setup analog inputs \rightarrow Signal：＇Current＇ \rightarrow Range：＇4－20 mA＇ $(\rightarrow$ 贯 22 Step 1 and 2）	＇AI1 Lower range＇：start of measuring range，analog input 1 （corresponds to 4 mA for example）
	＇AI1 Upper range＇：end of measuring range，analog input 1 （corresponds to 20 mA for example）
	＇AI2 Lower range＇：start of measuring range，analog input 2 （corresponds to 4 mA for example）
	＇AI2 Upper range＇：end of measuring range，analog input 2 （corresponds to 20 mA for example）
\rightarrow CV Factor	Factor for the regard of the density of the medium at level measurement，i．e．it equates the formula 1／（density＊gravitational acceleration）；Standard value： 1
Setup display \rightarrow Display：calculated value and bar graph for Calc Value 2： Active；all other values inactive $(\rightarrow \text { 目 } 22 \text { Step 7) }$	＇CV Unit＇：unit of the calculated volume value（e．g．liters）
	＇CV Bar 0\％＇：start of measuring range for bar graph display
	＇CV Bar 100\％＇：end of measuring range for bar graph display
```Setup calculation of the volume: \(\rightarrow\) 'Calc value 1': 'Difference' \(\rightarrow\) 'Calc value 2’: 'Lineariz. CV1' ( \(\rightarrow\) 眉 22 Step 3)```	Create the linearization table：   If the volume value should be calculated－i．e．a linearization of the difference is output－the X and Y coordinates have to be specified as the basis for performing the calculation．
	＇No lin points＇：number of linearization points required（max．32）
	＇X－value＇：X－coordinate for linearization point X1，2，．．．
	＇Y－value＇：Y－coordinate for linearization point X1，2，．．．
	End differential pressure setup

## 6．4．2 Step 2：Configuring the universal input（s）（＇AnalogIn 1／2’）

The device has one universal input，and optionally another universal input for current
（＇Current＇），voltage（＇Voltage＇），resistance thermometer（＇RTD＇）or thermocouples（＇TC＇）． The input is monitored for a cable open circuit（see＂Measuring range limits＂table（ $\rightarrow$ 目 37） and＂Troubleshooting＂section（ $\rightarrow$ 目40）．

## Minimum／maximum values at the inputs：

The current min．／max．value is saved every 15 minutes．If the power supply is disconnected（mains off／mains on），a gap in the recording may result．The measuring interval starts when the device is switched on．It is not possible to synchronize the measuring cycles to full hours． Limit values and relays are available for monitoring the measured values．They should be configured as described in Step $5(\rightarrow$ 目 27）

Each universal input saves the smallest and biggest measured value measured．These values can be reset individually for every channel．In the setup，the administrator can decide whether a user can reset the minimum and maximum values of the individual channels
directly in the main menu without the need for a release code. It is reset in the event of a Reset and if the scaling of the channel is changed.

Setup				
Analog in 1 Analog in 2				
Current	Voltage	RTD (resistance thermometer)	TC (thermocouple)	Off   Deactivate the input
Signal range   Signal range (see Technical data); start and end of measuring range defined by type selected				
Start of measu	so enter decimal point	Connection only RT Type of connection (2-,		
End of measu	nge   o enter decimal point			
TAG   Channel identifier				
Unit   Unit				
Offset   Constant value that is added to the current measured value				
			Ref junction (TC only) intern / fixed + entering "Fixed ref junc" value	
Res minmax: (yes/no)   Reset minimum/maximum values?				

### 6.4.3 Step 3: Configuring the calculations

One or two channels with the following functions are available for calculations:

Setup	
Calc value 1	Calc value 2
- Switched off   - Sum (AI1+AI2)   - Difference (AI1-AI2)   - Average ( (AI1+AI2)/2 )   - Linearization AI1   - Multiplication	- Switched off   - Sum (AI1+AI2)   - Difference (AI1-AI2)   - Average ( (AI1+AI2)/2)   - Linearization AI2   - Linearization CV1   - Multiplication
TAG   Unit   Bar 0\%   Bar 100\%   To be configured like universal input (see Step $2 \rightarrow$ 24)   Factor   Offset	
No. lin points $\rightarrow X / Y$ coordinates   The device has two linearization tables, each with a maximum of 32 linearization points. They are permanently assigned to the 'Calc value 1 ' and 'Calc value 2' channels. If linearization is selected as the calculation, the number of linearization points needed is specified in the 'No. lin points' parameter. An X-coordinate and a Y-coordinate has to be specified for each linearization point. The linearization tables can be deactivated individually.	

Res minmax $\quad$ To be configured like universal input (see Step $2 \rightarrow$ 24)

### 6.4.4 Step 4: Configuring the analog output(s)

The device is fitted with an analog output (optionally with two analog outputs). These outputs can be freely assigned to the inputs and channels available in the device.

Setup	
Analog out 1 Analog out 2	
Assignment: assignment of the output   - Off: switched off   - Analog input 1: universal input 1   - Analog input 2: universal input 2   - Calc value 1: calculated value 1   - Calc value 2: calculated value 2	
Signal type: select active signal range of the output	The output range for the current output corresponds to Namur NE43, i.e. a range to 3.8 mA or 20.5 mA is used. If the value continues to increase (or if it continues to drop), the current remains at the limits 3.8 mA or 20.5 mA . $0-20 \mathrm{~mA}$ output: only the overrange is available. An overrange is also only available for the voltage output. The limit of the overrange is $10 \%$ here.
Lower range Upper range	To be configured like universal input (see Step $2 \rightarrow$ 24)

### 6.4.5 Step 5: Configuring the relays, assigning and monitoring limit values

As an option, the device has two relays with limit values, which are either switched off, or can be assigned to the input signal or the linearized value of analog input 1 or 2 or the calculated values. The limit value is entered as a numerical value including the position of the decimal point. Limit values are always assigned to a relay. Each relay can be assigned to a channel or a calculated value. In the "Error" mode, the relay functions as a fault indicator relay and switches for every fault or alarm.
The following settings can be made for each of the two limit values: assignment, function, set point, hysteresis, operating mode ${ }^{21}$, time delay ${ }^{2)}$ and failure mode ${ }^{2)}$.

Please configure the following parameters to activate the function of the limit value monitoring system or the relays:

Setup	
Relay 1   Relay 2	
Assignment:   Which value should be monitored?	Off, Analog input 1, Analog input 2, Calc value 1, Calc value 2, Error
Function:   Operating mode of the relay (for a   description, see "Operating   modes")	Min., Max., Gradient, Out-band, In-band
Set point:   Set point 2:   Limit value	Enter the limit value with the position of the decimal point. Set point 2 is only displayed for outband and inband.
Time base:   Time base of gradient calculation	Enter the time base in seconds.   Only for operating mode Gradient.
Hysteresis   Hysteresis. The switch point can be   controlled by means of a hysteresis   for every limit value.	The hysteresis is configured as an absolute value (only positive values) in the unit of the channel in question   (e.g. upper limit value = 100m, hysteresis = 1m: limit value on = 100m, limit value off = 99m)

- Please note special situations if both the hysteresis and the delay time should be activated simultaneously (see the following description in the Operating modes section).
- Following a power failure, the limit value monitoring system behaves as if the limit value had not been active before the power failure, i.e. the hysteresis and any delay are reset.


## Relay specification

Relay contact	Changeover
Maximum contact burden DC	$30 \mathrm{~V} / 3 \mathrm{~A}$ (permanent state, without destruction of the input)
Maximum contact burden AC	$250 \mathrm{~V} / 3 \mathrm{~A}$ (permanent state, without destruction of the   input)
Minimum contact load	$500 \mathrm{~mW}(12 \mathrm{~V} / 10 \mathrm{~mA})$
Galvanic isolation towards all other circuits	Test voltage 1500 V AC
Switching cycles	$>1$ million

[^2]| Default setting | Normally closed: Rest contact Rx1/Rx2 |
| :--- | :--- |

## Operating modes

## Off

No action is triggered. The output assigned is always in the normal operating mode.

## Min (lower limit value)

The limit value is active if the value configured is undershot. The limit value is switched off again if the limit value incl. hysteresis is overshot.


Fig. 9: Min operating mode

## Max (upper limit value)

The limit value is active if the value configured is overshot. The limit value is switched off again if the limit value incl. hysteresis is undershot.


## Gradient

The "Gradient" operating mode is used to monitor the change in the input signal over time. The alarm is triggered if the measured value reaches or overshoots the set value. If the user configures a positive value, the limit value is monitored for rising gradients. In the event of negative values, the falling gradient is monitored.
The alarm ends if the gradient drops below the set value again. A hysteresis is not possible for the Gradient operating mode. The alarm can be damped by means of the delay time function (second (s) unit) to reduce the sensitivity.


Fig. 11: Gradient operating mode

## Outband

The limit value is violated as soon as the measured value to be checked drifts into a band specified beforehand by minimum and maximum values. The hysteresis is located at the outsides of the band.


Fig. 12: Outband operating mode

## Inband

The limit value is violated as soon as the measured value to be checked drops below or exceeds a minimum or maximum value specified beforehand. The hysteresis is located at the insides of the band.


Fig. 13: Inband operating mode

## Special situation: hysteresis and delay at one limit value

In special cases when the hysteresis and limit value display are activated, a limit value is switched based on the following principle.
If the hysteresis and limit value delay are activated, the delay is activated when a limit value is overshot and measures the time since the value overshoot began. If the measured value drops back below the limit value, the delay is reset again. This also happens if the measured value falls under the limit value but is still above the specified value of the hysteresis. The next time the limit value is exceeded, the delay time becomes active and starts measuring from 0 .


Fig. 14: Hysteresis and delay active

### 6.4.6 Step 6: Advanced device configuration (access protection/ operating code, saving the current setup)

## Access protection

The access protection locks all the editable parameters, i.e. setup can only be accessed once the 4-digit user code has been entered.
Access protection is not activated at the factory. However, the configuration of the device can be protected by a four-digit code.

Activating access protection:

1. Call up the menu 'Setup' $\rightarrow$ 'System' $\rightarrow$ 'Access code'
2. To enter the code with the '+' and ‘-' keys, select the desired character and confirm with ' $E$ '. The cursor goes to the next position. Once the fourth position has been confirmed, the entry is accepted and the user exits the 'Access code' submenu.

Once access protection has been successfully activated, the lock symbol is shown on the display.
0 If access protection is enabled, the device locks automatically after 600 seconds if it has not been operated in this time. The display switches back to the operating display.
To delete the code completely, use the '+’ and '-’ keys to select the "c" character and confirm with ' E '.

## Saving the current setup/user setup

The current configuration of the device can be saved and is thus available as a specific setup for a device reset or for a device restart. If you ordered the device with customized settings which you specified, the preconfigured setup is also saved in the user setup.
Saving the setup:
Call up the menu 'Expert' $\rightarrow$ 'System' $\rightarrow$ 'Save User Setup'. Confirm by configuring 'Yes'. See also $\rightarrow$ 苜 38, Device reset.

### 6.4.7 Step 7: Configuring the display functions

The display is split into a 7-segment display section and a color section. The dot matrix section can be configured separately for each channel.
All the active channels (analog inputs and calculated values) are offered for selection. To configure the display: press ' $E$ ' and select 'Display'.
Select $\rightarrow$ channel / calculated value and configure one of the following parameters.

Off:	Channel is not displayed.	
Activate the display by configuring the color section:		
	Value/measured value of the channel is displayed on the 7-segment display.	
	Unit:	The unit of the channel is displayed
	Bar graph:	The value of the channel is displayed as a bar graph over the entire width.
	TAG+unit:	Division of the color section, displays value of the channel as a bar graph and unit of the   channel
	Division of the color section, displays channel name and unit of the channel	

[^3]$\rightarrow$ Alternating time: select the time between automatic switchover between the channels and calculated values (in seconds: 3, 5, or 10)
' $x$ Back' takes you back to the higher-order menu.
If several channels are active, the device switches automatically between the channels configured.
Non-activated channels, calculated values and minimum and maximum values are called up manually by pressing the ' + ' and '-' keys and appear for 5 seconds on the display.

### 6.4.8 Overfill protection

In accordance with Annex 2, Section 2(3) and Section 4 of TRbF 510 (Regulation/ construction and inspection guidelines for overfill protection units), and in accordance with the approval guidelines for overfill protection units (ZG-ÜS), the device can be used as a limit signal transmitter for overfill protection units with continuous level measurement for storing combustible and noncombustible liquids which are hazardous to water.

## Reason:

The device meets the requirement that plant units without an inspection label have to comply with the general and special construction and inspection principles for overfill protection in accordance with Annex 2, Section 4, in the following situations:
a. in the event of power supply failure and
b. if limit values are overshot or undershot and
c. if the connection wires between the upstream isolating transmitter and the meter are disconnected, the safety-oriented message "Maximum level" appears (the limit relay deenergizes).

The set limit values for overfill protection must be protected against unintentional modification.


The following function must be activated if additional access protection should be provided for the configuration software:
Select Expert / Setup $\rightarrow$ System $\rightarrow$ Overfill protect: German WHG.

## Configuration when operating the device in accordance with TRbF510:

The device must be set up and operated in accordance with these Operating Instructions which belong to the device.

- Universal inputs have to be configured (as described in Step 1 - Step 3 ( $\rightarrow 22 \mathrm{ff}$.)).
- Limit values have to be configured as follows (as described in Step 5, $\rightarrow$ 27):


## Function: MAX

Assignment: which input signal should be monitored?
Set point: maximum limit value to be monitored; value for the switching threshold
Hysteresis: no hysteresis (=0)
Time delay*: no switching delay ( $=0$ ) or the set time must be taken into account for the tail quantity
Operating mode*: norm closed (relay is de-energized if the limit value is violated; set at the factory)
Failure mode*: norm closed (relay is de-energized in the event of an error; set at the factory)
*) Only in the Expert menu.

- The device must be locked against access from non-authorized persons;

User code protects the parameters configured (as Step 6, $\rightarrow$ 䡒 31):
Enter the 4-digit code: select digit with '+' or '-' and confirm the individual digit with ' $E$ '; once the digit has been confirmed, the cursor moves to the next position, or skips back to the 'System' menu item once the fourth digit has been entered The lock symbol appears on the display.

- Select Setup $\rightarrow$ System $\rightarrow$ Overfill protect: German WHG. It is absolutely essential to assign the device to a WHG application. Confirming the 'Overfill protect: German WHG’ parameter provides additional safety. The device status has to be changed if configuring the device by means of the FieldCare operating software, i.e. WHG must be disabled to be able to change parameters.


### 6.4.9 Expert menu

You activate the Expert mode by pressing 'E' $\rightarrow$ 'Expert'
The Expert menu offers advanced device settings to be able to adapt the device optimally to the application conditions.
An access code is needed to access the Expert menu. This code is preset at the factory as " 0000 ". If a new access code is defined by the user, it replaces the access code assigned at the factory.
The Expert menu is enabled as soon as the correct access code has been entered.
The configuration options which the Expert mode also offers in addition to the parameters of the normal setup are explained in the following section.

## Input $\rightarrow$ Analog input 1/2

Bar 0\%, Bar 100\%
Change the scaling of the bar graph; default value: channel scaling

## Decimal places

Specify the desired number of decimal places; default value: 2 decimal places

## Damping

The input signal can be damped by means of a low-pass filter.
The damping is specified in seconds (can be configured in steps of 0.1 seconds, max. 999.9s).

Default values:

Input type	Default value
Current and voltage inputs	0.0 s
Temperature inputs	1.0 s

Once 5 times the filter time have elapsed, $99 \%$ of the actual measured value is reached.


Fig. 15: Signal damping
Analog in: analog input signal
d: set damping

## Failure mode

If an error is detected at one of the two inputs, the internal status of the input is set to error. The behavior of the measured value in the event of an error can be defined here.

- Invalid = invalid value:

The value is not calculated further since it is passed on as an invalid value.

- Fixed value = constant value:

A constant value can be entered. This value is used if the device should perform further calculations. The input continues to be in a fault state. The error flag is also transmitted if the signal is processed further.

## Namur NE43

Only for $4 \ldots 20 \mathrm{~mA}$. The measured value and the cables are monitored in accordance with NAMUR NE43 recommendations. See $\rightarrow$ 皿 37 for this purpose. Default value: enabled

Open circ detect
Only for 1-5 V. Open circuit monitoring of the input.

Failure delay
Delay time for failure, 0-9999 s

## Allow reset

If this function is activated, the min. and/or max. values can be reset outside the setup in the Display menu. Active access protection does not lock resetting of this memory.

## Output $\rightarrow$ Analog output 1/2

## Failure mode:

- Min = Stored minimum value:

The stored minimum value is output.

- Max = Stored maximum value:

The stored maximum value is output.

- Fixed value = Constant value:

A constant value for output in the event of an error can be entered.

## Output $\rightarrow$ Relay 1/2

Time delay
Setting the time delay for relay switching.

Operating mode
Operating mode of the relay:

- norm opened
- norm closed

Failure mode

- norm opened
- norm closed


## NOTICE

## Setting the limit relay failsafe mode

- The failsafe mode of the limit relay is configured in the setup. If an input to which a limit value is assigned experiences an error, the limit relay assumes the configured status. The effect of the limit relay in the event of an error must be specified in the setup (energizes or de-energizes). If a failsafe mode with a fixed error substitute value is configured in the input assigned, the corresponding relay does not react to the error at the input. Instead it checks the substitute value for limit value violation and switches depending on the limit value violation. The default value specifies that the relay is energized.


## Application $\rightarrow$ Calc value 1/2

Failure mode:

- Invalid:

The calculated value is not valid and is not output.

- Fixed value:

A constant value for output in the event of an error can be entered.

## Diagnostics

## Verify HW set

If the hardware has been upgraded (e.g. contains additional relays, universal inputs etc.), hardware verification has to be performed, i.e. the hardware is checked by the deviceinternal firmware.
The Verify HW set function has to be activated in such situations.

## Simulation

The output value of the analog outputs and the switching condition of the relays can be specified in the simulation mode. Simulation remains active until it is set to "off". The start and end of the simulation are saved in the diagnostic events.
Expert $\rightarrow$ Diagnostics $\rightarrow$ Simulation:

- Select the output to be simulated with the simulation value
- Select the relay to be simulated with the status


### 6.5 In operation

### 6.5.1 '+' and '-' quick pick keys

You can use the ‘+' and ‘-' quick pick keys to switch through all the active channels (universal inputs and calculated values) in the display mode. The measured value or the calculated value is then displayed for 5 seconds. The channel name pertaining to the value displayed appears in the color section of the display. The maximum and minimum value are offered for each active channel.

You can exit a menu at any time by pressing the '+' and '-' keys simultaneously. Any changes made are rejected.

### 6.5.2 Min./max. memory

The device writes the highest and lowest values of the inputs and calculated values and saves them cyclically every 15 minutes in the nonvolatile memory. Display:
Select the corresponding channel using the ' + ' and '-' quick pick keys.
Reset the min. and max. values:
Reset in the setup: select the channel (Analog in 1/2, Calc value 1/2 ), 'Reset min/max', min./max. values of the corresponding channel are reset.

A reset outside the setup (resetting without a user code) is only possible if this was enabled for the channel in the setup (Allow reset, $\rightarrow$ 目 24). Press 'E' and select 'Display’. All the channels for which resetting outside the setup is permitted are displayed in succession. Select the corresponding channel and set to 'Yes'. The channel is reset.

### 6.5.3 Device self-diagnosis, failsafe mode and cable open circuit detection/measuring range limits

The device monitors its inputs for a cable open circuit, as well as its own internal functions by means of comprehensive monitoring mechanisms in the device software (e.g. cyclic memory test).

If the self-diagnosis of the device detects an error, the device reacts as follows:

- Open collector output switches
- Red LED lights up
- Relay switches (if active and assigned as a fault/alarm relay)
- Display goes to the error mode $\rightarrow$ color of channel affected changes to red and an error is displayed
- The unit switches automatically between the active channels and the error display

Troubleshooting instructions and a list of all the error messages can be found in Section 9
‘Troubleshooting'.

## Measuring range limits

| Range <br> Status <br> Display | F |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

### 6.5.4 Saving diagnostic events/alarms and errors

Diagnostic events such as alarms and fault conditions are saved in the device as soon as a new error occurs or the status of the device changes. The events saved are saved every 30 minutes to the nonvolatile device memory.
The device lists the following values in the 'Diagnostics' menu:

- Current device diagnosis
- Last device diagnosis
- Previous 5 diagnosis messages

List of error codes, see Section 9.2.1


Under certain conditions events saved over the past 30 minutes might be lost.

### 6.5.5 Operating hours counter

The device has an internal operating hours counter which also acts as the reference for diagnostic events.
The operating hours can be found in the 'Diagnostics' $\rightarrow$ 'Operating time' menu item. This information cannot be reset or changed.

### 6.5.6 Device reset

The following reset categories are available for a device reset.
'Expert' $\rightarrow$ 'System' $\rightarrow$ 'Reset' $\rightarrow$ 'Factory reset': reset all the parameters to the as-delivered state; all the configured parameters are overwritten.

Any user code already defined is overwritten!!! When operation is locked by a user code, this is indicated by a lock symbol on the display.
'Expert' $\rightarrow$ 'System' $\rightarrow$ 'Reset' $\rightarrow$ 'User reset': parameters are loaded and configured in accordance with the user setup saved; configuration currently configured or factory settings are overwritten by the user setup.

1
Any user code already defined is overwritten by the user code defined in the user setup!!! If no user code was saved in the user setup, the device is no longer locked. When operation is locked by a user code, this is indicated by a lock symbol on the display.

## 7 Maintenance

No special maintenance work is required on the device.

## 8 Accessories

### 8.1 Device-specific accessories



### 8.2 Communication-specific accessories

Designation
Interface cable
Commubox TXU10 incl. FieldCare Device Setup and DTM Library
Commubox FXA291 incl. FieldCare Device Setup and DTM Library

## 9 Troubleshooting

The following section provides you with an overview of possible causes of errors to provide you with an initial troubleshooting aid.

## NOTICE

Device malfunction possible when retrofitting with untested hardware

- When upgrading/retrofitting the device with additional hardware at a later date (relay, additional universal input and additional analog output), an internal hardware test must be performed by the device software. To do so use the Verify HW set function in the Expert $\rightarrow$ Diagnostics menu.


### 9.1 Troubleshooting instructions

## A WARNING

Danger through electric tension

- The device cannot be operated in an open state for error diagnosis!

Display	Cause	Remedy
No measured value display	No power supply connected	Check the power supply of the   device.
	Power supply applied, device   defective	The device must be replaced.
The red marking for overrange/   underrange is flashing on the bar   graph.	Analog output is > 10\% above or   below the scaled range.	Check the scaling of the analog   output (Out $100 \%$ or Out 0\%).

Error codes that are shown on the display are described in Section 9.2. Further information on the failsafe mode is also provided in Section 6.5.3.

### 9.2 Process error messages

Faults have the highest priority. The associated error code is displayed.

### 9.2.1 Device malfunction

The errors are defined as:

Error code	Meaning	Remedy
F041	Sensor/cable open circuit	Check wiring.
F045	Sensor error	Check sensor.
F101	Range undershoot	Check measurement, limit violated.
F102	Range overshoot	Check measurement, limit violated.
F221	Error: comparison measurement point	Contact your local service organization.
F261	Error: flash	Contact your local service organization.
F261	Error: RAM	Contact your local service organization.


Error code	Meaning	Remedy
F261	Error: EEPROM	Contact your local service organization.
F261	Error: D/A converter channel 1	Contact your local service organization.
F261	Error: D/A converter channel 2	Contact your local service organization.
F261	Error: invalid device ID	Contact your local service organization.
F281	Error: parameter data could not be saved	Contact your local service organization.
F282	Error: incorrect parameter data	Contact your local service organization.
F283	Error: incorrect calibration values	Contact your local service organization.
F431	Info: upload/download active	Only for information, device properly   working.
C411	Info: calibration/testing mode	Only for information, device properly   working.
C432	Info: analog output simulation mode	Only for information, device properly   working.
C483 overflow	Onfy for information, device properly	
working.		
working.		

### 9.3 Spare parts



Fig. 17: Spare parts of the device

Item no.	Designation	Order no.
1	Front metal incl. front foil and glass	RIA46X-GB
2	Front plastic incl. front foil	RIA46X-GA
3	Housing bottom part aluminum (metric threads)	RIA46X-GD
	Housing bottom part aluminium (NPT1/2" threads)	RIA46X-GE
4	Housing bottom part plastic (lasered)   5	Spare parts kit cover and connection parts   - cover plate for front + bottom part   - ribbon cable main board -> display board
6	Cable gland kit (plastic)   - 4x M16x1,5 + 1x M20x1,5	RIA46X-GC
	Adapter kit NPT   - 4x adapter M20x1,5 (external threat) -> NTP1/2" (inside   thread)   - 1x adapter M16x1,5 (external thread) -> NTP1/2" (inside   thread)	RIA46X-GF
	Cable gland NPT1/2"	RIA46X-GH
7	Spare part kit sundries   - Goretex filter   - Hinge pin (2 pieces)   - Cable shield grounding clamp (metal kit 5 screws/washer +   clamp)	RIA46X-GG


Item no.	Designation	Order no.
8	Mainboard 24-230V (-20\% +10\%) 1 channel w/o relay, non Ex	RIA46X-NA
	Mainboard 24-230V (-20\% +10\%) 1 channel w/o relay, EX	RIA46X-NB
	Mainboard 24-230V (-20\% +10\%) 1 channel with relay, non EX	RIA46X-NC
	Mainboard 24-230V (-20\% + 10\%) 1 channel with relay, EX	RIA46X-ND
	Mainboard 24-230V (-20\% +10\%) 2 channel w/o relay, non EX	RIA46X-NE
	Mainboard 24-230V (-20\% +10\%) 2 channel w/o relay, EX	RIA46X-NF
	Mainboard 24-230V (-20\% +10\%) 2 channel with relay, non EX	RIA46X-NG
	Mainboard 24-230V (-20\% + 10\%) 2 channel with relay, EX	RIA46X-NH
9	CPU board, standard + LC display	RIA46T-
	Version:	
	A Standard + LC display	
	Device software:	
	1 Standard	
10	LC display (incl. ribbon cable)	RIA46X-DA
11	Power supply terminal 2 pole	71084277
w/o. item no.	Pipe mounting kit (with plastic mounting plate) Pipe mounting kit (with stainless steel mounting plate)	$\begin{aligned} & \text { RK01-AH } \\ & \text { RK01-AU } \end{aligned}$

### 9.4 Return

For a return, e.g. in case of repair, the device must be sent in protective packaging. The original packaging offers the best protection. Repairs must only be carried out by your supplier's service organization.

9
Please enclose a note describing the fault and the application when sending the unit in for repair.

### 9.5 Disposal

The device contains electronic components and must, therefore, be disposed of as electronic waste in the event of disposal. Please observe in particular the local waste disposal regulations of your country.

## 10 Technical data

### 10.0.1 Input

## Inputs

One or two universal inputs

## Measured variable

Current, voltage, resistance, resistance thermometer, thermocouples

## Measuring ranges

Current:

- $0 / 4$ to $20 \mathrm{~mA}+10 \%$ overrange
- Short-circuit current: max. 150 mA
- Load: $10 \Omega$

Voltage:

- 0 to $10 \mathrm{~V}, 2$ to $10 \mathrm{~V}, 0$ to $5 \mathrm{~V}, 0$ to $1 \mathrm{~V}, 1$ to $5 \mathrm{~V}, \pm 1 \mathrm{~V} \pm 10 \mathrm{~V}, \pm 30 \mathrm{~V}, \pm 100 \mathrm{mV}$
- Max. permitted input voltage:

Voltage $\geq 1 \mathrm{~V}: \pm 35 \mathrm{~V}$
Voltage < 1 V: $\pm 12 \mathrm{~V}$

- Input impedance: > $1 \mathrm{M} \Omega$

Resistance:

- 30 to $3000 \Omega$

Resistance thermometer:

- Pt 100 as per IEC60751, GOST, JIS1604
- Pt 500 and Pt 1000 as per IEC60751
- Cu 100, Cu 50, Pt 50, Pt 46, Cu 53 as per GOST
- Ni 100, Ni 1000 as per DIN 43760

Thermocouple types:

- Type J, K, T, N, B, S, R as per IEC60584
- Type U as per DIN 43710
- Type L as per DIN 43710, GOST
- Type C, D as per ASTM E998


## Update time

200 ms

## Linearization

Linearization of input signals and calculated values possible over a maximum of 32 points.

## Galvanic isolation

Towards all other circuits

## Output

## Output signal

One or two analog outputs, galvanically isolated

## Current/voltage output

Current output:

- $0 / 4$ to 20 mA
- Overrange up to 22 mA


## Voltage:

- 0 to $10 \mathrm{~V}, 2$ to $10 \mathrm{~V}, 0$ to $5 \mathrm{~V}, 1 . . .5 \mathrm{~V}$
- Overrange: up to 11 V , short-circuit proof, $\mathrm{I}_{\max }<25 \mathrm{~mA}$


## Loop power supply

- Open-circuit voltage: 24 V DC (+15\% /-5\%)

Ex version: > 14 V at 22 mA
Non-hazardous operation: > 16 V at 22 mA

- Maximum 30 mA short-circuit-proof and overload-proof
- Galvanically isolated from system and outputs

HART ${ }^{\oplus}$ :
HART $^{\oplus}$ signals are not affected

## Status output

Open Collector for monitoring of the device state and alarm notification. The OC output is closed in normal state. In error state, the OC output is opened.

- $\mathrm{I}_{\text {max }}=200 \mathrm{~mA}$
- $U_{\max }=28 \mathrm{~V}$
- $\mathrm{U}_{\mathrm{on} / \max }=2 \mathrm{~V}$ at 200 mA


## Limit function

Relay contact	Changeover
Maximum contact burden DC	$30 \mathrm{~V} / 3 \mathrm{~A}$ (permanent state, without destruction of the input)
Maximum contact burden AC	$250 \mathrm{~V} / 3 \mathrm{~A}$ (permanent state, without destruction of the   input)
Minimum contact load	$500 \mathrm{~mW}(12 \mathrm{~V} / 10 \mathrm{~mA})$
Galvanic isolation towards all other circuits	Test voltage 1500 V AC
Switching cycles	$>1$ million

### 10.0.2 Terminal assignment

## Electrical connection



Fig. 18: Terminal assignment of the field meter
Connection socket for interface cable
Connection supply voltage
Connection relay 1 (optional)
Connection relay 2 (optional)
Connection analog and status output
Connection analog input 1
Connection analog input 2 (optional)
HART ${ }^{\circledR}$ connection sockets
Laser labelling of terminal assignment

## Supply voltage

Wide-area power supply unit 24 to 230 V AC/DC (-20 \% / +10 \%) 50/60 Hz

## Power consumption

Max. 21.5 VA / 6.9 W

## Connection data interface

Commubox FXA291 PC USB interface

- Connection: 4 -pin connector
- Transmission protocol: FieldCare
- Transmission rate: 38,400 Baud


## Interface cable TXU10-AC PC USB interface

- Connection: 4-pin connection
- Transmission protocol: FieldCare
- Delivery scope: Interface cable incl. FieldCare Device Setup DVD with all Comm DTMs and Device DTMs


## Performance characteristics

## Reference operating conditions

Power supply: 230 V AC, $50 / 60 \mathrm{~Hz}$
Ambient temperature: $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F} \pm 9^{\circ} \mathrm{F}\right)$
Humidity: 20 \% to 60 \% rel. humidity

## Maximum measured error

Universal input:

Accuracy	Input:	Range:	Maximum measured error of measuring range (oMR):
	Current	0 to $20 \mathrm{~mA}, 0$ to $5 \mathrm{~mA}, 4$ to 20 mA ; overrange: to 22 mA	$\pm 0.05 \%$
	Voltage $\geq 1 \mathrm{~V}$	0 to $10 \mathrm{~V}, 2$ to $10 \mathrm{~V}, 0$ to $5 \mathrm{~V}, 1$ to $5 \mathrm{~V}, 0$ to $1 \mathrm{~V}, \pm 1 \mathrm{~V}, \pm 10 \mathrm{~V}, \pm$ 30 V	$\pm 0.1 \%$
	Voltage < 1 V	$\pm 100 \mathrm{mV}$	$\pm 0.05 \%$
	Resistance measurement	30 to $3000 \Omega$	$\begin{aligned} & \text { 4-wire: } \pm(0.10 \% \text { oMR + } 0.8 \Omega) \\ & \text { 3-wire: } \pm(0.10 \% \text { oMR }+1.6 \Omega) \\ & \text { 2-wire: } \pm(0.10 \% \text { oMR }+3 \Omega) \end{aligned}$
	Resistance thermometer	Pt100, -200 to $850^{\circ} \mathrm{C}\left(-328\right.$ to $\left.1562^{\circ} \mathrm{F}\right)$ (IEC60751, $\alpha=0.00385$ ) Pt100, -200 to $850^{\circ} \mathrm{C}\left(-328\right.$ to $\left.1562^{\circ} \mathrm{F}\right)$ (JIS1604, w=1.391) Pt100, -200 to $649^{\circ} \mathrm{C}\left(-328\right.$ to $\left.1200^{\circ} \mathrm{F}\right)(\mathrm{GOST}, \boldsymbol{\alpha}=0.003916)$ Pt500, -200 to $850^{\circ} \mathrm{C}\left(-328\right.$ to $\left.1562^{\circ} \mathrm{F}\right)$ (IEC60751, $\alpha=0.00385$ ) Pt1000, -200 to $600^{\circ} \mathrm{C}\left(-328\right.$ to $\left.1112{ }^{\circ} \mathrm{F}\right)$ (IEC60751, $\alpha=0.00385$ )	$\begin{aligned} & \text { 4-wire: } \pm\left(0.10 \% \text { oMR }+0.3 \mathrm{~K}\left(0.54{ }^{\circ} \mathrm{F}\right)\right) \\ & \text { 3-wire: } \pm\left(0.10 \% \text { oMR }+0.8 \mathrm{~K}\left(1.44{ }^{\circ} \mathrm{F}\right)\right) \\ & \text { 2-wire: } \pm\left(0.10 \% \text { oMR }+1.5 \mathrm{~K}\left(2.7^{\circ} \mathrm{F}\right)\right) \end{aligned}$
		Cu100, -200 to $200^{\circ} \mathrm{C}\left(-328\right.$ to $\left.392^{\circ} \mathrm{F}\right)$ (GOST, w=1.428)   Cu50, -200 to $200^{\circ} \mathrm{C}\left(-328\right.$ to $\left.392^{\circ} \mathrm{F}\right)$ (GOST, w=1.428)   Pt50, -200 to $1100^{\circ} \mathrm{C}\left(-328\right.$ to $\left.2012^{\circ} \mathrm{F}\right)$ (GOST, w=1.391)   Pt46, -200 to $850{ }^{\circ} \mathrm{C}\left(-328\right.$ to $\left.1562^{\circ} \mathrm{F}\right)$ (GOST, w=1.391)   Ni100, -60 to $250^{\circ} \mathrm{C}\left(-76\right.$ to $\left.482^{\circ} \mathrm{F}\right)$ (DIN43760, $\alpha=0.00617$ )   Ni1000, -60 to $250^{\circ} \mathrm{C}\left(-76\right.$ to $\left.482{ }^{\circ} \mathrm{F}\right)$ (DIN43760, $\alpha=0.00617$ )	$\begin{aligned} & \text { 4-wire: } \pm\left(0.20 \% \text { oMR }+0.3 \mathrm{~K}\left(0.54{ }^{\circ} \mathrm{F}\right)\right) \\ & \text { 3-wire: } \pm\left(0.20 \% \text { oMR }+0.8 \mathrm{~K}\left(1.44{ }^{\circ} \mathrm{F}\right)\right) \\ & \text { 2-wire: } \pm\left(0.20 \% \text { oMR }+1.5 \mathrm{~K}\left(2.7^{\circ} \mathrm{F}\right)\right) \end{aligned}$
		Cu53, -50 to $200^{\circ} \mathrm{C}\left(-58\right.$ to $\left.392{ }^{\circ} \mathrm{F}\right)(\mathrm{GOST}, \mathrm{w}=1.426)$	$\begin{aligned} & \text { 4-wire: } \pm\left(0.30 \% \text { oMR }+0.3 \mathrm{~K}\left(0.54{ }^{\circ} \mathrm{F}\right)\right) \\ & \text { 3-wire: } \pm\left(0.30 \% \text { oMR }+0.8 \mathrm{~K}\left(1.44^{\circ} \mathrm{F}\right)\right) \\ & \text { 2-wire: } \pm\left(0.30 \% \text { oMR }+1.5 \mathrm{~K}\left(2.7^{\circ} \mathrm{F}\right)\right) \end{aligned}$
	Thermocouples	Type J (Fe-CuNi), -210 to $1200^{\circ} \mathrm{C}\left(-346\right.$ to $2192{ }^{\circ} \mathrm{F}$ ) (IEC60584)	$\begin{aligned} & \pm\left(0.1 \% \text { oMR }+0.5 \mathrm{~K}\left(0.9^{\circ} \mathrm{F}\right)\right) \\ & \text { from }-100^{\circ} \mathrm{C}\left(-148{ }^{\circ} \mathrm{F}\right) \end{aligned}$
		Type K (NiCr-Ni), -200 to $1372{ }^{\circ} \mathrm{C}$ (-328 to $2502{ }^{\circ} \mathrm{F}$ ) (IEC60584)	$\begin{aligned} & \pm\left(0.1 \% \text { oMR }+0.5 \mathrm{~K}\left(0.9^{\circ} \mathrm{F}\right)\right) \\ & \text { from }-130^{\circ} \mathrm{C}\left(-202^{\circ} \mathrm{F}\right) \end{aligned}$
		Type T (Cu-CuNi), -270 to $400{ }^{\circ} \mathrm{C}\left(-454\right.$ to $\left.752{ }^{\circ} \mathrm{F}\right)($ (IEC60584)	$\begin{aligned} & \pm\left(0.1 \% \text { oMR }+0.5 \mathrm{~K}\left(0.9^{\circ} \mathrm{F}\right)\right) \\ & \text { from }-200^{\circ} \mathrm{C}\left(-328^{\circ} \mathrm{F}\right) \end{aligned}$
		Type N (NiCrSi-NiSi), -270 to $1300^{\circ} \mathrm{C}\left(-454\right.$ to $2372{ }^{\circ} \mathrm{F}$ ) (IEC60584)	$\begin{aligned} & \pm\left(0.1 \% \text { oMR }+0.5 \mathrm{~K}\left(0.9^{\circ} \mathrm{F}\right)\right) \\ & \text { from }-100^{\circ} \mathrm{C}\left(-148{ }^{\circ} \mathrm{F}\right) \end{aligned}$
		Type L (Fe-CuNi), -200 to $900^{\circ} \mathrm{C}\left(-328\right.$ to $\left.1652{ }^{\circ} \mathrm{F}\right)$ (DIN43710, GOST)	$\begin{aligned} & \pm\left(0.1 \% \text { oMR }+0.5 \mathrm{~K}\left(0.9^{\circ} \mathrm{F}\right)\right) \\ & \text { from }-100^{\circ} \mathrm{C}\left(-148{ }^{\circ} \mathrm{F}\right) \end{aligned}$
		Type D (W3Re/W25Re), 0 to $2495^{\circ} \mathrm{C}$ ( 32 to 4523 $\left.{ }^{\circ} \mathrm{F}\right)($ ASTME998)	$\pm\left(0.15 \% \text { oMR }+1.5 \mathrm{~K}\left(2.7^{\circ} \mathrm{F}\right)\right)$ from $500^{\circ} \mathrm{C}$ (from $932{ }^{\circ} \mathrm{F}$ )
		Type C (W5Re/W26Re), 0 to $2320^{\circ} \mathrm{C}$ (32 to 4208 $\left.{ }^{\circ} \mathrm{F}\right)($ ASTME998)	$\begin{aligned} & \pm\left(0.15 \% \text { oMR }+1.5 \mathrm{~K}\left(2.7^{\circ} \mathrm{F}\right)\right) \\ & \text { from } 500^{\circ} \mathrm{C}\left(932^{\circ} \mathrm{F}\right) \end{aligned}$
		Type B (Pt30Rh-Pt6Rh), 0 to $1820^{\circ} \mathrm{C}$ ( 32 to $3308{ }^{\circ} \mathrm{F}$ ) (IEC60584)	$\begin{aligned} & \pm\left(0.15 \% ~ o M R+1.5 \mathrm{~K}\left(2.7^{\circ} \mathrm{F}\right)\right) \\ & \text { from } 600^{\circ} \mathrm{C}\left(1112^{\circ} \mathrm{F}\right) \end{aligned}$
		Type S (Pt10Rh-Pt), -50 to $1768{ }^{\circ} \mathrm{C}\left(-58\right.$ to $\left.3214{ }^{\circ} \mathrm{F}\right)($ (ECC60584)	$\begin{aligned} & \pm\left(0.15 \% \text { oMR }+3.5 \mathrm{~K}\left(6.3^{\circ} \mathrm{F}\right)\right) \\ & \text { for }-50 \text { to } 100^{\circ} \mathrm{C}\left(-58 \text { to } 212^{\circ} \mathrm{F}\right) \\ & \pm\left(0.15 \% \text { oMR }+1.5 \mathrm{~K}\left(2.7^{\circ} \mathrm{F}\right)\right) \\ & \text { for } 100 \text { to } 1768^{\circ} \mathrm{C}\left(212 \text { to } 3214^{\circ} \mathrm{F}\right) \end{aligned}$


	Type R (Pt13Rh-Pt), -50 to $1768{ }^{\circ} \mathrm{C}\left(-58\right.$ to $\left.3214{ }^{\circ} \mathrm{F}\right)($ IEC60584)	$\begin{aligned} & \pm\left(0.15 \% \text { oMR }+3.5 \mathrm{~K}\left(6.3^{\circ} \mathrm{F}\right)\right) \\ & \text { for }-50 \text { to } 100{ }^{\circ} \mathrm{C}\left(-58 \text { to } 212^{\circ} \mathrm{F}\right) \\ & \pm\left(0.15 \% \text { oMR }+1.5 \mathrm{~K}\left(2.7^{\circ} \mathrm{F}\right)\right) \\ & \text { for } 100 \text { to } 1768^{\circ} \mathrm{C}\left(212 \text { to } 3214^{\circ} \mathrm{F}\right) \end{aligned}$
	Type U (Cu-CuNi), -200 to $600^{\circ} \mathrm{C}\left(-328\right.$ to $\left.1112{ }^{\circ} \mathrm{F}\right)($ DIN 43710)	$\begin{aligned} & \pm\left(0.15 \% \text { oMR }+0.5 \mathrm{~K}\left(0.9^{\circ} \mathrm{F}\right)\right) \\ & \text { from }-100^{\circ} \mathrm{C}\left(-148{ }^{\circ} \mathrm{F}\right) \end{aligned}$
AD converter resolution	16 bit	
Temperature drift	Temperature drift: $\leq 0.01 \% / \mathrm{K}\left(0.1 \% / 18^{\circ} \mathrm{F}\right)$ oMR $\leq 0.02 \% / \mathrm{K}\left(0.2 \% / 18^{\circ} \mathrm{F}\right)$ oMR for Cu100, Cu50, Cu53, Pt50 and P	

Analog output:

Current	$0 / 4$ to 20 mA, overrange to   22 mA	$\pm 0.05 \%$ of measuring range
	Max. load	$500 \Omega$
	Max. inductance	10 mH
	Max. capacitance	$10 \mu \mathrm{~F}$
	Max. ripple	10 mVpp at $500 \Omega$, frequency $<50 \mathrm{kHz}$
Voltage	0 to $10 \mathrm{~V}, 2$ to 10 V   0 to 5 V   Overrange: up to 11 V, short-   circuit proof, $\mathrm{I}_{\text {max }}<25 \mathrm{~mA}$	$\pm 0.05 \%$ of measuring range   $\pm 0.1 \%$ of measuring range
	Max. ripple	10 mVpp at $1000 \Omega$, frequency $<50 \mathrm{kHz}$
Resolution	13 bit	
Temperature drift	$0.01 \% / \mathrm{K}\left(0.1 \% / 18{ }^{\circ} \mathrm{F}\right)$ of of measuring range	
Galvanic isolation	Testing voltage of 500 V towards all other circuits	

### 10.0.3 Installation

## Installation instructions

## Mounting location

Field, direct wall mounting and wall or pipe mounting ${ }^{3)}$ using the optional mounting plate.

## Orientation

The orientation is determined by the readability of the display.
Max. viewing angle range $+/-45^{\circ}$ from the central display axis in every direction.

## Environment

Ambient temperature range
-40 to $+50^{\circ} \mathrm{C}\left(-40\right.$ to $\left.122^{\circ} \mathrm{F}\right)$


Readability of the display cannot be guaranteed at temperatures below $-30^{\circ} \mathrm{C}$ $\left(-22^{\circ} \mathrm{F}\right)$.

## Storage temperature

-40 to $+85^{\circ} \mathrm{C}\left(-40\right.$ to $\left.185^{\circ} \mathrm{F}\right)$

[^4]Operating height
< 2000 m above MSL (6561 ft)

Shock and vibration
3 g at $2 \ldots 150 \mathrm{~Hz}$ as per IEC 60068-2-6

Climate class
As per IEC 60654-1, Class B2

Degree of protection
Front IP 67 / NEMA 4x (not evaluated by UL)

Condensation
permitted

Electromagnetic compatibility (EMC)

- Interference immunity:

To IEC 61326 industrial environments / NAMUR NE 21

- Interference emissions:

To IEC 61326 Class A

### 10.0.4 Mechanical construction

Design, dimensions


Fig. 19: Dimensions of the field meter
A: $\quad$ Drill-hole for direct wall mounting or on optional mounting plate with 4 screws $\varnothing 5 \mathrm{~mm}$ ( 0.2 in )

## Weight

- Plastic housing: approx. $600 \mathrm{~g}(1.32 \mathrm{lbs})$
- Aluminum housing: approx. 1700 g ( 3.75 lbs )


## Material

Housing	Nameplate
Fiber-glass reinforced plastic PBT-GF30	Laser marking
Aluminum AlSi12 (as an option)	Laser-writable foil, polyester

## Terminals

Plug-in spring terminals, $2.5 \mathrm{~mm}^{2}$ ( 14 AWG); auxiliary voltage with screw terminals (AWG 30-12; torque 0.5-0.6 $\mathrm{Nm}(4.4-5.3 \mathrm{lb} \mathrm{in})$ ).

### 10.0.5 Human interface

Display elements


Fig. 20: Display of the field meter
1: Channel display: 1: analog input 1; 2: analog input 2; 1 : calculated value 1; 2 : calculated value 2
2: Dot matrix display for TAG, bar graph and unit
3: Limit value indicators in the bar graph
4: "Operation locked" indicator
5: Green LED; measuring device operational
6: Red LED; error/alarm
7: Yellow LED; status of relay 1
8: Yellow LED; status of relay 2
9: Minimum/maximum value indicator

- Display

5-digit, 7-segment backlit LC display
Dot matrix for text/bar graph

- Display range
-99999 to +99999 for measured values
- Signaling
- Setup security locking (lock)
- Measuring range overshoot/undershoot
$-2 x$ status relay (only if relay option was selected)


## Operating elements

3 keys: -, +, E

## Remote operation

## Configuration

The device can be configured with the PC software or on site using the operating keys.
FieldCare Device Setup is delivered together with the Commubox FXA291 or TXU10-AC (see 'Accessories') or can be downloaded free of charge from www.endress.com.

## Interface

4-pin socket for the connection with a PC via Commubox FXA291 or TXU10-AC interface cable (see 'Accessories')

### 10.0.6 Certificates and approvals

## CE mark

The device meets the legal requirements of the EU directives. Endress+Hauser confirms that the device has been tested successfully by affixing the CE mark.

## Ex approval

Information about currently available Ex versions (ATEX, FM, CSA, etc.) can be supplied by your $\mathrm{E}+\mathrm{H}$ Sales Center on request. All explosion protection data are given in a separate documentation which is available upon request.

## Other standards and guidelines

- IEC 60529:

Degrees of protection by housing (IP code)

- IEC 61010-1: 2001 Cor 2003

Safety requirements for electrical equipment for measurement, control and laboratory use

- EN 60079-11

Explosive atmospheres - Part 11: equipment protection by intrinsic safety "I"

## 11 Appendix

The following tables show all the parameters available in the configuration menu. The values configured at the factory are marked in bold.

### 11.1 Further explanations on the differential pressure application at level measurement

At both universal inputs pressure sensors are connected.
With the following calculation steps the volume in the CV channels is finally calculated:

## $1{ }^{\text {st }}$ Calculation Step: Calculation of the filling level

Both pressure sensors provide the actual pressure at the installation point.From both pressures (possibly adjusted for an offset; this has to be set in AI1 respectively AI2) a pressure difference $(\Delta \mathrm{p})$ is determined. If the pressure difference is divided through the density of the medium multiplied with the gravitational acceleration the measured height is gained..
Level $\mathrm{h}=\Delta \mathrm{p} /\left(\rho^{\star} \mathrm{g}\right)$
The following units form the basis of the calculation:
Density $\rho$ : [kg/m]
Pressure p: [Pa] or [ $\mathrm{N} / \mathrm{m}^{2}$ ]
The gravitational acceleration is defined by a constant:
Gravitational acceleration $\mathrm{g}=9.81 \mathrm{~m} / \mathrm{s}^{2}$

## NOTICE

## Wrong calculation results through use of incorrect engineering units

- If the calculation is to be carried through correctly the measured signal (e.g. in mbar) has to be converted into the according unit Pascal (Pa). This is achieved by a conversion factor. Conversion factors can be found in the table $\rightarrow 54$.

Examples for the conversion:
Water: density $\rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Pressure measurement: pressure 1 (bottom): Scale 0 to 800 mbar ( 0 to 80000 Pa ); Present value: 500 mbar ( 50000 Pa )
Pressure measurement: pressure2 (top): Scale 0 to 800 mbar (0 to 80000 Pa );
Present value: 150 mbar ( 15000 Pa )
When using Pascal:


When using mbar:

```
\(\mathrm{h}=\frac{1}{1000 \mathrm{~kg} / \mathrm{m}^{3 *} 9.81 \mathrm{~m} / \mathrm{s}^{2}} *\left((500-150 \mathrm{mbar})^{\star}\left(1,0000 * 10^{2}\right)\right)=3.57 \mathrm{~m}\)
\(\mathrm{h}=\mathrm{b} * \Delta \mathrm{p}\)
Calculation of the correction factor \(b\) :
\(b=1 /\left(\rho^{*} g\right)\)
for water: \(b=1 /(1000 * 9.81)=0,00010194\)
Tables and examples for the conversion of application related units into the defined values
\(\mathrm{kg} / \mathrm{m}^{3}\) and Pa or \(\mathrm{N} / \mathrm{m}^{2}\) :
- \(1 \mathrm{bar}=0.1 \mathrm{~N} / \mathrm{mm}^{2}=10^{5} \mathrm{~N} / \mathrm{m}^{2}=10^{5} \mathrm{~Pa}\)
- \(1 \mathrm{mbar}=1 \mathrm{hPa}=100 \mathrm{~Pa}\)
```

Conversion factors for various pressure engineering units:

	Pascal	Bar	Technical Atmosphere	Physical Atmosphere	Torr	Pounds per square inch
	(Pa)	(bar)	(at)	(atm)	(torr)	(psi)
	$\equiv 1 \mathrm{~N} / \mathrm{m}^{2}$	$\equiv 1 \mathrm{Mdyn} / \mathrm{cm}^{2}$	$\equiv 1 \mathrm{kp} / \mathrm{cm}^{2}$	$\equiv 1 \mathrm{pSTP}$	$\equiv 1 \mathrm{mmHg}$	$\equiv 1 \mathrm{lbf} / \mathrm{in}^{2}$
1 Pa	1	1.0000 * $10^{-5}$	1.0197 * $10^{-5}$	9.8692 * $10^{-6}$	7.5006 * $10^{-3}$	$1.4504 * 10^{-4}$
1 bar	1.0000 * $10^{5}$	1	1.0197 * $10^{0}$	9.8692 * $10^{-1}$	7.5006 * $10^{2}$	1.4504 * $10^{1}$
1 at	9.8067 * $10^{4}$	9.8067 * $10^{-1}$	1	$9.6784 * 10^{-1}$	7.3556 * $10^{2}$	1.4223 * $10^{1}$
1 atm	1.0133 * $10^{5}$	1.0133 * $10^{0}$	1.0332 * $10^{0}$	1	7.6000 * $10^{2}$	1.4696 * $10^{1}$
1 torr	1.3332 * $10^{2}$	1.3332 * $10^{-3}$	1.3595 * $10^{-3}$	1.3158 * $10^{-3}$	1	1.9337 * $10^{-2}$
1 psi	6.8948 * $10^{3}$	6.8948 * $10^{-3}$				

## Density:

The density has to be taken from the specifications of the medium that the tank contains. In the given table standard approximate values that can help for a first orientation are listed

Medium	Density
	in $\mathrm{kg} / \mathrm{m}^{3}$
Water (at $3.98{ }^{\circ} \mathrm{C}$ )	999.975
Mercury	13595
Bromine	3119
Sulfuric acid	1834
Nitric acid	1512
Glycerin	1260
Nitrobenzene	1220
Deuterium oxide	1105
Acetic Acid	1049
Milk	1030
Seawater	1025
Aniline	1022
Olive oil	910
Benzene	879
Toluene	872
Spirits of turpentine	855
Spirit	830
Diesel fuel	830
Paraffin	800
Methanol	790
Ethyl alcohol	789
Automotive gas (standardized, average value)	750
Acetone	721
Disulfide	713
Diethyl ether	713

## $2^{\text {nd }}$ Calculation step: Calculation of the volume out of the height

By means of the linearization of the calculated height value the volume can be calculated. This is done by assigning a certain volume value to every height value in dependency of the tank shape.
This linearization is mapped over up to 32 supporting points. However, at a straight-linear dependency of filling height and volume are sufficient.
The integrated tank-linearization module in FieldCare provides support here.

### 11.2 Display menu

Display menu		
AI1 Minmax-reset Only available if "Yes" was configured in the Setup>Analog in $1>$ Allow reset menu.	Yes   No	Resets the minimum and maximum values saved for analog input 1.
AI2 Minmax-reset Only available if "Yes" was configured in the Setup>Analog in $2>$ Allow reset menu.	Yes   No	Resets the minimum and maximum values saved for analog input 2.
Cv1 Minmax-reset Only available if "Yes" was configured in the Setup > Calc value $1>$ Allow reset menu.	Yes   No	Resets the minimum and maximum values saved for math 1.
Cv2 Minmax-reset Only available if "Yes" was configured in the Setup > Calc value 2 > Allow reset menu.	Yes   No	Resets the minimum and maximum values saved for math 2.
Analog in 1	Off   Unit   Bar graph   Bargr + unit   Tag + unit	Configures the display for analog input 1. If the parameter is set to 'Off', the channel is not displayed.
Analog in 2	Off   Unit   Bar graph   Bargr + unit   Tag + unit	Configures the display for analog input 2. If the parameter is set to 'Off', the channel is not displayed.
Calc value 1	Off   Unit   Bar graph   Bargr + unit   Tag + unit	Configures the display for math 1 . If the parameter is set to 'Off', the channel is not displayed.
Calc value 2	Off   Unit   Bar graph   Bargr + unit   Tag + unit	Configures the display for math 2. If the parameter is set to 'Off', the channel is not displayed.
Contrast	$\begin{aligned} & 1 \text { to } 7 \\ & 6 \end{aligned}$	Configures the contrast
Brightness	$\begin{aligned} & 1 \text { to } 7 \\ & 6 \end{aligned}$	Configures the brightness
Alternating time	3 seconds 5 seconds 10 seconds	Configures the time for toggling between the channels displayed.

### 11.3 Setup menu

Setup menu			
Application	1-channel   2-channel   Diff pressure		Configures the application for the process display unit. 2-channel is the default setting for two-channel devices, 1-channel for single-channel devices.
AI1 Lower range Only visible if $\rightarrow$ Diff pressure is configured as the application.	$\begin{aligned} & \text { Numerical value }{ }^{1)} \\ & \mathbf{0 . 0 0 0 0} \end{aligned}$		Configures the measuring range lower limit
AI1 Upper range Only visible if $\rightarrow$ Diff pressure is configured as the application.	$\begin{aligned} & \text { Numerical value }{ }^{1)} \\ & \mathbf{1 0 0 . 0 0} \end{aligned}$		Configures the measuring range upper limit
AI2 Lower range Only visible if $\rightarrow$ Diff pressure is configured as the application.	$\begin{aligned} & \text { Numerical value }{ }^{1)} \\ & \mathbf{0 . 0 0 0 0} \end{aligned}$		Configures the measuring range lower limit
AI2 Upper range Only visible if $\rightarrow$ Diff pressure is configured as the application.	$\begin{aligned} & \text { Numerical value }{ }^{1)} \\ & 100.00 \end{aligned}$		Configures the measuring range upper limit
CV factor Only visible if $\rightarrow$ Diff pressure is configured as the application.	$\begin{aligned} & \text { Numerical value }{ }^{1)} \\ & 1.0 \end{aligned}$		Factor by which the calculated value is multiplied.
CV unit Only visible if $\rightarrow$ Diff pressure is configured as the application.	Customized text, max. 5 digits		Unit of the calculated value
CV Bar 0\%   Only visible if $\rightarrow$ Diff pressure is configured as the application.	$\begin{aligned} & \text { Numerical value }{ }^{1)} \\ & 0.0000 \end{aligned}$		Configures the 0\%-value for the bar graph
CV Bar 100\%   Only visible if $\rightarrow$ Diff pressure is configured as the application.	$\begin{aligned} & \text { Numerical value }{ }^{1)} \\ & 100.00 \end{aligned}$		Configures the 100\%-value for the bar graph
Linearization   Only visible if $\rightarrow$ Diff pressure is configured as the application.	No lin points	$\begin{aligned} & 2 \text { to } 32 \\ & 2 \end{aligned}$	Number of points needed for linearization.
	X-value 1 to X-value 32	Numerical value ${ }^{1)}$ $0.0000$	X -value for the linearization point in question
	Y-value 1 to Y-value 32	$\begin{aligned} & \text { Numerical value }{ }^{1)} \\ & 0.0000 \end{aligned}$	Y-value for the linearization point in question
Analog in 1	Signal type	Off   Current   Voltage   RTD   TC	Configures the input type   If "Signal type" is set to "Off", all the parameters under it are hidden.
1) Numerical values consist of 6 digits where the decimal point counts as a digit, e.g. +99.999			


Setup menu	Signal range	4-20mA, 4-   20mA squar, $0-20 \mathrm{~mA}$,   $0-20 \mathrm{~mA}$ squar, $0-10 \mathrm{~V}$,   0-10V squar,   $0-5 \mathrm{~V}, 2-10 \mathrm{~V}, 1-5 \mathrm{~V}$,   1-5V squar, 0-1V,   $0-1 \mathrm{~V}$ squar, $+/-1 \mathrm{~V}$,   +/- 10V, +/- 30V,   $+/-100 \mathrm{mV}$   Pt46GOST, Pt50GOST,   Pt100IEC, Pt100JIS,   Pt100GOST, Pt500IEC,   Pt1000IEC, Ni100DIN,   Ni1000DIN,   Cu50GOST, Cu53GOST,   Cu100GOST   3000 Ohm   Type B, Type J, Type K,   Type N, Type R, Type S,   Type T, Type C, Type D,   Type L, Type L GOST,   Type U	Configures the input signal
	Lower range Only displayed if "Signal type" = "Current" or "Voltage" is set.	$\begin{aligned} & \text { Numerical value }{ }^{1)} \\ & 0 \end{aligned}$	Configures the measuring range lower limit
	Upper range Only displayed if "Signal type" = "Current" or "Voltage" is set.	$\begin{aligned} & \text { Numerical value }{ }^{1)} \\ & 100 \end{aligned}$	Configures the measuring range upper limit
	Connection   Only displayed if "Signal type" = "RTD" is set.	2-wire   3-wire   4-wire	Configures the connection type for RTD thermometers
	Tag	Customized text, max. 12 digits	Channel name; TAG i the device designation for channel 1
	Unit   Only displayed if "Signal type" = "Current" or "Voltage" is set.	Customized text, max. 5 digits	Unit of the channel
	Temperature unit Only displayed if "Signal type" = "RTD" or "TC" is set.	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{F} \\ & \mathrm{~K} \end{aligned}$	Configures the temperature unit
	Offset	$\begin{aligned} & \text { Numerical value }{ }^{1)} \\ & \mathbf{0} \end{aligned}$	Configures an offset
	Ref junction   Only displayed if "Signal type" $=$ "TC" is set.	intern   fixed	Configures the reference temperature
	Fixed ref junc Only visible if "fixed" was selected for the "Ref junction".	Numerical value ${ }^{1)}$	Configures the constant reference temperature
	Res minmax	No   Yes	Resets the min./max. values saved.
Analog in 2	Signal type	Off   Current   Voltage   RTD   TC	Configures the input type.   If "Signal type" is set to "Off", all the parameters under it are hidden.


Setup menu	Signal range	4-20mA, 4-   20mA squar, $0-20 \mathrm{~mA}$,   $0-20 \mathrm{~mA}$ squar, $0-10 \mathrm{~V}$,   0-10V squar,   $0-5 \mathrm{~V}, 2-10 \mathrm{~V}, 1-5 \mathrm{~V}$,   1-5V squar, 0-1V,   $0-1 \mathrm{~V}$ squar, $+/-1 \mathrm{~V}$,   +/- 10V, +/- 30V,   +/-100mV   Pt46GOST, Pt50GOST,   Pt100IEC, Pt100JIS,   Pt100GOST, Pt500IEC,   Pt1000IEC, Ni100DIN,   Ni1000DIN,   Cu50GOST, Cu53GOST,   Cu100GOST   3000 Ohm   Type B, Type J, Type K,   Type N, Type R, Type S,   Type T, Type C, Type D,   Type L, Type L GOST,   Type U	Configures the input signal
	Lower range   Only displayed if "Signal type" = "Current" or "Voltage" is set.	Numerical value ${ }^{1)}$   0	Configures the measuring range lower limit
	Upper range   Only displayed if "Signal   type" = "Current" or   "Voltage" is set.	$\begin{aligned} & \text { Numerical value }{ }^{1)} \\ & 100 \end{aligned}$	Configures the measuring range upper limit
	Connection   Only displayed if "Signal type" $=$ "RTD" is set.	2-wire   3-wire   4-wire	Configures the connection type for RTD thermometers
	Tag	Customized text, max. 12 digits	Channel name
	Unit   Only displayed if "Signal type" = "Current" or "Voltage" is set.	Customized text, max. 5 digits	Unit of the channel
	Temperature unit Only displayed if "Signal type" = "RTD" or "TC" is set.	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{F} \\ & \mathrm{~K} \end{aligned}$	Configures the temperature unit
	Offset	$\begin{aligned} & \text { Numerical value }{ }^{1)} \\ & \mathbf{0} \end{aligned}$	Configures an offset
	Ref junction   Only displayed if "Signal type" $=$ "TC" is set.	intern   fixed	Configures the reference temperature
	Fixed ref junc Only displayed if "fixed" was selected for the "Ref junction".	Numerical value ${ }^{1)}$	Configures the constant reference temperature
	Res minmax	No   Yes	Resets the min./max. values saved.
Calc value 1	Calculation	Off   Sum   Difference   Average   Lineariz. AI1   Multiplication	Selects the calculation method   If "Calculation" is set to "Off", all the parameters under it are hidden.



Setup menu			
	Res minmax	No   Yes	Resets the min./max. values saved.
Analog Out 1	Assignment	Off   Analog 1   Analog 2   Calc value 1   Calc value 2	Selects the source for the output signal
	Signal type	$\begin{aligned} & 4-20 \mathrm{~mA} \\ & 0-20 \mathrm{~mA} \\ & 0-10 \mathrm{~V} \\ & 2-10 \mathrm{~V} \\ & 0-5 \mathrm{~V} \\ & 1-5 \mathrm{~V} \end{aligned}$	Selects the type of signal for the output signal
	Lower range	Numerical value ${ }^{1)}$ 0	Configures the measuring range lower limit
	Upper range	Numerical value ${ }^{1)}$ $100$	Configures the measuring range upper limit
Analog Out 2	Assignment	Off   Analog 1   Analog 2   Calc value 1   Calc value 2	Selects the source for the output signal
	Signal type	$\begin{array}{\|l} 4-20 \mathrm{~mA} \\ 0-20 \mathrm{~mA} \\ 0-10 \mathrm{~V} \\ 2-10 \mathrm{~V} \\ 0-5 \mathrm{~V} \\ 1-5 \mathrm{~V} \end{array}$	Selects the type of signal for the output signal
	Lower range	Numerical value ${ }^{1)}$ 0	Configures the measuring range lower limit
	Upper range	Numerical value ${ }^{1)}$ $100$	Configures the measuring range upper limit
Relay 1	Source	Off   Analog input 1 Analog input 2 Calc value 1 Calc value 2 Error	Selects the source for the relay
	Function	Min   Max   Gradient   Inband Outband	Function of the relay
	Setpoint	Numerical value ${ }^{1)}$ 0	Switching threshold for relay
	Setpoint 2	Numerical value ${ }^{1)}$   0	Second switching threshold for relay Only for the inband and outband functions.
	Time base   Only visible if "Function"   = "Gradient" was set	$\begin{array}{\|l} 0-60 \\ \mathbf{0} \end{array}$	Time base for gradient calculation in seconds
	Hysteresis	$\begin{aligned} & \text { Numerical value }{ }^{1)} \\ & \mathbf{0} \end{aligned}$	Hysteresis for switching threshold(s)
Relay 2	Source	Off   Analog input 1 Analog input 2 Calc value 1 Calc value 2 Error	Selects the source for the relay

1) Numerical values consist of 6 digits where the decimal point counts as a digit, e.g. +99.999

Setup menu			
	Function	Min   Max   Gradient   Inband   Outband	Function of the relay
	Setpoint	$\begin{aligned} & \text { Numerical value }{ }^{1)} \\ & \mathbf{0} \end{aligned}$	Switching threshold for relay
	Setpoint 2	$\begin{aligned} & \text { Numerical value }{ }^{1)} \\ & 0 \end{aligned}$	Second switching threshold for relay Only for the inband and outband functions.
	Time base   Only visible if "Function"   = "Gradient" was set	$\begin{aligned} & \hline 0-60 \\ & 0 \end{aligned}$	Time base for gradient calculation in seconds
	Hysteresis	$\begin{aligned} & \text { Numerical value }{ }^{1)} \\ & \mathbf{0} \end{aligned}$	Hysteresis for switching threshold(s)
System	Access code	$\begin{aligned} & 0000 \text { to } 9999 \\ & 0000 \end{aligned}$	User code to protect the device configuration. $0000=$ protection through user code disabled
	Overfill protect	No   Yes	If the device is used for overfill protection (see Section 6.4.8), "Yes" must be selected for "Overfill protect".
	Reset	No   Yes	Resets the device to the order configuration

### 11.4 Diagnostics menu

Diagnostics menu		Displays the error code currently present
Current diagn	Error code	Displays the last error code
Last diagn	Error code	Displays the hours operated up until now
Operating time	Numerical value	Displays the last 5 error codes
Diagnost logbook	Diagnostics x	Displays the device name i TAG channel 1
	Device tag	Displays the serial number
	Serial number	Displays the order code
	Order code	Order identifier
	Firmware version	Displays the firmware version
	ENP version	Displays the ENP version

### 11.5 Expert menu

In addition to all the parameters in the Setup menu, the following parameters are also available in the Expert mode:

Expert menu				4-digit code
Direct access	Save user setup	No   Yes	Select ‘Yes' to save the current device settings. The device can be   reset to the saved settings by means of 'Reset'->'User reset'.	
System	Analog in 1	Bar 0\%	Numerical value ${ }^{1)}$   $\mathbf{0}$	Configures the 0\%-value for the bar   graph
Input				

[^5]
## Expert menu

	Bar 100\%	$\begin{aligned} & \text { Numerical value }{ }^{1)} \\ & 100 \end{aligned}$	Configures the 100\%-value for the bar graph
	Decimal places	XXXXX XXXX.X XXX.XX XX.XXX X.XXXX	Configures the number of decimal places for the display
	Damping	Numerical value ${ }^{1)}$   0.0 for current/voltage   1.0 for temperature inputs	Configures the damping for the input signal. Entry in steps of 0.1 seconds from 0.0 to 999.9 s.
	Failure mode	Invalid   Fixed value	Configures the failsafe mode. Invalid: an invalid value is output in the event of an error.   Fixed value: a fixed value is output in the event of an error.
	Fixed fail value   Only visible if "Fixed value" was selected for the "Failure mode".	$\begin{aligned} & \text { Numerical value }{ }^{1)} \\ & \mathbf{0} \end{aligned}$	The value configured here is output in the event of an error.
	Namur NE 43	On Off	Setting as to whether the failsafe mode is in accordance with NAMUR NE 43.
	Open circ detect Only visible if "1-5 V" is configured as the signal range.	On Off	Sets cable open circuit detection.
	Failure delay	Integer value (0-9999)	Delay time for failure in s
	Allow reset	No   Yes	Setting as to whether saved min./ max. values can be reset in the Display menu without having to enter a user code which may already have been configured.
Analog in 2	Bar 0\%	$\begin{aligned} & \text { Numerical value }{ }^{1)} \\ & 0 \end{aligned}$	Configures the 0\%-value for the bar graph
	Bar 100\%	$\begin{aligned} & \text { Numerical value }{ }^{1)} \\ & 100 \end{aligned}$	Configures the $100 \%$-value for the bar graph
	Decimal places	XXXXX XXXX.X XXX.XX XX.XXX X.XXXX	Configures the number of decimal places for the display
	Damping	Numerical value ${ }^{1)}$ 0.0 for current/voltage 1.0 for temperature inputs	Configures the damping for the input signal. Entry in steps of 0.1 seconds from 0.0 to 999.9 s.
	Failure mode	Invalid   Fixed value	Configures the failsafe mode. Invalid: an invalid value is output in the event of an error.   Fixed value: a fixed value is output in the event of an error.
	Fixed fail value   Only visible if "Fixed value" was selected for the "Failure mode".	$\begin{aligned} & \text { Numerical value }{ }^{1)} \\ & 0 \end{aligned}$	The value configured here is output in the event of an error.
	Namur NE 43	On   Off	Setting as to whether the failsafe mode is in accordance with NAMUR NE 43.

1) Numerical values consist of 6 digits where the decimal point counts as a digit, e.g. +99.999

Expert menu				
		Open circ detect Only visible if "1-5 V" is configured as the signal range.	$\begin{aligned} & \text { On } \\ & \text { Off } \end{aligned}$	Sets cable open circuit detection.
		Failure delay	Integer value (0-9999)	Delay time for failure in s
		Allow reset	No   Yes	Setting as to whether saved min./ max. values can be reset in the Display menu without having to enter a user code which may already have been configured.
Output	Analog Out 1	Failure mode	Min   Max   Fixed value	Configures the failsafe mode. Min: the saved minimum value is output in the event of an error. Max: the saved maximum value is output in the event of an error. Fixed value: a fixed value is output in the event of an error.
		Fixed fail value Only visible if "Fixed value" was selected for the "Failure mode".	Numerical value ${ }^{1)}$ 0	The value configured here is output in the event of an error.
	Analog Out 2	Failure mode	Min   Max   Fixed value	Configures the failsafe mode. Min: the saved minimum value is output in the event of an error. Max: the saved maximum value is output in the event of an error. Fixed value: a fixed value is output in the event of an error.
		Fixed fail value Only visible if "Fixed value" was selected for the "Failure mode".	Numerical value ${ }^{1)}$	The value configured here is output in the event of an error.
	Relay 1	Time delay	$\begin{aligned} & \text { Numerical value }{ }^{1)} \\ & \mathbf{0} \end{aligned}$	Delay for switching the relay.
		Operating mode	Normally closed Normally opened	Normally closed = breaker contact   Normally opened = maker contact
		Failure mode	Normally closed Normally opened	Normally closed = breaker contact   Normally opened = maker contact
	Relay 2	Time delay	$\begin{aligned} & \text { Numerical value }{ }^{1)} \\ & 0 \end{aligned}$	Delay for switching the relay.
		Operating mode	Normally closed Normally opened	Normally closed = breaker contact   Normally opened = maker contact
		Failure mode	Normally closed Normally opened	Normally closed = breaker contact   Normally opened = maker contact
Application	Calc value 1	Decimal places	XXXXX XXXX.X XXX.XX XX.XXX X.XXXX	Configures the number of decimal places for the display
		Failure mode	Invalid   Fixed value	Configures the failsafe mode
		Fixed fail value Only visible if "Fixed value" was selected for the "Failure mode".	$\begin{aligned} & \text { Numerical value }{ }^{1)} \\ & \mathbf{0} \end{aligned}$	The value configured here is output in the event of an error.


Expert menu		Allow reset	No   Yes	Setting as to whether saved min./ max. values can be reset in the Display menu without having to enter a user code which may already have been configured.
	Calc value 2	Decimal places	XXXXX XXXX.X XXX.XX XX.XXX X.XXXX	Configures the number of decimal places for the display
		Failure mode	Invalid   Fixed value	Configures the failsafe mode
		Fixed fail value Only visible if "Fixed value" was selected for the "Failure mode".	$\begin{aligned} & \text { Numerical value }{ }^{1)} \\ & \mathbf{0} \end{aligned}$	The value configured here is output in the event of an error.
		Allow reset	No   Yes	Setting as to whether saved min./ max. values can be reset in the Display menu without having to enter a user code which may already have been configured.
Diagnostics	Verify HW set	Yes   No	Device hardware check.	
	Simulation	Simulation AO1	Off   0mA   3.6 mA   4 mA   10 mA   12 mA   20 mA   21 mA   OV   5V   10V	Simulation of analog output 1. The value configured in the simulation is output at analog output 1.
		Simulation AO2	Off   0mA   3.6 mA   4 mA   10 mA   12 mA   20 mA   21 mA   OV   5V   10V	Simulation of analog output 2. The value configured in the simulation is output at analog output 1.
		Simu relay 1	Off   Closed Opened	Simulation of relay 1.
		Simu relay 2	Off   Closed Opened	Simulation of relay 2.

## Index

A
Access protection ..... 31
Analog output
Configuration ..... 26
Application conditions
Configuration ..... 22
C
Cable open circuit detection ..... 36
Calculations
Configuration ..... 26
Configuration
Advanced device configuration ..... 31
Analog output ..... 26
Application conditions ..... 22
Calculations ..... 26
Differential pressure application ..... 23-24
Display functions ..... 31
Overfill protection in accordance with TRbF510 ..... 33
Relay ..... 27
Setup menu item ..... 24
Steps ..... 22
Universal inputs ..... 24
Configuration via interface ..... 13
D
Delay and hysteresis active ..... 30
Device malfunction ..... 40
Diagnostic events ..... 38
Differential pressure application ..... 23
Dimensions ..... 9
E
Error codes ..... 37, 40

## F

Failsafe mode ..... 36
FieldCare Device Setup ..... 13
Establishing the connection ..... 14
Installing the DTM ..... 14
Installing the Windows driver for the interface adapter13
H
Hysteresis and delay active ..... 30
IIcons
Display icons ..... 16
Editing mode ..... 16
Incoming acceptance ..... 7
Incorrect entries ..... 37
K
Key functions ..... 13
L
Limit values ..... 27
Local operation ..... 13
M
Measuring range limits ..... 37
Min./max. memory ..... 36
N
Nameplate ..... 6
0
Operating hours counter ..... 38
Operating matrix ..... 17
Operating mode Gradient ..... 29
Inband ..... 30
Max ..... 28
Min ..... 28
Off ..... 28
Outband ..... 29
Overfill protection ..... 32
Q
Quick pick keys ..... 36
R
Relay
Configuration ..... 27
Specification. ..... 27
Repairs ..... 4, 43
Reset ..... 38
S
Saving diagnostic events ..... 38
Saving the setup ..... 31
Self-diagnosis ..... 36
Simulation ..... 35
T
Transportation and storage ..... 7
U
Universal input
Configuration ..... 24
W
Windows driver ..... 13

Visit us at Transcat.com ©


[^0]:    1) According to UL approval panel or surface mounting only.
[^1]:    Fig. 6: Inside view and terminal assignment of the device
    Connection socket for interface cable
    Connection supply voltage
    Connection relay 1 (optional)
    Connection relay 2 (optional)
    Connection analog and status output
    Connection analog input 1
    Connection analog input 2 (optional)
    HART connection sockets
    Laser labelling of terminal assignment

[^2]:    2) can only be set in the menu Expert/Output/Relay
[^3]:    $\rightarrow$ Contrast: select contrast (can be configured in stages 1 to 7 )
    $\rightarrow$ Brightness: select brightness (can be configured in stages 1 to 7)

[^4]:    3) According to UL approval panel or surface mounting only.
[^5]:    1) Numerical values consist of 6 digits where the decimal point counts as a digit, e.g. +99.999
